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Abstract

Version 2.0 ofthe EPCC OpenMP Microbenchmaskiite has been updated to
include the latest featuseof the specificationin OpenMP 3.0.Both the newly
developed and prexisting benchmaskwere thenrun on a variety of different
hardwareplatforms including the latest upgrade to the HECToR supercomputer
with a number of different compiler®ifferences in compiler implementations of

the specification have successfully been highlighted, suggesting some areas for
improvement while providing a survey of the performance of a large range of
OpenMP directivesThe effects of the different hardware architecturesevwadso
observed, often with strong performance gains to be made wgérlaumbers of
cores per processor.
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Chapter 1

Introduction

The purpose of this projeds to update the existing tsef EPCC OpenMP
Microbenchmarks in order to test the new features introduced in version 3.0 of the
OpenMP specification.

The purpose of the microbenchmark suite is to measure the computational overhead
(in clock cycles) associated with each Opendtfnpiler directive. By running the
benchmarks on different machines aegeating the tests withrange of compilers

it is possible to use the resulting data to compare the performance of different
implementations and architecturéghis has atwofold purpose: ti highlights any
deficiencies which may exist in a particular implementation, allowing implementers
to improve performance in that areadit alsoallows programmers using OpenMP

to make informed decisions about whiirectives should be aided if posgle.

In order to remain relevant, it is necessary to update the microbenchmarks to include
features from the latest version of the OpenMP specification, as well as to run them
and investigate the performance of current generation comgiledshardware
platforms

This document will firstly introduce key concepts such as the specifics of what
OpenMP is andhow it is implemented;as well defining what constitutes a
microbenchmark and the issues surrounding microbenchmarking in geheeal.
OpenMP tasking maa which is new in OpenMP 3.0 will be explained and
discussed with the aid of code samples. After these details have been covered, the
methodology of version 2.0 of the EPCC OpenMP Microbenchmarks will be
examined, followed by an analysis of the directitres it covers.

Subsequent to the background material, Chapter 3 covers the new microbenchmarks
that have been developed and gives details of their implementatthrnvhy they

will provide useful dataAs a necessary precursor to the analysis of thetsefsam

these benchmarks, the different architectures of the test platforms the benchmarks
were run on will then be elucidated, with an overview of the compilers used on each
of them.



Chapter 4 contains graphs of all of the data output from running betiprén
existing microbenchmarks as well as the newly designed task system benchmarks
Resuls are presented by benchmark and secondarihalmwareplatform

Finally, Chapter 5 analysesach individual microbenchmark, comparing
implementations and platfiors and attempting to extract any general characteristics
that become apparent themasaddiion to pointing outinstanceswhere it is clear
there is room for optimisation



Chapter 2

Background

2.1 OpenMP

OpenMP is a specification for an API that allows programmers to easily implement
threadbased parallelism using the shared variables maddhel specifiation covers
theC, C++ and Fortraprogramming languages

The specification iglesigned to be easily portable and implementations exist for
both Microsoft Windows and Unix/Linux. Since the majority of modern
supercomputers use some variation of Linukxeotoperating systems will not be
investigated in this report. However it should be noted that the microbenchmarks
themselves are also portable so doing so would not be a difficericise

OpenMP may be considered a fairly hilglvel method of achievingnulti-threaded
parallelism, especially compared with other APIs such as POSIX THreads
Specifically, OpenMP does not expose the programmer to anthisad
micromanagement such as creation, job assignment, control atdiatien of
individual threads; la of which would have to be handled explicitly by the
programmer in the case of pthreads and other kswed methods.

There aretwo major components in an implememat of OpenMP; compiler
supportanda runtime library[1]

Built-in compiler support is necessary in order to transform OpenMP compiler
directives into parallel codeThis is the case since OpenMP utilises compiler
directives in order to specify which code segments are to be run in parallel, in
addition to other necessary functions such as thread synchronis@oompilers
without OpenMP support will simply ignore all OpenMP directives and compile the
codeserially. The fact that the same source code can be compiled either with or
without OpenMP enable@ advantageous from a maintainability perspective and
also allows for easy verification thatgivencodeis correct when run in serial, for

'A. K. A. o6pthreadso.



parallel debugging purposes$ypicdly, OpenMP support is enabled/ lcompiler
flags such as mp(PGI) ori fopenmp (GNU).

#include <omp.h> < Runtime library header.
#include <stdio.h> Compiler directive.
void main() { Runtime library routine.
#pragma omp parallel v
{
printf (fAHel I, momthoead Y. \ndo, omp_get _num_th
}

}

ListngliA si mpl e OpenMP O6HenC. o Worl dbé program

The runtime library consists of a number of utility functions as defined in the

OpenMP standard, in additiolo any internal implementatiespecific code. For

example, theomp_get_thread_num() function is a part of the standard and is

accessible to the programmer (in C by including ahg.h header file(listing 1)

and i n Fusedmnrpalibh 6vi,a hiowever the runtime | i bl
include internafunctions for forking new threads and assigning work.

Environment variables provide a method for allowing the user to affect aspects of
the program execution at runtime. The most prominent example of this is the
OMP_NUM_THREAD@riable, which determinehé number of threads that each
parallel region shouldiork. Another notable example is theMP_SCHEDULE
variable, which allows the user to set a scheduling scheme for all péoallebps
where the clause has been satatime

Another critical aspeadf programming in OpenMRnd the shared variables model
more generallys data scopingThe two main types of scope in an OpenMP parallel
region are shared and private.shared variable is visible and accessible for both
read and write at any time by #fireadslt is this facility that allows for threads to
combine partial results of a parallelised calculation or to implicitly communicate by
modifying shared datd. t is the programmer s responsi |
variables are not written to byultiple threads simultaneously, as the fact that even
simple operations such as addition are not atomic means that the final result can
often be unexpected and lead to unexpected behaviour in a program. Private
variables are replicated for each thread arel created upon entry to the parallel
region. This means that each thread has its own copy of a private variable in its own
stack, which is completely inaccessible to other thre&&mples of private
variables include loop indices and temporary vaeablor storing intermediate
results.

#pragma omp parallel private(i, j) shared(sum)

Listing 27 Example of data scoping in OpenMP. Variables andj are designated as private,
while sumis shared.

4



2.20penMP 3.0

The key addition to the specification in OpenM&0 is that of taskased
parallelism. This feature allows the programmer to designate multiple arbitrary
sections of code as Otasks6 that may be
tasks to OpenMP allows irregular execution paths to be morg pasallelised than

was previously possible, for example recursive functions and traversal of some
abstract data structures in a loop.

When a thread encounters a task directive, the enclosed code is designated as a task,
the execution of which may be defed. This means that the data environment of the
task is defined (variables initialised asstprivate 2 unless otherwise stated,

for an orphaned task) and the task goes into a pool of incomplete tasks. Upon
entering ataskwait  or barrier  construct a thrad will enter the pool of idle
threads which may be allocated tasks to complete. The way in which this occurs is
implementation defined1p]

Task directives may include an optionfal clause, which, if the enclosed statement
evaluates to fak, causes the task to be executed immediately by the encountering
thread rather than deferred. Use of the clause can therefore help to reduce
overheads created by use of the tasking system by choosiegetute a task
immediately rather than put it into the pool, which may be beneficial if there is only
a small amount of work to perform within the task (local data may already exist in
cache).

#pragma omp task if( statement

Listing 37 Adding an immediate execution condition with anif clause.

A given task may be tied (default) or untied. Tied tasks are only ever executed by
the first thread to begin executing it and may be suspended at an implicit or explicit
barrier  or ataskwait . Untied tasks mayebpartially executed by any number

of different threads until they are completed. In addition to the points defined for a
tied task, an untied task may be suspended at any point, depending upon the
implementation. When a task is suspended the thread @égdthe task is free to
switch execution to another incomplete task, as long as that task is either tied to it or
designated as untied. While setting a task as tied increases the chances of associated
data remaining in cache for the assigned thread, it snayetimes be beneficial to

use an untied task. For example, in the case where there exists number of load
imbalanced tasks, it is conceivable that a single thread ends up becoming tied to a
few of the tasks containing the majority of the work. If theskgavere untied then

other threads would be able to resume them instead of sitting idle while one thread

2 Essentially the same @sivate , but initialised to the value of the variabléaen the directive is
encountered



attempts to complete them all. It should be noted that untied tasks should not make
use ofthreadprivate variables since any such data would be loghéf task
switched to another thread.q

#pragma omp task untied

Listing 47 Specifying a task as untied.

2.2.1Example Programs

#include <omp.h>
#include <stdio.h>

int foo(void);
int bar(void);

int  main() {
int resultl, result2, total;
#pr agma omp parallel

{

#pragma omp master

© 00 N O O~ WDN PR

e =
w N P O

#pragma omp task

PP
(62

resultl = foo();

}

#pragma omp task

e~ i
© 00 N O

result2 = bar();

}

#pragma omp taskwait

N N NN
w N P O

printf(ATotwldo,=r%cdul tl + result?2);
}
}

return O;

N DN NN
o N o o b

}

Listing 57 A simple C program using OpenMP tasksFor illustration purposes only; a real program with
a similar structure may incur less overhead by using sections in place of tasks.

Listing 5 shows a simple C program thases tasksn order two execute two arbitrary
functions (foo and bar) in paralléThe parallel region is entered on line 9 and the number of
threads specified in theMP_NUM_THREARSvironment variable are createit. line 11

all threads other than theaster thread (thread ID = 0) step over tinaster region and

enter an implicit barrier at the end of the parallel region (line 26), the master thread continues
to line 13 where it reaches the first task directi&ethis point a task corresponding tceth
enclosed code is generated, including the data environment of th&jtakkdause this task
directive is not orphaned the dagharing attributes for the variables inside the task are
inherited from theparallel directive. In this particulacase there are no explicitly stated
data sharing clauses on tparallel directive so the default adhared is applied to

6



resultl  and inherited by the taskRVith the first task now created it may either be
immediately executed by the encountering thr@adhis case the master thread) or have its
execution deferred to some later point in time, with this choice being determined by the
implementationlf the task is executed immediately then the master thread wilfozH)l

and assign its value t@sultl  before continuing to line 17, where the process is repeated
as the second task is creat€uhce the second task has been dealt with (either generated and
executed or generated and deferred) the master thread will entaskhait  directive on

line 22, which it may exit as soon as all outstanding tasks have been comfleéethaster
thread will now output the sum oésultl andresult2  before synchronising with other
threads in the implicit barrier on line 26 arhchingtheend of theprogram.

Whatham ot been mentioned here is the exhestence
code.Task scheduling points exiat the following points: upon encountering a task directive,
when completing execution of a task, at implicit and explicit barriers,imnaskwait
directives[3]. They may also be inserted at any arbitrary point within a task which is
designated asntied . A task scheduling point gives the opportunity to the thread at the
point to be assigned any outstanding task (that has nat mend to another thread) for
immediate executiorAdditionally, if a scheduling point is reached whilst executing a task it

is possible to suspend the task and pick up a differentFmmehe case of the example code

in listing 5 task schedulingoints therefore exist at lines 13, 17, 22 and 26, as well as after
lines 15 and 19, that is, interior to but at the end of each of the two Tdsksneans that

while the master thread generates both of the tasks, any threads waiting in the bameer at |

26 may begin executing these tasks once they have been c@agegdossible scenario for

the case of two threads where both tasks are deferred by the master thread is thus: thread 1
begins execution of one of the two tasks, and when thread O rebelteskivait  directive

it picks up the remaining task, moving out of the barrier once both tasks are co@piete.

much is left up to the implementation and further variability is introduced by threads being
asynchronous there are a great deal of possiaeution paths.



#include <stdio.h>
int fib(int);
int main() {
intn=10;
int result;
#pragma omp parallel firstprivate(n)

#pragma omp master

result = fib(n);

printf(fAFi bonacci

}
}
r eturn O;
}
int fib(int n) {
inti, j;
if (n < 2)
return n;
else {
#pragma omp task shared(i)
i = fib(n -1);
#pragma omp task shared(j)
j = fib(n -2);
#pragma omp taskwait
return i +

NoOo, %d ,i s edl t) ;

Listing 61 Parallel calculation of the "™ Fibonacci number using tasks. Taken from the OpenMP 3.0
Speci ficationddamdfsh mpl es

Listing 6 details a parallel recursive function for calculating Fibonacci numbEnss
function is more complicateadh istructurethanthe simple code in listin§ and demonstrates

secti on

[

how tasks allow codes with complex execution paths to be parallelised; whereas the simple
program ould have easily been parallelised in previous versions of OpenMP by using

sectio ns or even
(omp_thread_num()==1)

simply by

wr aifp psiatengent @.e.it h
etc), it is unclear how the recursive Fibonacci algorithm

0t as

could be tackledOne approach would be to use nested parallel regions, however this has a
much greater werhead than using tasks, and on top of this the behaviour of nested parallel
regions was not necessarily consistent between implementations in previous versions of

OpenMR

In terms of semantics it should be noted that variablesdj in listing 6 are declared as
in the task directivesn contrast withresultl

shared

andresult2

in listing 5 which

are not. This is due to the fact that the task directives in the Fibonacci function are orphaned,

i.e. not enclosed by a specifiarallel

construct; if he shared clause was not present then

both variables would default fo'stprivate



2.3 Microbenchmarking

Generally speaking, a benchmark is a program that is written to measurelahee
performance of a particular aspect of a computer system, be it mardwaoftwareThe
Linpack benchmark which is commonly used to assess the relative performance of
supercomputerfg] is an example of hardvare benchmark: the same code is run on multiple
platforms and the number 6. OPS achieved is recorded and used to compare th&file

this only determines which hardware platform is best at running the benchmark, the
benchmark is designed to be similar to typical-weatld use cases, in this case, solving a
system of dense linear equatof@ common scientific computing problenih contrast, a
software benchmark is typically run on one hardware platfomepaated number of times
whilst varying some aspect of softwaréor example, the time taken to encode a given media
file may be meased using different algorithms in order to determwigch is optimal

A microbenchmark is a benchmark that is designeshéasurehe performance of amall,

specific piece of code, isolated from gogrticular reaworld use caséthe code in question

typically has no use in itself)Microbenchmarking contrasts with applicatitavel
benchmarking, which attempts to replicate a-reatld program albeit in a forfrom which

repeatable measurements can be extracted, such as rendering a predeterminedasigste a

of graphical performance For t his reason microbenchmarks
|l evel 6 class of benchmarking, a r emerowsor | d a
components which may individually be suitedmicrobenchmarkingThis hints at the fact

that asuite of microbenchmarks are necessary in orgain a comprehensive view of a
particulararea of interest

The advantage of a microbenchmark suite over an application level benchmark is that the
microbenchmarks will have a der range of applicability many different types of program

may all use the sections of code tested by the suite, but they may do so in different
proportions. Instead of writing many application benchmarks it is possible to get a good
indication of perfomance for a specific program by looking at the most important sections of
code and determining their overall contribution to run time and consulting the set of
microbenchmarks for their performance characteristidgen using different tools (i.e.
compilerg or platforms.

2.3.1Caveats

When designing and running a microbenchmark it is important to ensure that the code under
investigation is the same code that actually runs on the hardware. Since code in a given
language must actually be compiled to machine codewilt undergo numerous
transformations and optimisations, with the aim of the compiler being to reduce the total
runtime while still producing a correct output, it is possible ghabphisticated compiler will

be able to recognise redundant code and masy it. While this is highly desirable under

® Floating Point OPerations Per Second.

* Of course, the whole suite of tests may be run again on anatieripl.



normal circumstances, for the purposes of benchmarking it can be highly destructive as there
is a risk that the code being measured may be optimised away, leading to erroneous results
Luckily, most modern compilers will only perform the more disruptive types of optimisation
such as inteprocedural analysis at more aggressive optimisation settings, when specific flags
are setln addition to this, for the purposes of this project, OpenMP intradcomplexity to

the code which serves to makes optimisation more difficult for the compiéarertheless

care must be taken to avadch thingccurring. It should be noted that these concerns are
less of an issue for application level benchmarks, dimege produce some useful result any
optimisations are welcome, as well as the fact that these benchmarks may consist of hundreds
or thousands of lines of code, compared with tens of lines for a microbenciHsoank.

further discussion is located in secti®.1.4 for the design of the immediate execution
benchmark.

A microbenchmark may be extremely sensitive to any interruption of its execution, for
example by the operating system or any other running programs that are in contention for
system resources. Agaiwith an application level benchmark this is less of a problem due to

the fact that it is designed to measure a real world scenario and the benchmark itself will
typically run for a muchgreateramount of timecompared with a microbenchmark an
interruption of some sort does occur during microbenchmarking, such as a context switch, it
may throw off a test bg factors e ver al t i mes Thidisdiscdugsedduehier im un t
section3.4 on statistical significance.

2.3.2Examples

SKaMPPf is a microbenchntéa suite designed to measure the performance of Nititary
functions allowing for performance comparisons between MPI implementations (such as
OpenMPI and MPICH) and different hardware platforihss somewhat comparable to the
EPCCO6s Op e n Mmarlsuite indebones mofcaim, though applied to MPI rather than
OpenMP.

2.4EPCC OpenMP Microbenchmarks V2.0

Results from the first version of the EPCC microbenchmarks were first presented in 1999 at
the first European Workshop on OpenMFPhis version of the iehmarks related to version

1.0 of the C and Fortran OpenMP standards, which were at the time separate doduments.
paper compared three systems from Sun, SGI and Compaq, using different compilers on each
system The current version of the microbenchrmeaitkad results presented EWOMP 2004

and related to version 2.0 of the OpenMP specifications. The main new benchmarks
incorporated related to arralata clauses and there was also a restructuring of the Fortran
code to use the frefermat style.Since then grsions 2.5 and 3.0 of the specification have

® Special Karlsruher MPI benchmark. See http:/linwww.ira.uka.de/~skampi/index.html
® Message Passing Interface. See http://www:fopim.org/

"EWOMP
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been released, with 2.5 marking a merger between the separate @rtaad Focuments with
few other change®©penMP 3.0 is discussed in sectioh 2.

2.4.1Methodology

The overhead associated with a given dikeGtiO,, can becalculatedaccording to the
formula:

Op=Tp—= 1)

| Parallel overhead

Tp T Parallelbenchmarkexecution time
T Serialbenchmarlexecution time
| Number of threads

T, and Ts relate to the time taken toxe&cute a dummy function a set number of times, in
parallel and in serial respectivellyjor example, the overhead of the parallel directive may be
measured by subtracting the execution time of lisirfigpom that of8 and dividing by the
number of epetitions in the loog7]

for (i=0;i<reps; i++) {
delay( delaylength );
}

Listing 71 Reference time loop.

for (i=0;i<reps;i++){
#pragma omp parallel

delay( delaylength );
}
}

Listing 81 Parallel directive benchmark loop.

It should be noted that the length of tbelay function is chosen such that it takes
approximately 100 clock cycles, this is to try to minimise loss of precision caused by
subtracting numbers differing significantly in magnitudsdditionally, by mnning the
parallel code for the same number of iterations as the serial reference code, thereby
multiplying the total amount of work done by the number of threads, the need to diyide by

in equation (1) may be neglected and the magnitude of the twodmadsrther kept similar.
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2.5List of Benchmarks

2.5.1Scheduling
2.5.1.1 Static and Static,n

The static andstatic,n schedules are the simplest scheduling schemes in OpenMP and
they should therefore incur the least amount of overhead. The stiic  schedule
allocates dop iterations to threads simply by dividing the total number of iterations by the
number of threads, this is a eo# cost that only needs to be performed when the loop is
entered, and which may be partially performed at conrtpile depending on whethéhe
iteration space is known or dynamic. Tdtatic,n schedule is similar, however instead of
dividing the iteration space by the number of threads it is divided into chunks containing
chunksize iteration§. All of the chunks are then pmssigned to thesls in a cyclic
fashion. Therefore, while the static schedule has a constant cost, the static,n has a cost that
increases as thehunksize decreases due to the fact that the number of chunks increases
and there is a cost associated with switching betwbhanks (even though they are already
allocated).

2.5.1.2 Dynamic and Guided

The guided and dynamic schedules are similar in that they both require work to be
performed at runtime in order to allocate loop iterations to threads. For the dynamic schedule,
as can beead in the OpenMP specificatio8| [ the total number of iterations is divided into
chunks of a size equal the specifdtlnksize . The chunks are then allocated to threads

on a firskcomefirst-served basis, i.e. as soon as a thread becomes idlebewilocated the

next incomplete chunk. This means that the smallercthenksize is, the greater the
number of total chunks, and therefore the greater the amount of overhead incurred in the
process of allocation. We would therefore expect the overbiethd dynamic schedule to be
highest at @hunksize of 1 and to decrease alBunksize approaches 128, which as can

be seen at line 5 in listing is the point where the loop is split into the same number of
chunks as the number of threads, i.ee ohunk per thread.

8 If the iteration space does not divide exactlychynksize then the final chunk may be smailthan the rest.
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#pragma omp parallel private(j)

{
for (j=0; j<innerreps; j++){
#pragma omp for schedule(dynamic,cksz)
for (i=0; i<itersperthr*nthreads; i++){
delay(delaylength);
}

}
}

Listing 971 Inner loop of the dynamic £hedule microbenchmark. Extract from schedbench.c

For the guided schedule tlehunksize sets the minimum size of a chunk rather than
setting the size of all chunks as witiinamic . Apart from this restriction determined by the
chunksize |, the size of a cmk is calculated by dividing the number of remaining iterations

by the number of threads, as a result of this chunks start large and get smaller. This means
that there will always be fewer chunks than witlhiymamic schedule and therefore the
overhead redting from allocation should be lower (although calculating the number of
iterations to allocate adds some additional woruimed ).

2.5.2Synchronisation
2.5.2.1 Parallel, For, Barrier and Single

The first set of graphs for the synchronisation microbenchmarks certtanparallel, for,
parallel for, parallel with reduction, barrier, and single directives.

The parallel construct is fundamental to OpenMP as it is this directive that is responsible for
defining areas of code to be executed in parallel. In OpenMP Zafalgbregion generates a
number of tasks equal to the number of threads requested (either specified by the
OMP_NUM_THREARSvironment variable or by mum_threads clause on the parallel
directive), and then each thread is tied to one of these @skihe end of a parallel region
contains an implicit barrier so the overhead of the parallel directive must be greater than that
of the barrier directive. Since the parallel directive is only usually used a relatively small
number of times in a prograrthe overhead associated with it is not of great importance for
typical scientific applications as it will be a very small @axfecost in comparison to the main
body of the code. For any programs wishing to utilise OpenMP in a realtime application
however,the parallel directive could ostensibly be encountered many times per second, in
which case any excessive overhead in implementation of the directive could be crippling to
performance. At the time of writing there are no welbwn examples of OpenMP bgin

used in such a context, a case study of using OpenMP to parallelise al@amade use of

only one parallel construct that was only encountered at initialiSativeming that overhead

of the parallel directive would not have a significant impact in this case either. Even so, it is
still worthwhile to examine a microbenchmark of the directive in order to ensure that there
are no major failings in any of the implemendas being tested.

° The parallel directive enclosed the main function call used to start the game, and was immediately followed by
a single directive. The majority of threads would then wait in the implicit barrier at the end of the parallel
region, wherehey would pick up tasks created by the main thread.
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Thefor directive, used to parallelise for loops, is one of the most commonly used OpenMP
directives. The cost associated with this directive will determine the minimum amount of
work in a loop that is worth parallelising in this manrfer; parallelisation to be profitable
theequationx + t < xt must be satisfiet?.

Thesingle directive is used to make sections of code in a parallel region be executed only
once. An encountering thread will set a flag and execute the code if it hagtnbégn
executed and step over the block if the thread sees that the flag has already been set. There is
an implicit barrier at the end of a single region unlessntheait clause is specifiedzor

this reason the overhead of the single directive showe laalower limit of that of the

barrier  directive.

2.5.2.2 Locking

The second set of graphs for the synchronisation microbenchmarks contains those directives
used to prevent sections of code from being executed by multiple threads at once: critical,
lock/unlock, @omic and ordered.

When a piece of code is designated as a critical section usiogtite! directive it may

only ever be executed by one thread at a time, if a thread encounters a critical section that
another thread is currently executing then it wilit until that thread exits the section before
continuing. The mechanism for implementing this is implementation defined.

In addition to the critical directive, the OpenMP runtime routinegp_set lock and
omp_unset_lock  offer another slightly more exgit and flexible method for protecting
regions of code from being accessed simultaneously by multiple threads, at the cost of
increased micromanagement due to the necessity of lock variables. A thread encountering a
locked section of code behaves identicéd a thread encountering busy critical section, and
must wait for the section to be unlocked before continuing. As mentioned, the advantage of
using lock routines over critical sections is increased flexibility for the programmer; a lock
may be set or nset from any section of code with access to the associated lock variable,
whereas a critical section must be a single contiguous block of code.

The atomic directive differs from the other directives here in that it may only be applied to a
single statemenrather than a block of code, furthermore that statement must modify the
value of a variable.

1 For overhead cost, number of threads work costxa, parallelsation is profitable fora +? < xa (i.e.

wor.

k
< work). Thusx + t < xt
threads

overhead +
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int x = 0;
#pragma omp parallel shared(x)

x += foo();

}

return x;

Listing 107 Example of code with a data race that should be avoided with use of atomic directive.

In listing 10 the value of the variablg will differ when the return statement is reached,
depending upon the order in which line 4 was evaluated by the threads in the parallel region.
This occurs since the statement is essentially spb four segments; loaxl from memory,
evaluatdoo() , add the value dbo() to x, and finally, storex in memory. The key point

is that the load and store wfmay be performed by each thread in any order, meaning that if
all of the threads in the paltel region in this example loaded the value 0O, then the last thread
to issue a store would overwrite the value already there, resulting in the final valleioQ

equal to 0 Hoo() for that thread only.

One method of making this code produce theeamrresult (i.e. the sum of the values of
foo() for each thread) would be to enclose line 4 in a critical directive. While this would
work perfectly ok in terms of getting the right answer, the code would be entirely serialised
as each thread would havewait its turn to execute the statement. Ifaaomic directive

was utilised on the other hand, the code would be mostly parallel as well as returning the
correct result (assumirfgo() takes significantly longer than loading and storigThis is
becaus the atomic directive ensures that loads and stores of x are serialised and must be
performed immediately one after the other, hence atomic. The resulting program is parallel as
threads may all evaluafeo() at any time with only the load and store beprgtected,

unlike if acritical section was used. For this reason the atomic directive should incur the
least overhead of this set of benchmarks.

The ordered construct is designed to be useful for sequentially ordering output from parallel
code in a loo10]. Code placed within an ordered region is executed only once per loop
iteration by the first thread that encounters it, while the section is being executed, subsequent
encountering threads will step over the region and continue until trenregreached once
more in the next loop iteration. At this point all encountering threads will wait until the
ordered region has been completed from the previous loop iteration, in similar manner to
threads waiting at a busy critical section. For a lompt&ining a large amount of work and an
ordered section containing relatively little work it is possible that the overhead of the ordered
section may be largely hidden since one ordered block will usually be completed by the time
the next one is reachedoia loop containing a large proportion of work inside an ordered
block, the loop effectively becomes serialised as this proportion increases.
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Chapter 3

Implementation and Test Platforms

3.1 Additional Benchmarks Implemented

3.1.1Parallel and Serial Task Generation

The seial and parallel task generation microbenchmarks are designed to show which strategy
of task generation produces the least amount of overhead.

In the case of serial task generation, one thread iterates through a loop which generates one
task per iteratiorwhile the other threads wait at an implicit barrier (and therefore task
scheduling point) and pick up work as it becomes available. The efficiency of the underlying
task creation and allocation system is key here, if it takes longer to generate aragk tha
does to pick it up and execute the enclosed work then the code becomes serialised as the
work from one iteration of the loop will be completed before the next set of work can be
made available. This scheme should perform progressively worse as therninthreads
increases as the rate at which tasks can be generated will remain constant as the number of
threads that must be kept busy increases.

#pragma omp parallel private(j,i)
{
#pragma omp master
{
for (j = 0; j < innerreps; j++) {
/ *
* Since this is executed by one thread we need
* (itersperthr * nthreads) iterations.
*/
for (i = 0; i < itersperthr * nthreads; i++) {
#pragma omp task

delay(delaylength);

}
}

} /* End master */
} /* End parallel */

Listing 117 The serial task generation microbenchmarkExtract from taskbench.c
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As can be seen in the code for the serial task generation benchmark {lisabgve), the
structure of the code is similar to thagscribedn listing 5, the master thread is responsible
for generating tasks while other threads wait in the implicit barrier at the end of the parallel
region, picking up tasks as they are created.

For parallel task generation evetyréad takes part in generating tasks, with each thread
iterating over its own loop. This could mean that a task generation phase takes place before
any work is executed and therefore work is commenced later than with serial task generation.
However, this ray not be the case; due to the fact that a task scheduling point occurs when
creating a task it is possible that an implementation could decide to begin execution of any
outstanding task. It is speculated that such behaviour may be beneficial if itdedidzat

the number of outstanding tasks is too high, as each outstanding task will consume memory
resources in order to store its data environment. It is possible that the additional logic for such
decisions may add further overhead however. Regardleshesé factors, parallel task
generation should theoretically scale better than serial task generation as every additional
thread will always hae work to do generating tasks.

#pragma omp parallel private(j,i)
{
for (j = 0; j < innerreps; j++) {
/*
* Since this is executed by all threads we need
* (itersperthr) iterations.
*
for (i = 0; i < itersperthr; i++) {
#pragma omp task

delay(delaylength);

}
}
}
}

Listing 127 The parallel task generationmicrobenchmark. Extract from taskbench.c

The parallel task generation benchmark is simdathe serial generation code, albeit without
amaster directive.It should be noted that the iteration bounds of the innermost loop must
be changed from the seri@sk generation code in order to produce the correct number of
total tasks; all threads will iterate over the generation looipessperthr iterations are
required rather thaitersperthr*nthreads iterations

3.1.2Parallel Generation + Barrier/Taskwait

Both the barrier  andtaskwait  directives will halt all encountering threads until child

tasks created so far by the current task have been completed. Each of these directives also
contains a task scheduling point so it is possible for a thread to continueimxdesks

whilst inside either of these constructs. The fact tHaskwait construct does not require

all threads to reach it and synchronise at that point differentiates it from the barrier directive,
which has this requirement; for this reason it ipexted that theaskwait  directive will be

the lighterweight of the two, inducing less overhead.
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In order to measure the overhead ofltherier  andtaskwait directives in this context,
similar code to the parallel task generation microbenchmark was yadp{bsting 12), with
the directive in question being inserted after the task generation loop.

#pragma omp parallel private(j,i)

for (j = 0; j < innerreps; j++) {
/*
* Since this is executed by all threads we need
* (itersperthr) itera tions.
*
for (i = 0; i < itersperthr; i++) {
#pragma omp task

delay(delaylength);

}
}

#pragma omp taskwait

}
}

Listing 1371 Parallel task generation with taskwait directive. Note that for the equivalent barrer
benchmark the taskwait directive is simply replaced with a barrier directive.

Placing the directive at this point allows for a significant number of tasks to be generated,
thus creating O0something to wait dompete wait
would not provide a good metric of performance. Also, at this position the directive is still

inside theinnerrepsloop, resulting in the directive being encountered many times so that it

can be averaged over and not lost due to insufficient numemiealsion: if only a single
taskwait/barrier was inside thamiterreps loopthen its overhead would likely be extremely

small compared to the total number of cycles spent on the task generation loop and the work
itself.

3.1.3Tree Structured Task Generation

Serial andparallel task generation as discussed in se&idr2are two common schemes for
parallelisation using tasks likely to occur in a real progfam further task generation
pattern is the recursive case, where a thread generates a task which thevillitsedate
more tasks, the Fibonacci code in listiigs an example of such a program. Recursive
generation of tasks in this manner represents a significaittasgefor tasks since it is at least
partly what the task system was created for, thabisllow for parallelisation of code with
more complex execution patterns rather than primarily looping structures.

To test the performance of recursive task generation two slightly differing microbenchmarks
were written in which tasks are generated imeg tstructure; each task generates two child

L A real program would most likely not use tasks in a manner where usage of tasks could be replaced with an
OpenMPfor directive; however the pattern of task geien would remain the same.
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tasks and each of these child tasks generate their own child tasks, and so on until the required
number of tasks have been created.

The first tree structured generation function places work (i.e. the dudalay function) on
both the branches and leaves of the tree structure. This is illustrated inlfigure

Y
OO’@ s 6{ 76(';9/
Tree Level ZG’/@/ Org
1 1 1
2 2 3
3 4 ]

Figure 17 Diagram of the tree created by tharee gen branchmicrobenchmark. Nodes containing work
are shaded.

This structure is created bylliag a recursive functiontree_ gen_branch that takes
which level of the tree the call is on as its argument. Once the tree function is called with a
level that satisfies the prmomputed required level to generate the correct amount of work,
the function generates no further tasks and the tree termindtes. example, if

itersperthr is equal to 64 then before the benchmark stés, term_level will
be calculated a8. The if statmentin thetree_ gen_branch functionwill then evaluate
to false when th&ree_ gen_branch function is called with @&ree_level argument of
6.

#pragma omp parallel private(j)
#pragma omp master

for (j = 0; j < innerreps*nthreads; j++) {
#pragma omp task

delay(delaylength);
}

tr ee_gen_branch(1);

}
}
}

Listing 147 The first tree-structured task generation microbenchmark. Notethat one additional task
containing work is placed before the call tdree_gen_branch  in order to make the total amount of

work executed equal to thatperformed by the second treestructured task generation microbenchmark.
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/* Compute maximum binary tree depth */
tree_term_level = (int) (log10( (float)itersperthr ) / 10g10(2.0));
tree_term_level++;

Listing 14 --

/*
* Work takes place at each branch and each leaf
*/
void tree_gen_branch(int tree_level) {
if (tree_level <tree_term_level ) {
#pragm a omp task

delay(delaylength);
tree_gen_branch(tree_level + 1);
tree_gen_branch(tree_level + 1);
}
}
}

Listing 15--

As a variation on the previous tree an additional tree was written which places all of the work
(delay call3 on the leaf nodes rather than on branches as well. To achieve this the total
number of tasks is greater since the tree has to have one additional layer of depth in order to
create an equivalent number of work items. While this should introduce moreagarhthe

form of additional tasks, it also means that each task is faster to exeootgeast thebranch

nodes will contain work other than that of generating more tasks, meaning that the full tree
can be generated faster. The function for the receigdneration of each node in this tree is
presented in listind 6, note that the code for the full microbenchmarisiiilar to that in

listing 15, but with the function call changed toee  gen_leaf and the additional task
removed

4/an ¢ az‘ 75[“9/
Tree Level é@t/@ Ory.
1 1 0
2 2 0
3 4 0
4 8 8

Figure 27 Diagram of the tree generated by theree gen leafmicrobenchmark. Nodes containing work
are shaded.
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/*
* All work takes place on leaf nodes
*/
void tree_gen_leaf(int tree_level) {
if (tree_level == tree_term_level ) {
delay(delaylength);
}else {
#pragma omp task

tree_gen_leaf(tree_level + 1);
tree_gen_leaf(tree_level + 1);
}
}
}

Listing 16--

It should be noted that while tasks are generated in a tree pattern, the nature of the tasks
system means that the order in which tasks are executed depends largely on the underlying
implementation. It is quite possible that while some section of the tree has been generated all
the way down to the leaf nodes, another section may have outstaaslisgctose to the top

of the tree, preventing any generation of tasks further down. From the perspective of parallel
computation, for a balanced tree of unknown depth it is generally favourable to prioritise
tasks higher up the tree, if this is done thewiil take longer to reach a leaf node, which is
undesirable since a leaf node creates no additional work. This affects the amount of
parallelism available due to the fact that with a tree structure there is a delay before enough
tasks are generated tocoipy all of the available threads; for a binary tree with eight threads
available for example, the first second and third levels would need to be completed before
there were eight tasks outstanding.

3.1.4Immediate Execution

One item of interest with regards to performance in OpenMP 3.0 is the overhead induced by a
task construct with aif clause that evaluates to falsghich resuls in the task being
executed immediately rather than deferred. The re$ultiis microbenchmark will determine

how practical it is to use tasks liberally throughout a program, switching each of them to
immediate execution (or not) individually, depending upon the situation. If the overhead of
using tasks with aif clause thaevaluates to false is high then the aforementioned use case
will not be of much use, any potential gain from the situational parallelism will probably be
outweighed by this overhead. If the overhead is found to be very low however it might be
worth encouaging such practices.

Rather thanf( <false> resulting in a task construct being removed altogether, the OpenMP
specification requires that the task is still generated, just that when generation has been
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completed that the task is executed immediatelyhieycurrent thread. The parent task may

not be resumed until this task has been completed. The task still being generated is necessary
as otherwise the meaning of the enclosed code may differ depending upon the truth value of
theif clause, due to the effts of any data environment clauses for variables used inside the
task region. In this manner behaviour of the task in relation to lock ownership and
synchronisation is also kept consisteti] |

#pragma omp parallel private(j,i)

for (j = 0; j <innerreps; j++) {
for (i = 0; i < itersperthr; i++) {
#pragma omp task if(return_false_arg(i))

delay(delaylength);

}
}
}
}

Listing 1717 The immediate execution microbenchmarkThe content of the if clause varieslightly with
each testExtract from taskbench.c

In order to check whether or not any of the compilers on test optonisa task construct

with a compiletime-evaluateable if clause that evaluates to false, such as if(0), the
benchmark was run with the of different statements with the same effect. The first case uses

the previously mentioned if(0), the second case uses a function call return_false() that simply
returns 0 and the third cases uses a function call taking an argument that always i(@wirns 0

is not just O6éreturn 006). These second two cs
compiletime that the if clause is false (case two could possible be determined at compile

time by a sophisticated compiler with irg@rocedural optimisabh or if the function was n

lined and reevaluated, however the third case makes it extremely unlikely for something like

this to occur).

3.2 Note on Memory Profiling

Although not technically a microbenchmark, one further aspect of an OpenMP
implementation wgh measuring is memory usage. In scientific computing one of the
constraints on the size and complexity of the simulations that can be run on a computer is the
amount of memory available. With this in mind, if an implementation of tasks uses an
excessiveamount of memory as the number of outstanding tasks increases then that
implementation may be precluded from being used.

In an attempt to investigate the memory usage of each implementation being evaluated the
6Massi foé6 tool was u slgridd suiter bf iperformance anplgsis toolso f  t h
Valgrind works by taking a standard executable binary file and running it on a virtual CPU,
inserting its own instrumentation in the proceds).[ In the case of Massif, memory

allocation callsare intercepted and instrumented. Traditional performance analysis tools often

work by modifying a binary at compilation by adding calls to their own instrumentation code,
unavoidably altering the program being examined. With Valgrind this can be avhiden

the fact that the analysis happens in softwaas long as the software simulation of the CPU
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is accurate, data collected will be accurate and instrumentation calls can be specifically
excluded from the results. Due to the fact that Valgrind isatura tool, this is usually true

for serial code (data collected is very accurate), however for parallel code it is impossible to
avoid interfering with the results as a result of-nl@terminacy.

Despite this, tests were run to see if any informationccbel gleaned. Unfortunately it was
found that code compiled by the PGI compiler running under Valgrind resulted in
consumption of all system memory due to some unknown bug, preventing the gathering of
any data. Code compiled by the GNU compiler ran cdgebtit with a prohibitively large

run time. As a result of these failures this line of investigation was abandoned.

3.3 Hardware Platforms

3.3.1Ness

Ness is an EPCC research computer that provides a similar environment to that of large scale
supercomputers such &ECTOR, thus also lending itself well to training. The system
consists of two separate Sun Fire X4600 nodes containing &adaAMD Opterons each.

As a result of the fact that Ness has the largest number of individual processors out of the
systems beip tested it may be expected that it performs comparatively poorly in some of the
benchmarks due to an increased need to access data starieigp off

System Name Ness
Operating System Scientific Linux
Processor AMD Opteron

ModelN° | 1218
Codename SantaAna
Cores Per Process| 2
Clock Spee( 2.6 GHz
Cache| L2:1MBper Core

L3: None
Total N of Processors 8
Total RAM 32 GB
RAM Per Core 2GB

3.3.2NessGPU

The NessGPU system is designed for the testing of GPGPU codes, however since it uses
| nt el md@bdsedh chipseit is an interesting candidate to compare performance with the
other systems and investigate the effects that the differences in architecture have on the
microbenchmarks.
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System Name NessGPU

Operating System Scientific Linux

Processor Intel Xeon (NehaleABased)
Model N°® | E5504
Codename Gainestown
Cores Per Process| 4
Clock Spee( 2.0 GHz
Cache| L2: 256KB per Core
L3: 4MB Shared

Total N of Processors 2

Total RAM 24 GB

RAM Per Core 3GB

3.3.3HECToR XT4

While the HECToR XT4 service Baa large number of total cores, each individual node
contains only a single quambre processor. Nevertheless, using the system allows for usage
of some additional compilers not available on Ness, as well as investigation of the effect of
having 4 cores o the same die and a shared L3 cache, compared with 4 cores necessarily
being on two separate processors, each without L3 cache, as is the case with Ness. Both the
XT4 and XT6 wuse the specialised o6Comput e
designed taminimise the chances of the operating system adversely affecting performance
(section3.4). The fact that each benchmark is run a repeated number of times on each
hardware platform as described in sectiof Beans that this difference should have no
observable effect on the results, apart from perhaps a reduced incidence of outlying runs
occurring.

System Name HECToR XT4 Node
Operating System Cray Compute Node Linux
Processor AMD Opteron

Model N° | 2356
Codename| Barcelona
Cores Per Paoessor| 4
Clock Spee( 2.3 GHz
Cache| L2: 512KB per Core
L3: 2MB Shared

Total N of Processors 1
Total RAM 8 GB
RAM Per Core 2 GB

3.3.4HECToR XT6

The XT6 (phase 2B upgrade) greatly increases the number of available cores from 4 per node
to 24 per node, dibugh the amount of memory available per core actually decreases. Since
the microbenchmarks will not use a large amount of memory this will have no effect on the
results.
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System Name HECToR XT6 Node

Operating System Cray Compute Node Linux

Processor AMDOpteron

ModelN°® | 6172
Codename Magny-Cours
Cores Per Process| 12 (2x6 Core NUMA regions)
Clock Spee( 2.1 GHz
Cache| L2: 512KB per Core
L3: 2x6MB Shared
(10MB Available)

Total N of Processors 2

Total RAM 32 GB

RAM Per Core 1.3 GB

Anint eresting feature of ClhoarXxwé CRbosheumllyas t ha
Multi-Chip Module (MCM) consisting of two-6ore CPUs linked via HyperTransport links

[14].

Interconnect

[C] Hyper Transport port

yp port p
D Single core (incl. 64KB L1) 16-bit Hyper Transport 1 link, 6.4GB/s
B L2 Cache 512KB — 16-bit Hyper Transport 3.1 link, 25.6GB/s

——  8-bit Hyper Transport 3.1 link, 12.8GB/s
B sGB DDR3 Memory @ 1333 MHz, 85.3GB/s across node
= Memory channel

M L3 Cache 6MB (~1MB used by HT Assist)
[] Hex-core die
[] G34 socket — Magny-Cours Opteron

Figure 31 Magny-Cours architecture diagram. [14]

This architecture results in a hierarchy of core to core communications costs, in order of
speed, fastest first: both cores on sarw®i® die, cores on separate dies within same MCM,;
cores on separate MCMs, directlgrass; cores on separate MCMs, diagonally across. When
running the microbenchmarks with varying numbers of threads the assigned cores fill up each
6-core die in turn, filling an entire MCM before placing any threads on cores located on the
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second MCM. As aesult ofthis pattern it may be possible to see increased overheads in the

mi crobenchmarks when crossing these boundar:i
cores. It remains to be seen whether or not this is true since the increased latency may be
hidden by oter factors.

3.4 Statistical Significance

As mentioned in section 21 it is possible for other programs running on a system or the
operating system itself to interfere with a microbenchmarking run that is in progress. There
are a number considerations tleain be takemto accountto minimise the chances of this
happening.

Firstly, the machine on which the test is taking place should be otherwise idle, with no other
users and a minimal number of background tasks. Obviously, the greater the number of
prograns running, the more likely it is that one of them will wake and reqaiystem
resourcesluring a given time periodJnless the microbenchmark is highly underutilising the
system(and even then there will still be some effeitt® program waking up will idert

resources from the benchmark, resulting in an increased time being recorded for the
benchmarkcurrentlyrunning. On HECTOR the operating system running on each node is a
specially modified version of LinuxgdtoCray ¢
reduce the overall footprint of the OS and to reduce the chances of interfering with the
program running on the node.

Secondly on a shared computing resource such as'Rlassentire node should always be
reservedif possible,even if not all cores arbeing utilised. This eliminates the chanoés
another program being scheduled on the same, nellieh, although it will not utilise the
same cores as the benchmatkk usually share memory bandwidth to RAM.

As a side note it is possible to increase @ scheduling priority of the benchmark, which

will decrease the likelihood of the OS deciding to interrupt it. On-likéxsystems this is
achieved by setting a nega twith+20 being the leghests s 6 v
priority. This can be ehieved by running the program via thiee command line utilitylt

should be noted that this is not applicable to the systems used in this project due to the fact
they are only indirectly accessible via a batch system (PBS Pro on HECToR and Sun Grid
Engine on Ness).

While what has been discussed so far reduces the chances of interference in the execution of
the benchmark, it is inevitable that there will be at least a few instances where interference
does occur. In order to identify and eliminate theseesait is necessary to run a
microbenchmark many times over and then examine the distribution of timings recorded.
This can be seen in listind8 and19 below.

20n HECTOoR it is not possible to use any less than one whole node.
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for (k = 0;k <= OUTERREPS; k++){
start =g etclock();
#pragma omp parallel private(j)

{

for (j = 0;j < innerreps; j++){
delay(delaylength);
#pragma omp barrier
}
}
times[k] = (getclock() - start) * 1.0e6 / (double) innerreps;

}

Listing 187 Microbenchmark to measure thebarrier  directive. Extract from syncbench.c  from
version 2 of the EPCC OpenMP Microbenchmarks.

while (actualtime < targettime) {
delaylength = delaylength * 1.1 + 1;
start = getclock();
for (i=0; i< reps; i++) {
delay(delaylength);

actualtime = (getclock() - start) / (double) reps;

Listing 197 delaylength  -tuning loop. Extract from schedbench.c

3.5Compilers Used
3.5.1Portland Group

The Portland Group compiles amongst the most widely used compilers in the scientific
computing and wider high performee computing communitiesAs such it is of key
importanceto test this compiler against the updated set of benchmarks in order to identify
any weak points in its implementation of OpenMP

3.5.2GNU

Due to the fact that the GNU Compiler Collection (gcc) is Beftware it sees widespread

use across all areas of programming, furthermore it supports a number of programming
languages and a wide range hardware platfofifhs. ubiquitous nature of gcc makes it a
worthwhile candidate for testing.

Although gcc fully suports OpenMP 3.0, a possible bug in the implementation was
discovered when running one of the newly written task system microbenchrivénien

running the task generation benchmark with a barrier directive (s&tidh a gcecompiled

binary will hang indehitely the majority of the time and not complete execution of the
benchmark, though if the binary is run multiple times it will occasionally complete. This
behaviour is suggestive of a race condition being present in the code that causes one or more
threads to stall waiting to complete synchronisation with the other threads. Since this
behaviour was not observed for any of the other compilers on test when compiling identical
code, It must be concluded t hat tationoftasksl i k el
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rather than there being a bug in the microbenchmark d¢er@grocessorconditionals were
therefore added to the final code to allow a compitee disable of this specific test.

3.5.3Intel

Despite not being as commonly useckdber the PGI oGNU compilers, theéntel compiler

is worth investigating f only due t o wonrtlledgéS8s<P pnoasuiatturen. n
Not being available natively on HECToR, problems getting the compiled binaries to run
prevented testing on this platform.

3.5.4Cray

The Cray compiler is only available on the HECToR system. Althougbaimpiler supports
OpenMP 3.0 it was found to be missing supportiforclauses ontask directives when
attempting to compile the new benchmarks. For this reason the immediate executio
benchmarks could not be performed with this compiler.

3.5.5Pathscale

Out of the platforms investigated the Pathscale compiler is only available on the HECToR
XT4 and XT6 systems. In addition to this, the current Pathscale compiler only supports
OpenMP up to ersion 2.5 and hence it can only be used for the scheduling and
synchronisation benchmarks.

3.5.6Compilation Note for HECToR

Compilation of code on HECToR using different compilers is handled by apCoajded
wrapper scriptec, and a system of modulds. order to use the systemyg is always used to
refer to the (C) compiler when compiling, then, to change which congalenvokes, the
relevant Oprogramming e nVv.iAmexample of how to woongila | e
a simple C program (i.e. not usingMakefile) using the GNU C compiler is provided in
listing 20.

$ #Unload the PGI compiler (loaded by default).

$ module unload PrgEnv - pyi

$ #Load the desired compilerds environment.

$ module load PrgEnv - gnu

$ #Perform compilation using the O6ccd wrapper.
$ cc hello_world.c 7 0 hello

Listing 207 Compilation on HECToR.

The cc wrapper automatically includes all compiler flags required for a program to run
correctl y on-erdBddsim Brdes to bptincide the output executable for the
specific CPU araitecture on HECToR another module must be loaded before compilation
that will add further flags to the cc wrapp@®n the XT4 (phase 2a) system the module
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xtpe - barcelona should be loaded, on the XT6 (phase 2b) systeenxtpe - mcl2
module needs to be loatle

3.5.7Compiler Flags Used

It was decided that for eser@lloptimisatiop shourbe an 6 «
turned on when compiling the benchmark cofe several reasons; lack of optimisation is
unrealistic, the benchmarks should not take an ekeessnount of computer time, higher

level optimisation increases the likelihood of it disrupting the test (see se&c8dl, and

finally, the higher the optimisation level, the greater the divergence in options between
compilers.Since the available optiorend the definition of those options that are common
varies substantially from compiler to compiler it is not possible to provide a very meaningful
def i nit i on, infaddition i éhis a disprogporionate amount of time could be spent

in any attempto ensure that each compiler had equivalent features enéibkbe end it was
decided to allow common o pih-depthkeoawledgeoof the t hat
individual compiler as well as optimisation for the architecture used.

The compiler flag decided upon may be found in the Makefile provided as part of the code
as well as irthe (less comprehensivigting 21 below.

gcc:
-02 -fopenmp -Im -Wall -march=native -DDISABLE TGEN BARRIER_TEST

pgcc:
-fast -mp -Im -tpk8 -64e
(- tp nehalem - 64 on NessGPU)

icc:
-m64 - O2 - openmp - openmp- link=static iIm

craycc.
-02 -Im - DDISABLE_IMMEDIATE_TEST

pathcc:
-mp -Im - 02 - OPT:Ofast

Listing 217 List of compiler flags used to compile the benchmarks. It should be noted that architecture
specific optimisation flags are not used on HECToR due to the module system

Notice that the Intel compiler does not include any architecture optimisation flags. This is a
result of the compiler opting to provide the facility to turn on individual extesso the x86

ISA™® (such as SSE3 for example) rather than choosing a particular \@Ril¢ an attempt

was made to use this facility, the binaries produced refused to execute on Ness citing lack of

B3 nstruction Set Architecture
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instruction support on the platform, despite the AMD @mis on Ness supporting the
enabled extensionas reality'®. Therefore the decision was made not to use these flags.

The preprocessor definitions included wigtc andcraycc are to turn off certain tests as
described in 3.3.2 and 3.3.4, respectively

Despite what has been said here it should be noted that the code actually being measured is
contained within precopiled libraries and thereforeptimisationwill not have any large
effect on the actual results.

14 List of supported extensions found via th@oc/cpuinfo file and cross referenced with product
specifications.
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3.6 Summary of Microbenchmarks Run

Typeand Filename

Internal Name

Description

Scheduling STATIC Static for loop scheduling clause
STATIC,n Static for loop scheduling clause wi
schedbench.c a specified chunksize
DYNAMIC Dynamic for loop scheduling clause
GUIDED Guided for loop scheduling clause
Synchronisation PARALLEL Parallel construct
FOR For loop

syncbench.c

PARALLEL FOR

Parallel for loop

PARALLEL + REDUCTION

Parallel construct with reductiol
clause

BARRIER Barrier directive

SINGLE Single directive

CRITICAL Critical directive

LOCK/UNLOCK Calls to omp_set_lock an
omp_unset_lock

ATOMIC Atomic directive

ORDERED Ordered directive with ordered claug
on parallel construct

Tasks PARALLEL TASK GEN Generation of taks by all threads
SERIAL TASK GEN Generation of tasks by a sing

taskbench.c

thread.

PARALLEL TASK GEN TASKWA

Generation of tasks by all thread
with a taskwait directive outside th|
innermost loop

PARALLEL TASK GEN BARRIER

Generation of tasks by all thaes,
with a barrier directive outside thi
innermost loop

PARALLEL TASK GEN TREE BR

Generation of tasks in parallel v
recursive binary tree function, wor
placed on all nodes

PARALLEL TASK GEN TREE LE/

Generation of tasks in parallel v
recursve binary tree function, worl
placed only on leaf nodes

IMMEDIATE EXEC EVAL

Task directive with if claus
O2yGFAYAYy3d WnQo

IMMEDIATE EXEC FUNCTION

Task directive with if claus
containing a call to a functio
returning O.

IMMEDIATE EXEC ARG FUNCTI

Task directive with if claug
containing a call to a function with &
argument, returning O.
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Chapter 4

Results

4.1 Pre-existing Benchmarks

4.1.1Scheduling

The scheduling benchmarkschedbench.c in the code) cover all of the scheduling
clauses available for determiningpvia loop iterations are allocated in#pragma omp
parallel for or #pragma omp for ~ compiler directive.

Results of this benchmark are presented below for the PGI, Cray, Pathscale and GNU C
compilers®, on the HECToR XT4 and XT6 sysms and the PGI, Int8land GNU C
compilers on the Ness and N&SRU systems.

15 pgcee, craycepathee and gec, respectively.

Bicc
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4.1.1.1 Nes
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Figure 47 PGI scheduling overheads (Nes46 threads, pgcc 10-0).
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Figure 51 Intel scheduling overheads (Nes46 threads, icc 11.1
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Figure 617 GNU scheduling overheads (Nes46 threads, gcc 4.4)3
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Figure 71 PGI scheduling overheads (Nes&PU, 8 threads, pgcc 10:@).
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Figure 87 Intel scheduling overheads (NesGPU, 8 threads, icc 11.1
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Figure 917 GNU scheduling overheads (NesSPU, 8 threads, gcc 4.4)3
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4.1.1.3 HECToR XT4
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Figure 101 PGI scheduling overheads (XT44 threads, pgcc 10.-8).
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Figure 111 Cray scheduling overheads (XT44 threads, craycc 7.1.6
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Figure 121 Pathscale scheduling overheads (XT4} threads, pathcc 3.2.99
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Figure 131 GNU scheduling overheads (XT44 threads, gcat.4.3.
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4.1.1.4 HECToR XT6
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Figure 141 PGI scheduling overheads (XT624 threads, pgcc 10-8).
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Figure 1571 Cray scheduling overheads (XT624 threads, craycc 7.2.1.105
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Overhead (Clock Cycles)
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Figure 161 Pathscale scheduling overheads (XT &4 threads, pathcc 3.2.99
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Figure 171 GNU scheduling overheads (XT624 threads, gcc 4.4)3
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4.1.2Synchronisation

The synchronisation benchmarks are split into two graphs per sgst@piler combiation

The first graphshows the results for the directives involving the synchronisation of all
threads whilst the second graph is for directives with the purpose of ensuring a section of
code is only ever executed by one thread at a time, i.e. direativelsing some form of
locking.

Results are presented below for the same compilers and systems as for the scheduling
benchmarks.

4.1.2.1 Nes
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Figure 181 PGI synchronisation overheads (Nesggcc 10.00).
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Figure 191 Intel synchronisation overheads (Nesscc 11.).
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Locking Benchmarks:
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Figure 211 PGl locking overheads (Nesspgcc 10.60).
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Figure 231 GNU locking overheads (Nesgycc 4.4.3.
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Figure 241 PGI synchronisation overheads (Nes&PU, pgcc 10.00).
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Locking Benchmarks
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4.1.2.3 HECToR XT4
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Figure 301 PGI synchronisaion overheads (XT4 pgcc 10.20).
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Locking Benchmarks
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4.2 New Benchmarks

4.2.1Parallel, Serial and Tree-structured Task Generation
4.2.1.1 Nes
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Figure 461 PGI task generation overheads (Nesggcc 10.00).
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4.2.1.2 NessGPU
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4.2.1.3 HECToR XT4
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4.2.1.4 HECToR XT6
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4.2.2.4 HECToR XT6
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Chapter 5

Analysis

Results for the version 2 and version 3 microbenchmarks have been presented in section 4,
including some notes on the observed performance. This section will expand upon these
observations and attempt to extract sgeeeral trends.

5.1 Scheduling
5.1.1Static and Static,n

On the whole the static schedules have the lowest overhead for each compillefour test
platforms as would be expectedee sectioril). On Ness the static performance dff a
implementations appears be equivalentyith an overhead aéround 15 000 clock cycles.

This situation is repeated on N&SPU albeit with a significantly reduced overhead of
approximately2 600 cyclesmaking NessGPU incur one sixth of the overhead of Ness for

this scheduleThis performance difference between platforms may be explained by the fact
NessGPU is using less threads (8 vs. H)d therefore has less work to allo¢ateupled

with the fact that it has four cores per CPU versus two cores per CPU on Ness, leading to
decreased communication costs between threads (less need to make aflta accesses).

On the HECToR XT4 system there is more variability between implementations: the PGl and
Pathscale compilers are similar at around 1 500 cycles whilst the Cray coawpileves 900
cycles. The performance increase of the PGI implementation relative teGR@&ssnay once

more be credited to a reduced number of threads, the XT4 having the same number of threads
per CPU as NesSPU. Strangely the GNU compileloes not followsuit and there is a
massive performance decrease on the XT4, with an overhead around 12 00(ficyoies

13). Given that there is no hardware reason for this it can only be assumed that there is some
kind of software bug causing this performance regras©f note is the fact that the guided
schedule actually manages to outperform static in this dasethe XT6 system the
performance of the PGI compiler is actually faster than that on Ness, despite the increase
from 16 to 24 threads. This indicatestthiae moretightly coupled CPU architecturef the

XT6 (figure 14) is of great benefit in this ared@he Cray compiler is around 600 cycles
slower than PGlI, showing room for improvemeBath the GNU and Pathscale compilers
exhibit similar behaviour to thaof GNU on the XT4, but with even greater detrimental
impact. Each compiler is an order of magnitude slower than the PGI and Cray
implementations. It is speculated that some aspect of their design is preventing proper
utilisation of the hardwareonsidenmg thateach compiler has shown that is has the ability to
perform reasonably well on other platforms.
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The differencebetween static and static,n is most readily visible on HECToR, ¥¥e&rhead
increasess the chunksize decreaskgeto an increased need for threads to switch between
chunks.

5.1.2Dynamic and Guided

The dynamic schedule overhead follows a similar pattern with each of the compilers;
overhead decreases steadily with chunkarz# begins to level off towards the point at which
chunksize = 128 is reachddue to the way the code is watt a chunksize of 128 is the point

at which each thread is allocated one chunk, i.e. theistbn of iterations tdahreads is
more or lessdentical to the static schedylreads are not guarieed to be allocated chunks

in order of thread ID)This means that at awhksize of 128 we observe thenimumcost of

the scheduldy definition Looking at the results from Ness it is clear thatltitel compiler

has the best implemeatton with a maximum overhead of 6000 for a chunksize of 1 and a
minimum overhead of 20000 for a chunksize of 128In comparison tb GNU
implementation runs from50 000 to 400and the PGI implementation froaver 2 000 000

to 90 000.Thus both the GNU and in particular PGl dynamic implementations could do with
being improvedOn NessGPU the results are similar but withe overheads much reduced
ovenall.

As previously discussed in the description of the guided schedule it is expected that its
performance should generally be supeto that of the dynamic schedule due to the fact that
it results in fewer chunks to allocatetotal.

Examining the Ness and NeG#U data it is immediately apparent that the lgeided

schealule is significantly worse tmePGl andGNU with roughly twice the overhea®n Ness
this makes guided incur more overhead than the dynamic schedule for all chur@ines.
PGI and GNU implementations GNU is slightly faster.

On the XT4 systendynamic and guided performance is improved from that on-IS&43g

most likely dwe to the reduced number of threads createduced demand on the mechanism

for chunk allocation; rather than tlelangeof CPU, which has been observed to be worse
than NessGPU in severalof the other benchmark®©ut of the different compilers aiable

on HECToR the Pathscale and Cray compilers have similar guided performhaitgtethe

Cray implementation of guided is faster for larger chunksi@ege again the PGI compiler

lags behind the others in this test with a larger amount of overhead in both the guided and
dynamt schedules.As observed for the statibenchmarks the GNU implementation
curiously suffers on the XTdystem and at a chusike of around 8 the guided and dynamic
schedules actuallpeginincreasng in overheadwhere they converge with the very poorly
performing static schedule§his cannot reasonably be explaineithout viewing the source

code but suffice to say the implementation seems to have an issue that is for some reason
manifestedon HECToR and not on either of the Ness systdbmsthe XT6 the Pathscale
comgler exhibits similar behavioyrwith the performance of guided and dynamic being
comparable to other compilers until a chunksize of aroynat 8vhich pointperformance
decreases and levels ofthe PGI compiler on the XT6 node is consistent with results from
the other platformsvith results very similar to those on Ness, leaving the Cray compiler as
theonly reasonable implementation of dynamic for chunksizes beyond 8.
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5.2 Synchronisation

5.2.1Parallel, For, Barrier and Single

The parallel andparallel for directives are highly coupled most implementi@ons
indicating that no ginificant overhead is induced by addinfpa directive to gparallel
directive This can be explained iye fact thathefor andbarrier  directives are also
highly coupled the overhead of théor directive liesalmostexclusively in the implicit
barrier at the end of the region and therefore, sineparallel constuct also contains an
implicit barrier, when thdor and parallel directives are combined into parallel

for they may share thenplicit barrier, resulting in the observed relationship.

Strangely, the single directive manages to have less overhead than the barrier directive under
the PGI implementatioas well as for some sections of other implementatidasiescribed

in section4.1.2 this should theoretically be impossible due to the single directive containing
an imgdied barrier &its exit.

The PGI compiler consistently achieves the best overall performancethese
microbenchmarks, with the familiar pattern of imped performance as the number of cores
per processor is incread The change from Ness to N&S®U for instance yields an
approximately 8 000 cycle decrease in overhead irpénallel and par allel for
directives for 8 threads

One striking result othis set of benchmarks is the behaviour of the Pathscale compiler on the
XT6 (figure 40) There is an incredibly pronounced increase in overhead that is veryclearl
associated with the move from one Magbgurs CPU @ two. Some aspect of the tuning of

the optimisation must not account for the increased communication cost of data moving to the
secom chip.

5.2.2Locking

The critical directive and the lock/unlock runtime routines appear to be very tightly coupled
in the majority of tests performed, indicating that most compileesan identical underlying
implementation, which is not surprisinghe only compiler where the two differ significantly
appears to be Pathscale, which is particularly visible on the XT6 graph (gtapfhé PGI
compiler has the best implementationbotth critical and lock/unlock painwith overheads
usually many times less than other implementations across all platforms, other than the Cray
compiler which has a similarly performing implementationthe XT4 and XT6

For the atomic directive, the PGtompiler once again has a significantly faster
implementation than other compilerShe Cray compiler has similar performance but is

slower by a small degre@n t he XT6 system t he PGI compi |l e
level off until around 6 threadst ahich point overhead steadily rises with thread count. This

is no doubt due to the architecture of the system, with 6 cores per NUMA region as discussed

in section3.3.4 It should be noted that the overhead on the XT6 is less than that on Ness and
NessGPU for the same number of threads (XT4 performance is approximately equivalent).
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This must be due to the reduced intere communication times resulting from the greater
number of cores per chip.

In almost every benchmark performed, the ordered constrsca much greater overhead
than the other directive8Vhether or not this is inherent to the directitgelf or whether itis

down to the fact that it is one of the less commonly used and therefore less well optimised
directives is uncleaiThe GNU implematation of the directive appears to be different to the
others in that it scales very well; as the number of threads increases there is very little change
in the overhead of the directivéVhile this makes the GNU implementation the best
performing on Nessthe Pathscale compiler seems to have the superior implementation
overall since the overhead is much lower, particularly on the XT6 systbere the GNU
implementation is the poorest on te€in the XT4 and NesSPU systems the GNU
implementation seems tfare worse than others perhaps due to the small number of physical
CPUs (1 on the XT4 and 2 on the N&BU system) giving rise to negligible negative
scaling effects for other compilersdeed, the GNU compiler performs worse than others on
Ness as weffor low numbers of thread3.he PGI, Cray and Intel implementations appear to

be similar in performance, doing well on the XT4 and NeB&J systems whilst performing
poorly on the Ness and XT6 systems.

5.3Tasks

5.3.1Task Generation

For all compilers except PGI, serial task generation incurred more overhead than parallel task
generationas might be expectgdection3.1.1). Serial task generation ranged between 10
times and 100 times worse than standpatallel task generationAs with the other
benchmarks, performandacreasedwhen moving to a hardware platform with a greater
number of cores per processor.

The performance of the recursive tegaucturel task generation loops varies byextremely

large amount between compiler®n the XT6 for example,performance of the two
benchmarks converges on that of serial task generatidar the Cray compileending up

with an overhead of approximately 1X1for 24 threads, with the GNU implementation
having an overheaith between the serial and parallel task generation loops with an overhead
of just overlx1®. Finally the PGI implementation is an order of magnitude fastemsthil

an overhead bew 1x1C. In all of these caseplacing work at the leaf nodes of the tree
rather than athe leaves as well as branchappears togive a significantreduction in
overhead despite the fact that the trees containing only work at leaf node contains one extra
level of tasks as illustrated in figuBe It is believed that this is caused by increased speed in
generating the entire tree structure in the-feadeonly case as thimakes allvork items
available for processing soonimwhenwork is placed on branch nodes that work must be
completed before generating the subtree belonging to the branch, potentigihg lsome
threads idle if one side of the tree has been completed and not the other.

Whereas the PGI implementation sedm&e extremely poor with respectregular parallel

task generation it excels when applied to thetreebased benchmarksUpon first
consideration this does not appear to make sense, generating the tree is quite similar to
parallel loop task geneiiah since all threads are working to generate tasks simultaneously
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and so the PGI implementation should not be able have such a low overhead compared with
the parallel loop benchmarkFurthermore,intuitively the treebased benchmark would be
expected to &we greater overhead since it is like the parallel loop but with additional
dependecdies between task®espite the fact that it is not possible to say for certain due to
the natureof the benbbmark as a blackox test one possible explanation is that the internal
datastructureof the task systa on the PGI compiler is itself some form of tree structure and
therefore the pattern of dependencies betwaskstin the benchmark meshes wellhwthis
internal representatiomesulting in fast data access whevaluatingtasks for executionrhis

could alsopotentiallyexplainthe poor performance of the othtesk generatiobenchmarks

with the PGI compiler; pailel task generation magnd up being stored internally as a tree
where every task generated is a leaf, which would be inefficient compared with squter sim
datastructuresWhen thought of more carefully, internally representing outstanding tasks and
their relationships to each other as a tnaskessense the primary reason that tasks were
added to OpenMP was to enalileat parallelisation of programs with more complex
executionpatterns than simple loops, with the recursive Fibonacci function (li§)iras a
good example.lt therefore makes sense to optimise for this case even if there is a
performanceenalty with parallel task generation.

As a general rule GNU was observed to be the fastest compiler for parallel task generation,
while the PGI workon-leaves recurse tree was the $est function ovell on each test

The purpose of benchmarking parallel task generationslosph inserted barrier and
taskwait  directiveswas to attempt t@omparethe cost of these directives a context
where they are almost semantically identi€iginally the plan was to subtract the overhead
time of the regular parallel task gentoa loop (listing12) from the overhead time of both of
these loops (listind.3) in order to determine separate values for the overhead of the barrier
andtaskwait  directives in this context. After examining the results however it is clear that
this is nd valid; in some instances the code containirtgskwait is actually faster than

the code only containing an implicit barrier, so in this case it would not make sense to
subtract one from the other to derive a time fortdskwait  directive.Such behavior is a

result of the fact thathere is much room for implementations to vary significantly in
execution paths when making decisions as to when to execute tasks when entering scheduling
points. Despite this fact these benchmarks still provide interestimgnation about how the
implementation of tasks differs between compilers.

On the PGI compiler both the barrier and taskwait loops are more or less equivalent in
overhead to the standard parallel taskeyation loopthis can be seen on figurds, 49, 52

and 55. The fact that both barrieand taskwait directives contain task scheduling points
means that any overhead they introdea® be masked by the fact that threads inethes
constructs may continue to work on outstanding tagkss masking of overhead is
compounded as if a particular thread is behind the others then tasks that it creates will be
execued by the threads waiting for it, effectively nullifying the fact that they are waliting)
possible that differensebetween these three parallel generation loops would be exaggerated
if the number of tasks wasduced in favour of fewer tasks containing more work, in which
case not all threads waiting in a barrier may be able to hgnasisa task.

With boththe Intel and GNWompilersthe taskwait and barrier loops follow a similar path to
either the performance of the serial taskegation code in the casé GNU, or the parallel
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task generation code, in the case of Intel; though each has a definite offset from the loop
being followel. Thisis particularly clear in figure 48he performance of the taskwait loop
almost perfectly follows that of the safigeneration loop, though maintaining the same
distance beneath (an increasing number of clockycles since this is a logarithmic plot).

This implies that for the taskwait loop on the GNU compiler the execution pattern is
characteristicallyisilar to that of theserial loop On the other hand the Intel implementation
ends up with these loops more closely resembling the parallel case, this is detgese

47.

In figures 53 and 5@ is clear that the Cray compiler has more overhead for the taskwait
directive than it does for the bar. As was discussed in secti@ril.2this should not be the
case; a taskwait does not requirkthiteads to reach it befotereads waitingherecan leave

and so there should be a slightess overhead than a barrier. With the barrier having greater
performance there is in fact no reason to use a taskwaitidire@iearly there is some scope
for improvement of the taskwait directive in the Cray implementagspecially seeing as
the Intel compiler manages to achieve the exggebehaviour

5.3.2Immediate Execution

On Ness all compilers show a gradual increase in the overhead associated with immediate
execution as the thread countreasesThere are significant gaps in performance between
compilers with GNU being fastest and Intel performing very poorly compared to the others.

As has been seen with other benchmarks the overheads oiGREsare much lowethan
those on NessWhile the ranking of the compilers remains the same (GNU fastest, Intel
slowest), the trends are different to those observed on Messjtel and PGI aopilers do

not increase in overhead with the number of threads and the GNU compiler has peaks in
overhead a3 and 6 threadsgfigure 59. Furthermore, all img@mentationssee a drop in
overheadwhen the maximum number of threadsreachedAlthough it is not clear what
could cause these peaks to appear in the GNU implementidtgise in overhead between 4
and 5 threads may be a ritsof the move to two processonsporer scalingpf the GNU
implementdon compared with othercompilerswas also observed in the task generation
benchmarks seefigure 48. It should, however, be noted that the GNU implementation is
extremely eficient on one processor, with overheads below 100 cycles.

On both HECToR XT4 and XT6 theray compiler cannot be testedpreviously mentioned

in section3.5. On the XT4the PGI compiler pdorms similarlyto on Ness with a gradual
increase in overhead with threadunt performance is in faclightly worsethan on Ness
GPU which is understandable given that threel Nehalem chip on NegSPU is more
sophisticated than th®pteron on the XT4 systenSurprisingly the GNU implementation
encounters significant performance issues on the XitH overhead more than ten times
greater than - threads on NesSPU and also worse performance than tbhserved on
Ness.For the XT6 GNU performance is similar to the XT4, however overhead steadily
increases with thread count, endingwith over double th@verheadf the PGI compileat

24 threads

A number of things can be discerned from this data. The Intel compiler performs very poorly
in comparison with other implementatioms this test and would benefit from optimisation
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efforts in this areaTo put theoverheadin perspective imneiate execution on the Intel
compiler isslightly higher tharfor a barrieron Nessand significantly slower than a barrier

on NessGPU. Though tle PGI implementation ighthe fastestit performs reliably with
similar amount of overhead on all platforms used; this contrasts with the GNU compiler
which is significantly faster in most eas but with more variable overhead levwishe same
machine and between machinesth poorperformanceon the XT6.If making frequent use

of if clauses on tasksis recommended thahé Intel compiler is avoided and that it is kept

in mind that overhead is usually a few thousand clyaies when evaluating whether or not
having a conditional task is worthwhil®f course, the Cray compiler is simply notaption

at allsince it does not implement tagk clauses.

No significantdifferencesare observed between the three variations on the benchmark so
compiler optimisation has not dramatically alteré@ test.The PGI compiler has more
overhead for the variant with a function with an argument, which is to be expected as there is
a smalamount of extra code compared with the other two variants.
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