
Thread Safety for Hybrid
Programming in Thread-as-Rank

Model

Gaurav Saxena

August 22, 2013

MSc in High Performance Computing
The University of Edinburgh
Year of Presentation: 2013

Abstract

Hybrid Programming involves the use of a distributed memory programming
model in conjunction with a shared memory programming model. Typically MPI
is used with a threading library like OpenMP or POSIX threads. They key con-
cept and motivation is to utilize the shared memory across various cores of a SMP
node and to speed up the application by exploiting this shared memory for com-
munication and work distribution, thereby reducing the total volume and size of
inter-node messages. Due to the presence of multiple threads we must prevent
deadlocks, race conditions, corruption of shared data structures by using coarse-
grained or fine-grained locks or other lock-free synchronization methods. Making
a hybrid application thread-safe involves carrying out the actions stated above
in scenarios wheres multiple threads can simultaneously invoke conflicting MPI
functions in a MPI_THREAD_MULTIPLE environment. The current popular
implementations of the MPI specification do not address a thread as having a
separate rank i.e. all threads in a given process share the same rank as the pro-
cess itself. An orthogonal approach assigns a rank to each thread/MPI process
residing in an OS (Operating System) process and hence creates a thread-as-rank
model. The current project is an attempt to address thread-safety in a hybrid en-
vironment and to produce necessary and sufficient rules for making an application
thread-safe in a thread-as-rank model. It explores thread-safety issues from low,
medium and high contention MPI operations e.g., manipulating the MPI_Info
object, thread-unsafe malloc(), point-to-point and collective operations while pro-
viding preventive or corrective suggestions and solutions. It contributes to the
field of thread-safety by establishing that there is an imperative need to pre-
vent dead-locks, races and protect shared data-structures for a hybrid application
to run correctly in a MPI_THREAD_MULTIPLE environment and proposing
algorithms/pseudo-codes for a subset of such scenarios.

i

Contents

1 Introduction 1

2 Background and literature review 4
2.1 Threads and MPI . 5
2.2 Thread-as-Rank vs. process model 6
2.3 Thread-Safety . 8
2.4 Protecting the critical section of code 10
2.5 Specification, implementation and application 10
2.6 Notion of correctness of programs 12
2.7 Thread-Safety issues in implementation 14
2.8 Endpoints in MPI . 17

3 Thread-Safety scenarios 19
3.1 Thread-Safety with MPI_Info . 19
3.2 Generalization . 21
3.3 The function malloc() . 24

3.3.1 Issues with thread-safety in malloc() 25
3.3.2 Making malloc() thread-safe 26
3.3.3 A non-blocking and wait-free thread-safe algorithm for mal-

loc() . 27
3.4 Thread-Safety with MPI Send and Recv 31

3.4.1 Thread-Safety issues with shared buffers in Send and Recv . 33
3.4.2 Thread-Safety with MPI_ANY_SOURCE 38
3.4.3 Thread-Safety with buffered Send 40

3.5 Thread-Safety with collective operations 40
3.5.1 Collective semantics in a rank-less thread model 41
3.5.2 Blocking collectives in a thread-as-rank model 42
3.5.3 Non-blocking collective semantics in a thread-as-rank model 45

3.6 Dynamic rank assignment to threads in a thread-as-rank model . . 46
3.6.1 Dynamic process management in MPI 46
3.6.2 Assigning ranks to threads with endpoints 47
3.6.3 Management of second-level threads by McMPI 47
3.6.4 Dynamic assignment of ranks using manager processes . . . 47
3.6.5 Problem of hardware resources in dynamic threading 50

3.7 One-sided communication . 50

ii

3.7.1 Memory coherency with RMA 51
3.7.2 Thread-Safety semantics of RMA operations in the thread-

as-rank model . 52

4 Quantitative analysis 55
4.1 Complexity analysis of thread-safety algorithm for MPI_Info 56
4.2 Analysis of thread-safe algorithms for malloc() 57
4.3 Time complexity of free() compatible with non-blocking and wait-

free malloc() . 62
4.4 Analysis of shared buffer problem in point-to-point communication 62
4.5 Abstract reference model for estimating the complexity of thread-

safe source code . 63

5 Conclusion 67
5.1 Summary of the project . 67
5.2 Conclusions . 68
5.3 Critical evaluation . 70
5.4 Future work . 72

A List of symbols used 77

B Asymptotic notations 78
B.1 O(g(n)) - Big Oh notation . 78
B.2 Ω(g(n))- Omega notation . 78

C Working sample code for Algorithm 3.1 79
C.1 Hardware . 81
C.2 Method of job submission . 81

D Implementing MPI routines without using malloc() 82

iii

List of Figures

2.1 Two SMP nodes running one MPI process per SMP node and one
thread per core . 5

2.2 Process model (top) vs. Thread-as-rank model (bottom) 7
2.3 Three layers/components of building any MPI application 12
2.4 Send and Receive queues in Abstract Device Interface layer 15

3.1 Thread unsafe scenario with MPI_Info 20
3.2 Conflicting vs. non-conflicting operations 22
3.3 Flowchart depicting the manipulation of objects/attributes with

conflicting Read/Write/Update/Free operations. 23
3.4 Heap memory . 24
3.5 malloc() as black box . 26
3.6 Traversing of shared array Q by threads 29
3.7 Local vs. non-Local communication 36
3.8 Wrong order of receives using wildcard MPI_ANY_SOURCE . . . 38
3.9 Three threads/MPI Processes in two OS processes 43
3.10 A cycle created by collective calls on intersecting communicators . 45
3.11 Assignment of ranks to second-level threads by manager processes . 48
3.12 Conflicting vs. non-conflicting RMA operations 52
3.13 Thread-Safety with ATS using MPI_Win_fence() and empty epoch 53
3.14 Thread-Safety with ATS-PTS using MPI_Win_fence() and non-

empty epoch . 54

4.1 Abstract reference model for calculating approximate LOC 65

D.1 Top: Complete Binary tree (n=7 nodes), Bottom: Binary Hyper-
cube (n=8 nodes) . 82

iv

List of Algorithms

3.1 Thread Safety for MPI_Info . 21
3.2 Thread-Safety for malloc() using a global lock 27
3.3 Non-blocking and wait-free thread-safe algorithm for malloc() . . . 28
3.4 Exponential Back Off policy addition to thread-safe malloc() 31
3.5 Algorithm for free() compatible with Algorithm 3.3 31
3.6 Thread-Safety for shared buffer in point-to-point communication . . 34

v

Authorship declaration

bc

I, Gaurav Saxena, confirm that this dissertation and the work presented in it
are my own achievement.

1. Where I have consulted the published work of others this is always clearly
attributed;

2. Where I have quoted from the work of others the source is always given.
With the exception of such quotations this dissertation is entirely my own
work;

3. I have acknowledged all main sources of help;

4. If my research follows on from previous work or is part of a larger collabo-
rative research project I have made clear exactly what was done by others
and what I have contributed myself;

5. I have read and understand the penalties associated with plagiarism.

bc

Matriculation no: s1266736

Signed:

Date: 23rd August, 2013

vi

Acknowledgements

bc

I profusely thank Daniel Holmes for his unending support and encouragement
throughout the project work. The resting point of all my doubts were the inter-
esting discussions I had with him during the course of the project. With infinite
patience and a genuine will to help and clear my doubts, he is a humble academi-
cian who I have always looked upto and would love to follow.

I remain indebted to Fiona Reid for adjusting her busy schedule for doubt-sessions,
painstakingly reading the project report and offering valuable suggestions.

I would further like to thank William D. Gropp for taking out the time to solve a
set of my doubts.

Thanks is a small word for my amazing friends whose never-ending support carried
me across oceans and the barriers of life. To my survival kits in Edinburgh-India
- Rahul Arora, Vasuda Arora, Sachin Gupta, Rashmi Shakya, Swapnil Laxman
Gaikwad, Kanika Malik and Jyoti Balwani- you people are too amazing and de-
serve better than the best.

In the end and the most, to my parents, family and my grandmother who always
believed in me and forged my character.

bc

vii

Chapter 1

Introduction

Hybrid programming involves the use of MPI (Message Passing Interface) [1]
programming along with an implementation of a shared memory programming
paradigm like OpenMP (Open Multi Processing)[2] or POSIX (Portable Operat-
ing System Interface) [3] threads (Pthreads). OpenMP is the de-facto standard
for shared memory programming although internally OpenMP threads compile to
POSIX threads. The reason and motivation for using a combination of these is to
enhance the performance of communication and computation by simplifying work-
distribution on shared memory nodes in a distributed symmetric multiprocessor
architecture/environment. Having several threads running (one thread per core)
per OS (Operating System) process reduces the total number of processes and the
total number/size of inter-node messages. Due to the presence of optimized shared
memory communication, the message start-up cost and latency decrease and may
enhance the efficiency of execution of an application. On the other hand, the
contention for common resources due to several threads operating in parallel may
adversely affect the performance and possibly need more effort in terms of coding
to synchronize the contention. Due to the non-deterministic timing and numerous
possible permutations of thread schedules, simultaneous conflicting MPI function
calls on different threads can corrupt a shared data structure, an object may be
freed/deleted incorrectly in a race between threads, deadlocks may arise etc. and
hence resulting in a need for making the application thread-safe. The perfor-
mance gains, if any, by hybridizing a code should be thoroughly weighed against
the induced overhead and the complexity of coding from a software-engineering
perspective.

Most of the current popular MPI implementations like MPICH2 [4], OpenMPI
[5] etc. do not address the thread by a separate rank and all the threads in a
process share the same rank as the process itself. The opposite of this approach
is to make each thread addressable by a separate rank and hence create a thread-
as-rank model where a thread is equivalent to an MPI process residing in an OS
process. The thread-as-rank model is supported by implementations like TMPI
(Thread MPI) [7], TOMPI (Thread Open MPI) [8] and McMPI (Managed code

1

MPI) [9]. USFMPI [10] is an implementation of MPI which uses a separate thread
for communication and MiMPI [11] is a thread-safe implementation but does not
assign a rank to a thread separately. The MPI specification standard does not
acknowledge the thread-as-rank model and all its specifications concern a model
where threads share the rank of the process (Section 12.4.1 of [1]).

This project aims to highlight thread-safety issues, scenarios and formulate pre-
ventive/corrective measures in the form of advice and concrete solutions at an
application level while providing some insight at the implementation level in a
thread-as-rank model. Due to the exhaustive list of functions and interactions be-
tween functions in MPI, it is not possible to examine each and every function and
its possible interactions. The unique contribution of the project is the creation
and exploration of some thread-safe algorithms to prevent shared data-structures
from becoming corrupted or unusable and to prevent or solve such situations. Fur-
ther, whenever such an algorithm cannot be devised to solve the problem under
consideration, code snippets in the C language try to bring out the thread-unsafe
scenario. This project gives an insight as to how to think about the problem of
thread-safety in a multi-threaded environment. It also emphasizes that the differ-
ence between a thread-unsafe program and a thread-safe program is correctness,
which needles to say is the prime requirement in solving any problem. As an ideal
consequence of program correctness, it is unwise to compare the performance of a
thread-unsafe application with its thread-safe sibling. The road-map of the project
is as follows:

Chapter 1 mentions and introduces various topics like hybrid programming, thread-
as-rank model, thread-safety, MPI process, OS process which are explored in detail
in the subsequent chapters. It outlines the layout of the report and emphasizes the
contribution of the project towards the field of thread-safety in a thread-as-rank
model.

Chapter 2 creates a background by introducing the terms and concepts in detail
and puts the problem into perspective by describing previous work carried out in
this field. It emphasizes as to why this problem must be addressed for correct-
ness of applications when multi-threaded shared memory and distributed memory
programming models go hand-in-hand towards building future systems of the Ex-
ascale level. Further, this chapter also explores some basic problems with threads
which are more general and are not necessarily specific to MPI.

Chapter 3 discusses various thread-unsafe scenarios beginning with a low con-
tention operation involving the MPI_Info object, a medium contention non-re-
entrant ANSI C functionmalloc() and high contention operations like the point-to-
point, collective and Remote Memory Access (RMA) operations. It is not always
possible that a thread-unsafe scenario is preventable or solvable by using lock-
based or lock-less synchronization methods (to enhance concurrency among non-
conflicting multi-threaded accesses). This is especially true when the user violates
the MPI specification standard and produces a completely erroneous program. A
thread-safe strategy to dynamically assign ranks to newly spawned threads is dis-

2

cussed as an alternative to distribution of ranks using MPI endpoints along with
the advantages that it offers as compared to the latter.

Chapter 4 makes an attempt to quantitatively analyze the algorithms which have
been introduced in terms of time complexity whilst touching upon the space re-
quirements of data structures i.e. variables which the algorithm utilizes to make
the scenario thread-safe. The former however, has been dealt with in more detail
as it forms the most important part of complexity analysis as far as performance
measurement is concerned. In a few cases the analysis supports the Occam’s ra-
zor i.e. among all the solutions which are feasible, the simplest and most easily
implementable is the best. Further, an abstract reference model is constructed
and proposed to approximate the lines of source code needed to make a given
application/code-snippet thread-safe.

Chapter 5 concludes the project and gives the major findings, inferences, a critical
evaluation and conclusions which can be derived from the problems and their
proposed solutions while also presenting some ideas for future work.

3

Chapter 2

Background and literature review

The traditional use of MPI [1] involves spawning one process per CPU core and
communicating between various MPI processes using explicit MPI communication
calls even when some of the cores have shared memory between them. Hybrid pro-
gramming combines the use of threads on a shared memory system with processes
that span one SMP (Symmetric Multiprocessor) node/multicore chip. It leads
to a reduction in the number of heavy-weight processes and use of light-weight
MPI processes/threads to optimize communication and distribute computational
tasks in an intuitive way. There are several methods of creating threads but two
libraries which are seemingly popular and used in majority of applications with
MPI are OpenMP [2] and Pthreads [3]. OpenMP offers additional automatic work
distribution constructs and user-friendly implementation of locks, critical sections,
atomic clauses etc. and has become the indisputable standard for shared memory
programming. This mixed mode of programming/hybrid programming can be an
advantage when MPI scales poorly due to an increasing number of processes, has
irregular distribution of load leading to load imbalance, becomes communication
dominated or has mammoth amounts of replicated data. A computationally in-
tensive multi-dimensional domain decomposition in problems like a 3-dimensional
Fourier transform or poor intra-node optimization [6] can also lead to performance
deterioration with a pure MPI process approach. Figure 2.1 shows a typical ar-
chitecture for running hybrid codes where one MPI/OS process per node (running
four threads) and one thread per SMP core is run.

4

	

CPU	
 core	

Thread	

Shared	
 memory	

Node	
 Interconnect	

Figure 2.1: Two SMP nodes running one MPI process per SMP node and one
thread per core

2.1 Threads and MPI

A thread is a lightweight process having its own program counter, registers, stack
and shares the same address space as the process in which it is created [13].
Threads are desirable in shared memory systems due to the low cost of creating
them and a lesser overhead involved in context switching as compared to a process.
There are majorly two types of threads: Kernel threads and User threads - threads
running in kernel space or scheduled by the kernel and threads created by the user
application, respectively.

According to the MPI specification, implementations should support a maximum
of four levels of thread support [1] (represented by four named constants).

• MPI_THREAD_SINGLE allows only a single thread of execution and is
the same as a process/single threaded process initializing the MPI library
with the function MPI_Init().

• MPI_THREAD_FUNNELED lets the user create multiple threads but only
the master thread i.e. the thread which initializes MPI can invoke MPI
library functions.

• MPI_THREAD_SERIALIZED allows any thread to call an MPI function

5

but no two threads can call MPI functions at the same time i.e. simultane-
ously.

• MPI_THREAD_MULTIPLE is the most complex and yet the most intu-
itive support level that allows any number of threads to call MPI functions
simultaneously.

The thread support level in MPI is initialized through a call to MPI_Init_thread()
function whose syntax in C language is shown below:

MPI_Init_thread(int *argc, char **argv[], int required, int *provided)

required is a field which is set to any of the four named constants above and
provided is an out parameter which is set equal to required (requested level) if the
MPI implementation supports the required thread level or the greatest level below
the required thread level, if it is not supported. Not all MPI implementations
support MPI_THREAD_MULTIPLE in general and hence a correct program
must query the returned thread support level.

2.2 Thread-as-Rank vs. process model

Most MPI implementations do not provide separate ranks to threads and thus
support the rank-less/process based model from the perspective of threads. Tags
used in point-to-point communications can be used to distinguish between threads
because all threads share the rank of the process in which they reside. Tags are not
inherent identifiers (like the thread ID or the rank of a process) and their attach-
ment to the thread is not created by the MPI implementation but by the applica-
tion programmer. For example, two threads can post individual MPI_Receive()
MPI calls with an identical signature and either of them can receive a message
meant for the other thread. As an alternative approach if the threads can be made
addressable by rank then we move from a black box model towards a glass box
model and an OS (Operating System) thread can be mapped to a single MPI pro-
cess i.e. ranks specified in point-to-point communications will refer to individual
threads and not OS processes. The MPI specification states that a process cannot
call MPI_Init_thread() more than once. If each thread has a separate rank then
it should be possible to call MPI_Init_thread() multiple times and thus violating
the condition stated in the MPI specification. Hence in a thread-as-rank model a
thread should be treated as a separate MPI process that resides in an OS process
[9]. Further the threads are allowed to define their own private variables/data-
structures in addition to sharing the variables/data-structures global to the OS
process. Figure 2.2 illustrates the process and the thread-as-rank model.

6

Figure 2.2: Process model (top) vs. Thread-as-rank model (bottom)

An implementation of MPI named TMPI [7] (Thread MPI, last update: May 2002)
that implements the thread-as-rank model uses a technique called NSD (Node Spe-
cific Data) as opposed to parameter-passing or array-replication. This technique
is based on the concept of TSD (Thread Specific Data) in POSIX threads which
is used to convert all global and static data of an OS process to private data of
the thread and hence, in effect, replicates all the variables and data structures per
MPI process/thread. Each global variable is associated with a pointer sized value
and a uniform key across all threads which identifies a particular variable. Given a
key value, a thread can retrieve the value of its private copy of the global variable
residing with it. This approach is not useful when the size of the variables and
data-structures being replicated is large or/and when threads frequently modify
shared data, the changes to which naturally result in exchange of large number
of messages to make the thread private copies of global variables/data-structure
coherent. Thus, TMPI attempts to create a complete OS process out of a thread
and hence, does not justify the usage of threads as means to optimize shared mem-
ory communication/computation. Moreover TMPI does not support the thread
level MPI_THREAD_MULTIPLE.

McMPI (Managed-code MPI)[9] is an MPI library written completely in C# lan-

7

guage. McMPI extends the four thread-support levels specified in the MPI stan-
dard by adding two more thread support levels. MPI_THREAD_AS_RANK
level is an extension of the MPI_THREAD_SINGLE level when all the threads
(MPI processes addressable by individual ranks) in an OS process are initialized
using MPI_Init() (or MPI_Init_thread()). Another level of thread support called
MPI_THREAD_FILTERED is an extension of MPI_THREAD_FUNNELED
and restricts the invocation of MPI calls only on threads initialized withMPI_Init()
(or MPI_Init_thread()) while allowing some threads to remain uninitialized. This
MPI library does not replicate the global or static data of the OS process and al-
lows threads/MPI processes to be used in the most natural way to share global
variables/data structures while letting the threads define their own thread-private
variables/data-structures.

2.3 Thread-Safety

When operating simultaneously in a shared memory environment threads can
cause disruption of data structures, blocking of other threads, deadlocks/live-
locks etc. due to variable scheduling and can in effect make the application
thread-unsafe. The thread-safety specification in MPI provides advice to ap-
plication developers to avoid such scenarios. The current popular implementa-
tions like MPICH2 [4] and OpenMPI [5] being used to produce massively par-
allel applications are not thread-safe when the thread support level is raised to
MPI_THREAD_MULTIPLE. Two basic rules for thread safety are [1]:

1. Rule 1: MPI calls are thread safe if an order can be imposed on the con-
flicting calls i.e. the two calls execute serially in any possible order.

2. Rule 2: A thread giving a blocking call blocks only the calling thread and
not any other thread.

The two main issues that must be dealt with in order to make an application
thread-safe are: serializing conflicting accesses to global states and making the
library and user functions re-entrant. Most implementations leave it to the user
to serialize accesses to common data structures and hence the user bears a partial
responsibility of making the application thread-safe.

A support level of MPI_THREAD_MULTIPLE by an implementation does not
mean that the application is thread-safe, it just indicates that multiple threads
are allowed to call MPI library functions simultaneously. An appropriate analogy
can be that of a runway being used by multiple aeroplanes. It is the responsibility
of the pilots (application developer) to make sure that only one plane (thread)
uses the runway (common variable/data-structure) at a time (serialized access)
and prevent any possible accidents (dead-locks/races/corruption of global states).

Quasi-thread-safety [12] implies leaving the synchronization between threads to the
user as opposed to complete-thread-safety where the synchronization is hidden from

8

the user and implemented completely in the library. MiMPI (Multithread imple-
mentation of MPI) [11] claims to be thread-safe but does not describe the process
that makes it thread-safe. Its architecture uses three layers: the first layer hides
the hardware details from the upper layers, a lightweight communication micro-
kernel layer called XMP (interface consists of: XMP_Init(), XMP_Finalize()
and XMP_Request(struct request*)) and an MPI Interface layer.

MPI specifies that it is the responsibility of the user to prevent race conditions
among threads when they post conflicting MPI calls which interfere with each
other [1][23]. For example, the user must ensure the correct ordering of collective
communications on the same communicator and file handles on different MPI
processes that are part of the communicator. To understand the thread-safety
requirements of functions in MPICH2, more than three hundred functions have
been examined by researchers and classified into a particular thread-safety class
based on a function’s primary requirement [23], but the details of what features in
them require thread-safety or the solutions which have been used to make them
thread-safe largely remain hidden. The classes form a list of intersecting classes
i.e. a function may have thread-safety requirements falling in more than one class.
A brief explanation of these classes is as follows [23]:

• Comm I/O: The function needs to access the communication or I/O system
in a thread-safe way. Majorly the point-to-point and file modification func-
tions constitute this category. For e.g., MPI_Send(), MPI_Win_unlock(),
and MPI_File_write_at() etc.

• Collective: The thread-safety in this class concerns the order of invoca-
tion of collectives on different threads for the same communicator. They
also require Comm I/O thread-safety but this is handled by separate locks
protecting the critical section implementing communication. For example,
MPI_Alltoall(), MPI_Comm_accept() and MPI_File_close() etc.

• Access Only: These functions access read-only fixed data like a communi-
cator size or might modify a value like setting the name of a communicator.
Thread-safety is required because a race condition might delete the object be-
fore it is accessed. For example, MPI_Cart_coords(), MPI_Comm_rank()
and MPI_Get_count() etc.

• Update Ref : This class includes functions which return a handle to an
object resulting in an increase in the reference count of the MPI object. For
example, MPI_Win_get_group() and MPI_File_get_view() etc.

• Read List: Functions in this category return an attribute or info value.
A race condition with another thread may result in data corruption due
to update (write) or deletion of the attribute. For e.g., MPI_Attr_get(),
MPI_Info_get(), and MPI_Win_get_attr() etc.

• Update List: Functions can update a particular list of attributes and would
need thread-safety as multiple threads can invoke the same function resulting

9

in corruption of values. For example, MPI_Attr_put() and MPI_Info_set()
etc.

• Allocate: This class of functions need some form of dynamic memory al-
location and may require thread-safety due to a non-re-entrant routine like
malloc() function in the ANSI C language. For example,MPI_Bsend_init(),
MPI_Group_free(), and MPI_Type_vector() etc.

• Own: These functions require some special thread-safety management due
to the presence of global states. For example, MPI_Buffer_attach() and
MPI_File_seek() etc.

• None: The functions in this category have no thread-safety issues in a
correct program. For example, MPI_Wtick() and MPI_Address() etc.

• Other: These form a special category and have different thread-safety re-
quirements. For example, MPI_Init_thread() and MPI_Abort() etc.

2.4 Protecting the critical section of code

The critical section of code containing common variables/data-structures must
be prevented from being executed by multiple threads simultaneously and hence
either lock-based or lock-free approaches (making use of atomic operations) must
be used. Locks may vary in their level of implementation i.e. granularity of a
lock can vary. For example, a global-lock locks the critical section for the entire
period of execution of a function by a thread but gives up the lock before a
blocking I/O/communication operation starts. It again obtains the lock after the
blocking operation is complete. A brief-global lock holds only the critical section
of a function as and when required and not for the entire duration or complete
execution of the function. This permits greater concurrency but at the same time
calls for a more complex logic in terms of implementation. A per-object lock allows
different critical sections to be locked for different objects or different classes of
objects and permits even greater concurrency. Last and the most complex class
of algorithms use lock-free approaches implemented though atomic operations like
Compare-And-Swap, Test-And-Set and Fetch-And-Add (see chapter 3) etc. to
permit the highest level of concurrency among threads [14].

2.5 Specification, implementation and applica-
tion

In general several entities are involved in writing a complete thread-safe program.
Figure 2.3 shows the entities involved and the arrows show the dependence of one
entity on another.

10

First the specification of the MPI standard should be thread-safe. Upon examina-
tion of the MPI specification only two functions MPI_Probe() and MPI_Iprobe()
were found to have thread-unsafe semantics [22] and hence should not be used in
multi-threaded scenarios or should be made thread-safe. The latest MPI spec-
ification MPI 3.0 [1] incorporates two variants of the probe function, namely
MPI_Mprobe() andMPI_Improbe(), which have thread-safe semantics. These two
functions guarantee that a specific message probed with either of these is the only
one that will be received by a subsequent call to MPI_Mrecv() or MPI_Imrecv().
This eliminates the possibility of another thread receiving the message that was
probed by a call to MPI_Mprobe() or MPI_Improbe(). As a contradiction, de-
tailed studies by researchers [23] bring out the thread-safety needs and categorize
functions according to their thread-safety requirements into various classes (see
section 2.3).

Secondly, the implementation must adhere to the MPI specification [1] and hence
create functions, modules and layers which are thread-safe. Some implementa-
tions claim to be thread safe but there is no test-suite which can validate their
claim [23]. Some implementations which use MPI_Get_count() to return the
length of the last message received are definitely not thread-safe as between re-
ceiving a message and calling MPI_Get_count(), another thread can receive a
message and the length of the latter message could be returned to the thread
calling this function (section 3.2.5 of [1]). As another example an algorithm
used for finding the context-ID of a new communicator in a multi-threaded en-
vironment when MPI_Comm_dup() is executed in MPICH2 [4] was found to
be thread-unsafe [23]. Further, a recent bug report concerning MPICH2 iden-
tifies MPI_Bsend() and MPI_Ibsend() as not being thread-safe as the static
data in a file bsendutil.c is prone to becoming corrupted and there is no lock
for MPIU_THREAD_GRANULARITY_PER_OBJECT [28]. A description of
these terms and concepts is beyond the scope of the project. The purpose of citing
the bug is to bring out the fact that even if the specification is thread-safe, an
implementation may not be thread-safe.

11

	

MPI	
 Specification	
 Standard	

1.0,	
 1.1,	
 1.2,	
 1.3,	
 2.0,	
 2.1,	
 2.2,	
 3.0	

MPI	
 Implementations	
 –	
 MPICH,	

OpenMPI,	
 TMPI,	
 TOMPI,	
 McMPI,	

MiMPI	

MPI	
 Application	
 –	
 C,	
 FORTRAN,	
 PYTHON,	

JAVA,	
 C#	
 	

MPI	
 Application	

	

Figure 2.3: Three layers/components of building any MPI application

Thirdly, the application needs to be thread-safe. For example, it is possible to
receive any message for a particular process by any thread which posts a matching
receive in a process model. The application programmer must be careful if there
are competing threads posting receives in the same process as a thread can starve in
such a scenario. The user must also be aware of the protocols being used internally
by MPI implementations and optimization in a shared memory environment to
produce a portable correct program. A wrong order of receives using the wild-
card MPI_ANY_SOURCE could result in a dead-lock (see section 3.4.2 chapter
3). Further, the serialization of simultaneous conflicting calls issued on multiple
threads of the same OS process is solely the responsibility of the user [1].

2.6 Notion of correctness of programs

We define three types of program correctness levels and discuss thread-safety in
accordance with the type of program. We feel that this is useful because it is
not always that a program can be made thread-safe or there is no use of making
a program thread-safe if it is inherently erroneous. The discussion assumes non-
overlapping thread schedules and instantaneous execution of a statement/group
of statements by a thread (analogous to an apparent instantaneous execution of
atomic operations). Assuming n threads in an SMP, suppose thread i calls fnik

MPI functions in the kth SMP. Let φ (specifically φnk) denote the total number
of possible valid permutations of all functions of all nk threads of the system.
The function φ is not a simple permutation or combination of functions of nk
threads. Some restrictions like the serial ordering of functions on a particular

12

thread cannot be violated i.e. the function ordering on thread i of the kth SMP
must be f1k, f2k, ..., fnik but these functions can be interspersed with functions from
any other SMP/SMP’s to form a valid schedule of threads. For example a valid
schedule can be: 〈f12, f11, f21, f31, f22〉 for any two threads of SMP’s numbered 1
and 2 where one thread calls three functions in all and the second thread calls
two functions in all. We hypothesize that the function φ (specifically φnk) can be
modeled as:

φnk =
k∏

j=1
φj(

n∑
i=1

fnij) (2.1)

φnk gives the total number of thread schedules for n threads on k SMP’s i.e. the
total possible thread schedules for a total of nk threads. The value of φ cannot be
easily computed even for a small number of threads and the number of functions
that are invoked but it helps us to mathematically express the notion of correctness
of programs. Let φ′nk denote the number of permutations of thread schedules which
lead to a successful termination of the program under consideration. Let a ratio
α be defined as:

α = φ′nk

φnk

(2.2)

The levels of program correctness can be expressed in terms of the ratio α as
follows:

1. Completely-correct programs: The ratio α = 1 i.e. the program exe-
cutes successfully for all thread schedules and is hence completely-correct.
The program under consideration has no application thread-safety require-
ments.

2. Quasi-erroneous/partially-correct: The ratio α ∈ (0, 1) i.e. there is at
least one permutation which does not lead to correct execution or there is at
least one permutation for which the program executes correctly. Programs
for which α → 0 can be said to be quasi-erroneous and are harder to make
thread-safe. For α→ 1 the program falls in the category of a partially-correct
program and requires less effort for making it thread safe as compared to a
quasi-erroneous program. It is this class of programs that require thread-
safety.

3. Completely-erroneous: Programs for which α = 0 i.e. programs for
which no permutation of thread schedules takes the program to a successful
completion without producing an error have no need for thread-safety as
they are completely-erroneous.

13

2.7 Thread-Safety issues in implementation

The implementation must ensure that no global variables in re-entrant functions
are incorrectly modified and produce erroneous results when being accessed by
multiple threads. Some general thread-safety issues, which also are a concern in
MPI applications, are as follows:

• Updating reference count of objects: MPI guarantees that an object
will not be freed/deleted until its usage is complete. For example, a buffer or
user defined data-type being used in a non-blocking point-to-point call can
be freed immediately after the call returns, but MPI guarantees that it will
be freed/deleted only after all its uses are complete i.e. if it has been used
by any other thread in a MPI call, then it would be freed/deleted only after
the call/use is complete. A reference counting method is used for such cases
and a count for each object is incremented each time this object is used and
decremented each time the object’s use or the call using it is complete. In
a multi-threaded environment the reference count must be incremented or
decremented atomically [23].

• Thread private memory: It is possible that a global variable may have
different values on different threads and hence each thread needs to maintain
a private copy of the global variable. Functions like pthread_getspecific() in
the Pthreads package serve the same purpose but even threading libraries
not having a similar function should be able to maintain these private copies
of global variables. As an example consider a MPI function that calls an-
other MPI function internally. Such is case with ROMIO’s (parallel MPI-IO
implementation) function MPI_File_open() which calls MPI_Allreduce()
internally using the communicator passed by the user in the former call. In
case of an error, the error handler for MPI_Allreduce() should not be in-
voked and instead the error handler for MPI_File_open() should be called.
This creates a need to maintain the nesting level of a function so that the top
level error handler should be called and not the error handler of the current
function. An implementation cannot simply reset the error handler of the
nested function before invoking it because another thread might invoke the
same function and expect the error handler to become active, if an error oc-
curs. Hence, the solution is to maintain the depth of nesting of functions for
each thread and not invoke the error handler if the nesting depth is greater
than one [23].

• Thread cancellation/failure: A problem occurs with threads which hold a
lock and fail or are deliberately canceled with a function like pthread_cancel().
These cases give rise to a non-deterministic behavior and the application
may crash, hang or exhibit a byzantine1 fault. A plausible solution is to use

1A scenario where the same input to a system/application produces different responses at
different times.

14

lock-free data-structures but the complexity of implementing them is much
higher as compared to a lock-based approach [23].

• Fine-grained Vs coarse-grained locks: An implementation using fine-
grained multiple locks (and lock-free methods) might fall in a deadly embrace
when two threads hold the locks required by each other. Since there are
usually multiple locks in fine-grained approaches, it is not always possible to
request locks in the same order on two threads to (increase the concurrency)
avoid a deadly embrace [23].

• Restarting/Notifying a thread: It is possible that a thread which is wait-
ing for an event to occur (e.g., a thread blocked inMPI_Recv(), waiting for a
message) may yield to another thread so that the other thread can proceed.
The first thread must be woken up by some signaling mechanism to resume
the execution of the function but it is difficult to notify the thread if a low la-
tency method for communication is being used by threads/MPI processes on
the same SMP node [23]. The MPI specification recommends (not imposes)
that an implementation should not use the signals SIGALRM, SIGFPE, and
SIGIO. Further, the signals should be caught/handled on threads that do
not invoke MPI functions to prevent the mixing of signal handling with the
execution of MPI library functions (section 2.9.2 of [1]).

	

SEND	

QUEUE	

POSTED-­‐
RECEIVE	

QUEUE	

UNEXPECTED-­‐
RECEIVE	
 QUEUE	

ADI	

LAYER	

MPI	
 API	
 MPI_Send()	
 MPI_Recv()	

CHANNEL	

DEVICE	

Figure 2.4: Send and Receive queues in Abstract Device Interface layer

• Queue locking in ADI (Abstract Device Interface): WhenMPI_Send()
or MPI_Recv() is posted, a data-structure representing the instantaneous
description of the communication call called Transfer Description is con-
structed and an opaque (not accessible by a user) pointer called the handle
pointing to it is posted in the appropriate queue in the ADI (Abstract Device
Interface) layer [26]. The ADI layer implements the message passing engine
and acts as an interface between the MPI API (Application Programming
Interface) and the Device layer.

15

There are three types of queues: A Send-queue storing the send handles, a
Posted-receive (henceforth abbreviated as P-r) queue storing the handles for
the receives which are posted and an Unexpected-receive (henceforth abbre-
viated as U-r) queue which contains handles for receives for which a request
has arrived but the receives have not been posted as yet. The communication
device at the receivers side locks both the P-r and the U-r queues, searches
the P-r queue for any matching receives handles and if not found, constructs
and puts a request handle in the U-r queue. Locking both the queues is es-
sential as a posted receive might be searching the U-r queue to match any
handles and an incoming request could be searching the P-r queue to match
any handles and hence would not find each other’s entry thus resulting in an
incorrect insertion of handles in the P-r and U-r queue, respectively. There
is also a possibility that when multiple threads post identical receives, if
both the queues are not locked together, the threads might traverse the U-r
queue together and find the same handle pointing to the same transfer de-
scription at the same time causing it to be returned to both the threads (and
hence an error). In general a MPI_Recv() operation is more complex than
a MPI_Send() operation and the use of wild-cards MPI_ANY_SOURCE
and MPI_ANY_TAG further complicates the process of receiving. Figure
2.4 shows the various queues.

In a thread-as-rank model a per-thread queue can be implemented in a
thread-safe manner to enhance the performance by increasing the concur-
rency. Each thread has two receive queues, the P-r and the U-r queue (in
addition to the send-queue). This is possible as the send and receive calls
specify the thread rank and hence the handle of transfer description can be
posted directly in the queue specific to a thread. The incoming request locks
and searches for a handle in the P-r queue and posts it in the U-r queue
of the thread, if it fails to find the handle. Locking both the queues (P-r
and U-r) can be avoided if only the owner thread of the queue is allowed to
access it, otherwise both the queues must be locked here as well. The former
strategy thus, allows for a completely lock-free implementation [32]. The
increase in concurrency comes from having per-thread queues and hence re-
sults in reduction of contention and increase in performance. Even a receive
posted with a wild-card need not be synchronized with the other queues as
the thread-as-rank model uses a more fine-grained push model2 controlled by
the send operation in the sense that all sends have clearly defined receivers,
which are threads. A thread can decide using some additional criteria as to
which handle is to be picked to match a wild-card receive.

2In a rank-less thread model the senders must specify the rank of a process and hence push
data to a unique receiver. A receiver using wild-cards can pull data from any source. Thus, MPI
uses a push model rather than a pull model [1].

16

2.8 Endpoints in MPI

The concept of endpoints in MPI has not been incorporated as yet in the MPI
3.0 specification standard [1] and relates to relaxing the one-to-one mapping be-
tween MPI processes and threads i.e. allowing threads to have individual ranks
and decoupling them from processes by making them an MPI process in their
own right. An endpoint has been formally defined as a set of logical or physi-
cal resources which help an entity like a thread to communicate independently
i.e. one or more threads can attach to an endpoint and communicate without
the need for a process interface. Further, this strengthens the interoperability
between MPI and data-parallel, offload programming and node-level parallelism
models [18]. The current MPI specification [1] interface for threads needs the use
of tags and communicators for efficient communication. However, tags cannot
be used for collective communications and creating one communicator per parent
process thread has high computational cost. Further, the use of wild-cards in
receive operations makes the matching non-deterministic. The reasons described
above serve as motivation for creating and formalizing a concept like endpoints.

Endpoints offer two interfaces for attaching a rank to a thread: static and dynamic.
The static interface approach allows the user to request a number of endpoints just
once during application launch or initialization. If done during the launching of the
application then all the endpoints are contained in the MPI_COMM_WORLD
communicator. If the request for endpoints is made during initialization then a
separate communicator called MPI_COMM_ENDPOINTS is created containing
all the processes and the endpoints. The endpoints can either be represented
by objects called MPI_Endpoint or simple indexes represented by integers and
returned as an array of objects after initialization or possess the facility of querying
for a handle using an appropriate routine. The following is the syntax for creating
endpoints:

int MPI_Init_endpoints(int *argc, char *argv[], int count, int tl_requested, int
*tl_provided)

count is the number of requested endpoints, tl_requested is the requested thread
level and tl_provided is the thread level which is returned by the application. The
endpoints can be attached to a thread with another function having the following
prototype:

int MPI_Comm_endpoint_attach(MPI_Comm comm, int index)

where the index ranges from 0 to count - 1. A static approach is not flexible and can
have disadvantages like not being able to operate with dynamic multi-threading
libraries and restricted to having equal number of endpoints for each process even
when the number of threads in each process may vary considerably. The inability
to make a good initial guess about the number of endpoints by leaving it to the
user instead of automating the procedure is another drawback. The endpoints
cannot be transferred from one process to another process even when the threads

17

in one process have completed execution.

The second method to create endpoints is the dynamic interface method which
creates a new communicator and returns an array of handles to this communicator.
Ranks in the new communicator are ordered serially as the ranks in the parent
communicator. The routine for the same has the following syntax [18]:

int MPI_Comm_create_endpoints(MPI_Comm parent_comm, int my_num_ep,
MPI_Info info, MPI_Comm out_comm_hdls[])

The last argument is an array of my_num_ep handles to a single communicator
and the ith handle corresponds to the ith rank. A complete description of MPI
endpoints is beyond the scope of the current project but it suffices to say that
the MPI Forum is thinking and proposing concepts pertaining to threads being
allocated ranks for the purpose of carrying out communication that does not use
the process interface.

18

Chapter 3

Thread-Safety scenarios

This chapter explores several scenarios which require thread-safety. It is not pos-
sible to come up with an exhaustive list of such scenarios due to the large number
of functions in the MPI specification [1] and their interactions. The cases that
we discuss are not stand-alone or isolated cases but meant to represent a gen-
eral category and can further be combined with other scenarios to cater to the
thread-safety requirements of a new code-snippet/application.

3.1 Thread-Safety with MPI_Info

MPI_Info is an opaque3 object [1] which helps to provide hints for improving the
efficiency of an operation. The info object consists of sets of unordered key-value
pairs, where each key and value is a string. In addition to the keys defined in the
MPI specification, the implementation can use its own sets of keys and values.
Implementations should support the maximum length of a key and value upto
MPI_MAX_KEY_VALUE (minimum value 32 and maximum value 255) and
MPI_MAX_INFO_VALUE. Further, the functions should be able to ignore a
key if the key is not implemented by an implementation, hence making it portable
across platforms.

The problem with a shared MPI_Info object is that multiple threads may simul-
taneously try to access the object and hence possibly corrupt the data/data struc-
ture. For a pure read operation no thread-safety is required but due to the presence
of functions like MPI_Info_set(), MPI_info_delete(), and MPI_Info_free(), a
thread may update/free a shared info object which is being simultaneously oper-
ated upon (like being read) by another thread. For example, a thread sets three
keys for a sharedMPI_info object while a second thread invokesMPI_Info_free().

3Objects in the system memory managed by MPI and whose size and shape is not visible to
the user. They are accessed in user space using handles.

19

Such a scenario is depicted in Figure 3.1 where an ’X’ symbol shows the invalid
operation at that stage of execution.

	
 Thread	
 1	
 Thread	
 2	

MPI_Info_set	

	

MPI_Info_set	

	

MPI_Info_set	

	

MPI_Info_free	

	

Time	

X	

Figure 3.1: Thread unsafe scenario with MPI_Info

A simple locking mechanism does not help because if the second thread in Figure
3.1 executes MPI_Info_free() before the third call to MPI_Info_set() on the
first thread, it destroys the info object and hence when the first thread tries to
set the value of any key in it results in an error. This requires that in addition
to obtaining a per-object lock [14] on the info object, each thread after obtaining
the lock must check whether the object exists or not. The two operations cannot
be exchanged because there is a possibility that the object is deleted immediately
after a thread checks the object’s existence and before the lock is obtained. This
thread-safe code is shown in Algorithm 3.1.

The reference counting mechanism of MPI (see section 2.7 chapter 2) does not pre-
vent the MPI_Info object from being deleted as the third call to MPI_Info_set()
is executed after the call to MPI_Info_free() on the second thread in this par-
ticular ordering of thread schedules. The reference counting mechanism ensures
that an MPI object is not deleted if the use for that object is not complete i.e.
if the reference count is more than one. But in this case the reference count
of MPI_Info object is one when MPI_Info_free() is called. This program/code-
snippet is quasi-erroneous/partially-correct as if the three calls to MPI_Info_set()
are executed before the call to MPI_Info_free(), the program would successfully
execute. Specifically, the value φ21 = 4 and the ratio α = 1

4 for the example shown
in Figure 3.1.

20

Algorithm 3.1 Thread Safety for MPI_Info
Require: shared: MPI_Info info, lock_t info_lock
Ensure: one lock variable for each MPI_Info object
1: Function IsExists(MPI_Info info)
2: if info == MPI_INFO_NULL then
3: return false
4: else
5: return true
6: end if
7: end Function

Thread Safety for MPI_Info
8: ∀ instances of info
9: set_lock(info_lock)
10: if IsExists(info) then
11: Manipulate(info)
12: end if
13: unset_lock(info_lock)

MPI states [1] that the MPI_Info object takes the value MPI_INFO_NULL
when MPI_Info_free() function is called on it. This value is checked for in the
IsExists() function which returns true if the object exists and false otherwise. The
lock_t datatype is a hypothetical datatype for a theoretical machine. This could
evaluate to an OpenMP lock datatype i.e. omp_lock_t or a mutex variable of type
pthread_mutex_t while using Pthreads (POSIX threads). For each instance of the
info object being manipulated, we need to wrap the instance with set_lock(info),
IsExists(info) and unset_lock(info). The granularity of the lock is at the level of
the object as we need a separate lock for each info object and not for different
occurrences of the same object. Manipulate() is any user defined function which
operates on the info object.

3.2 Generalization

Algorithm 3.1 is a representative element of a general category of functions which
require thread-safety. The three basic operations associated with any object are:
read, write and update. There is a fuzzy difference between the update and write
operation but the result of both the operations is that an existing value (or no
valid value) is changed to a different value (or the same value is overwritten).
A fourth operation which can be associated with some objects is a deletion or
freeing operation. For example, an MPI_Info object can be freed after which
it ceases to exist in the sense that it contains a value MPI_INFO_NULL when
MPI_Info_free() is called on it.

21

!

Operation 1 Operation 2 Conflict
Read Read No
Read Write/Update/Free Yes
Write Read/Write/Update/Free Yes
Update Read/Write/Update/Free Yes
Free Read/Write/Update/Free Yes

Figure 3.2: Conflicting vs. non-conflicting operations

Figure 3.2 shows various combinations of operations which lead to a conflict (or no
conflict) when two or more threads are performing MPI operations on the same
attribute/value of an object/location. As a first step to perform any operation
on an object, a lock must be obtained to ensure that only one thread at a time
is operating on that object. There are two levels of existence: object level and
attribute level. It is possible that another thread might have deleted/freed the
object and hence it is necessary to query for the existence of the object on which
we have obtained a lock. For example, in the case of MPI_Info the object contains
a value MPI_INFO_NULL if the function MPI_Info_free() has been called on
it. The MPI_Comm_free() operation deallocates the communicator object and
sets its value to MPI_COMM_NULL and hence it is erroneous to call a func-
tion that reads, writes, or updates the value of an attribute associated with the
communicator object.

The second level deals with the existence of an attribute of an object and prohibits
any read, write or update operation called subsequently after the deletion/freeing
of the attribute. Figure 3.3 gives the flowchart for carrying out manipulation of
a shared object (or its attribute values) when conflicting calls depicted in Figure
3.2 are operational. Most objects in MPI provide functions which free level one of
existence (object) but a function like MPI_Comm_delete_attr() deals with level
two (attribute existence). A function MPI_Type_delete_attr() falls in the same
category and may clash with an operation like MPI_Type_get_attr().

22

Figure 3.3: Flowchart depicting the manipulation of objects/attributes with con-
flicting Read/Write/Update/Free operations.

23

3.3 The function malloc()

The function used in C language for dynamic/run-time allocation of memory is
malloc() [15], the syntax for which is shown below:

void *malloc(size_t size)

malloc() allocates space for an object whose size is specified by size and whose
value is indeterminate. It returns the starting address of the contiguous block
allocated on success and returns a NULL pointer on failure. The memory is
allocated from the heap - which is a continuous piece of memory defined with three
bounds: the starting point (START), an end point (BREAK) and the maximum
limit (RLIMIT). As shown in figure 3.4 the current end point of the heap memory
is called BREAK and the maximum limit is denoted by RLIMIT.

	

START	
 BREAK	
 RLIMIT	

HEAP	

MAPPED	
 REGION	
 UNMAPPED	
 REGION	

Figure 3.4: Heap memory

The space above RLIMIT and below the starting point START is not part of the
heap memory. Two ANSI C functions for manipulating the BREAK are brk() and
sbrk() for placing the BREAK at a given address and incrementing the BREAK
by a certain amount, respectively. Depending on the implementation, the sbrk()
function either returns the current BREAK address or the BREAK address after
advancing the end point by the offset provided as its argument. In all implemen-
tations, sbrk() called with an argument of zero (0) returns the current BREAK
address. The functions for manipulating RLIMIT are getrlimit() and setrlimit().
The memory allocated by malloc() on success is always more than the memory re-
quested by the user as some bookkeeping meta-data regarding the memory must
also be stored along with the data but the pointer returned to the user always
points to the starting address of the data block having the appropriate requested
data size. The meta-data consists of at least three fields: the address of the next
chunk, size of the chunk, and whether the current chunk of memory is free or allo-

24

cated. This pattern of storing a pointer to the data block, having a pointer to the
next chunk, a data block and other implementation dependent fields suggest that
the memory inside heap is represented as a linked list of allocated and unallocated
nodes.

3.3.1 Issues with thread-safety in malloc()

Several MPI routines like MPI_Comm_split(), MPI_Comm_dup() etc. call mal-
loc() internally to allocate memory4. Further, the developer can issue calls to
malloc() for dynamic memory/run-time allocation in an application. Depending
on the implementations of malloc(), it may or may not be thread-safe and/or
re-entrant. A re-entrant routine is a routine which cannot be safely restarted
after interruption at a certain point due to a jump, call, hardware or software
interrupt, without guaranteeing the safety of data. A re-entrant routine/function
cannot use static data, return a pointer to static data or call a non-re-entrant
function. Further if it uses global data then it must protect it in order to keep
the values consistent from a modification by another invocation of the same func-
tion possibly from another routine. For example a routine may be interrupted
due to delivery of a signal which starts a signal handler installed in the memory
and which in turn might call the same function which was interrupted in the first
place. Discussing re-entrant procedures in detail is beyond the scope of the current
project.

Various flavors of malloc() have been made both thread-safe and efficient. For
example TCMalloc() [16] which stands for Thread Cache malloc() uses a thread-
cache for satisfying the memory requirements of small objects (≤ 32K) and
utilizes the central heap using a page-level (page ≈ 4K) memory allocator for
large objects. Each small object maps to one of the (approximately) 170 classes.
For example, allocations in the range 961 to 1024 bytes are rounded to 1024 bytes
and the size classes are spaced so that smaller sizes are separated by 8 bytes, larger
by 16 bytes, and so on, till the maximum separation of 256 bytes for classes ≥ 2k
bytes. It is efficient due to virtually zero contention when allocating small objects
and uses fine-grained efficient spin locks for large objects. ptmalloc() is another
flavor of malloc() that improves upon the original Doug Lea malloc() [17] by using
per thread arenas but with the disadvantage that the memory can never move
from one arena to another and hence results in wasted space. SmartHeap for SMP
systems offers another solution by allowing multiple threads to make concurrent
requests to the heap.

The memory allocated by using malloc() can be freed by a function called free().
This function adds the allocated memory to the free pool by altering the meta-data
and making it available for other requests. Several policies like best fit, first fit etc.

4Functions other than malloc() can be used to allocate memory dynamically. Further, the
routines can be implemented without allocating dynamic memory (see Appendix D).

25

are used while allocating memory. Since a usual implementation of malloc() uses
some static and global variables, it is considered both thread-unsafe and non-re-
entrant in general. Hence, our aim is to make malloc() thread-safe by treating it
as a black box i.e. not bothering about its implementation and creating conditions
such that no two threads are allocated the same address/intersecting addresses.

	

Function()	

Threads	
 Black	
 Box	

Thread	

unsafe	

Thread	
 safe	

Figure 3.5: malloc() as black box

Figure 3.5 shows the methodology behind making malloc() thread-safe where we
take post-malloc() actions to make the allocation thread-safe i.e. we let the mal-
loc() function execute without any intervention/changes to its source code and
recover from the situation when two or more threads are allocated the same ad-
dress. If more than one thread is assigned the same address, re-allocation is done
by calling malloc() again.

3.3.2 Making malloc() thread-safe

The easiest and (possibly) the most in-efficient solution to makingmalloc() thread-
safe is to use a global lock to ensure that no two threads call the malloc() function
at the same time. This results in a serialized thread schedule and all the calls are
executed in some (any particular) order. The complexity of implementing this in
terms of Lines of Code (LOC) is negligible. However the execution performance
is possibly the worst. This solution should therefore be considered as a trivial but
correct solution and is presented in Algorithm 3.2.

26

Algorithm 3.2 Thread-Safety for malloc() using a global lock
Require: shared: lock_t global_lock
Ensure: pointer variable local to a thread
1: ∀ instances of malloc()
2: set_lock(global_lock)
3: var ← malloc(size)
4: unset_lock(global_lock)

Algorithm 3.2 presents a solution based on a single global lock named global_lock
which is shared among all the threads and is locked by a thread before it executes
a call to malloc(). Irrespective of a successful or unsuccessful call to malloc(),
the lock is unset and hence can be used by another thread. Considering that
thousands of threads might be executing on an SMP, this strategy is not scalable
as it allows only one thread at a time to obtain memory using malloc(). What
is needed in practice is an algorithm which allows multiple threads to execute
malloc() concurrently and also guarantee that no two threads are assigned the
same address. We design an alternative strategy where any number of threads,
say n can execute malloc() concurrently and in the event of a subset n threads
being assigned the same starting address, n − 1 threads back-off and only one
thread out of n threads advances ahead with the allocated piece of memory. The
performance of the algorithm depends heavily on n being � n i.e. the number of
threads acquiring the same address should be much less in number than the total
number of threads concurrently executing malloc().

3.3.3 A non-blocking and wait-free thread-safe algorithm
for malloc()

The strategy that we present makes malloc() a thread-safe function by taking
a post-malloc() action and involves a shared queue-like-structure implemented
by a single dimensional unsigned integer array that supports the insert/enqueue
operation. Each thread after being assigned an address by malloc() checks if the
starting address (which has been returned to it) is present in the shared array or
not. If the thread finds an identical entry in the shared array, it does not make an
entry into the array as another thread which has been assigned the same address
has already inserted its address into the table. Further, it calls malloc() again
to request another non-conflicting piece of memory. This checking, removal of
entries from the globally shared array and re-invocation of malloc() is done after
malloc() is called and before any thread attempts to use the address space given to
it. Before calling free() on the allocated memory for deallocation, a thread must
reset the value of stored by it in the global shared array to zero, which is the value
of a constant NULL defined in the ANSI C standard. Algorithm 3.3 presents this
approach.

27

Algorithm 3.3 Non-blocking and wait-free thread-safe algorithm for malloc()
Require: shared: Q[MAX_THREADS*MAX_MALLOC], grear, private: size,

boolean allocate, flag, 〈data-type 〉 ptr
Ensure: 1≤i≤ MAX_THREADS * MAX_MALLOC, Q[i] ← -1, grear ← 0
1: Function Search(p)
2: index←0
3: flag ← false
4: while index ≤MAX_THREADS * MAX_MALLOC ∧ Q[index++] 6= -1 do
5: if Q[index] == p then
6: flag← true
7: break
8: end if
9: end while
10: return flag
11: end Function

Non-blocking and wait-free thread-safe algorithm for malloc()
12: ∀ instances of malloc()
13: allocate← false
14: while allocate 6= true do
15: ptr ← malloc(size)
16: if ptr 6= NULL then
17: while true do
18: flag ← Search(ptr)
19: if flag == false then
20: if CAS(Q[grear], -1, ptr) then
21: FAA(grear,1)
22: allocate←true
23: break
24: end if
25: else
26: break
27: end if
28: end while
29: end if
30: end while

The constants MAX_THREADS and MAX_MALLOC (Algorithm 3.3) denote
the maximum number of threads which are created per OS process and the max-
imum number of times any thread calls malloc(), respectively. The problem in
storing data in a dynamic data structure is that memory for that data structure
would need to be allocated dynamically and hence would again need a malloc()
to be called which would need a thread-safe code again. Hence, we use an al-

28

ternative approach which uses a fixed size shared data structure i.e. a shared
one-dimensional array having size MAX_THREADS * MAX_MALLOC, where
each element is of the size of a uint64_t5. The only drawback of this approach is
that when threads create threads which call malloc(), the fixed size of the array
might not be sufficient. To accommodate for this situation to a certain extent,
some extra space must be allocated to the shared array while declaring it.

Algorithm 3.3 which uses a Search() function to find if the address being allocated
to a thread is present in the shared array or not. Initially all the threads call
malloc() and obtain a starting address which is returned/contained in thread-
private ptr variable. This starting address can be the same for several threads.
An invalid address NULL can be returned by malloc() when there is insufficient
space in the heap even after advancing BREAK further than the current limit. If
the returned address is not NULL, the threads after obtaining the address execute
the Search() function to search for the address allocated to them in the shared
array Q. If the address is present, then it clearly means that there is another
thread which has been assigned the same address and which has already made its
entry into the shared array Q. In such a case the variable flag is returned as true
and the variable allocate retains its value as false, causing malloc() to be called
again for reallocation of memory. Figure 3.6 shows the traversing of the shared
array Q by threads.

	

1234	
 1197	
 7432	
 4356	
 -­‐1	

	

-­‐1	

Thread	
 1	

Thread	
 2	

Thread	
 3	

grear	
 =	
 4	

Figure 3.6: Traversing of shared array Q by threads

The value of the variable grear is initialized to zero and acts like the rear pointer
of a queue that points to the location where values can be inserted/enqueued.
This global rear grear is incremented after the atomic CAS (Compare and Swap)
operation is executed by any thread. The atomic CAS operation takes three ar-
guments: the register or the memory location, an expected value to be compared
with the value in the register/memory location and the value which should replace

5uint64_t is a data-type that represents an unsigned integer in 64 bits.

29

the current value if it contains the expected value. It returns true if the replace-
ment operation is successful else returns false in case of failure. The function CAS
can be written as a code snippet in C language as shown in Listing 3.1. The entire
function is assumed to execute instantaneously.

Listing 3.1: Code snippet implementing CAS
bool CAS(register r, int old , int new)
{
if (r== old)

{
r=new ;
return true ;

}
else

return false;
}

The property of an atomic operation is that it appears to happen in an instant
and if multiple threads execute the CAS operation simultaneously then only one
of the threads will execute it successfully. The rest of the threads will fail. This
guarantees that the global rear variable grear is only incremented by the thread
which succeeds in completing the CAS operation. There are several algorithms
lock-free algorithms which make use of atomic operations for a queue data struc-
ture in literature but almost all of them use a linked list, which in turn requires
malloc() for dynamic memory allocation in the C language. Clearly, we cannot
use malloc() as it is the function which is being made thread-safe here on the
assumption that it is thread-unsafe. Using a concurrent lock-free data structure
prevents non-conflicting operations from serialization and hence enhances the per-
formance [20]. Further, the FAA (Fetch and Add) atomic instruction fetches and
adds one to the current value of grear. The term register for the first operand
of the CAS operation has been used for historical reasons and could be anything
from a register to a memory location [21].

Theoretical argument leads us to the possibility of two threads obtaining the same
address again and again and hence emerges a need for a method to break up this
infinite chain. An Exponential Back Off strategy can be used after a thread
executes the Search() function and finds that the address allocated to it is already
present in the shared array so that the threads have to wait a random amount of
time and the probability of a collision reduces i.e. the probability of them invoking
malloc() at the same time and acquiring the same piece of memory reduces. This
algorithm is typically used to reduce the probability of collision in CSMA/CD
(Carrier Sense Multiple Access/Collision Detection)6 [19] networks. In the context
of threads the number of collisions is taken as the number of times any thread
is assigned a conflicting address as another thread. The advantage is that the

6Multiple systems connected to a shared medium use decentralized control to transmit data
and delay their transmission randomly if a collision occurs by choosing a multiple of the Round
Trip Time (RTT) of the network.

30

scheme is lock-free and randomly delays the threads executing it so that malloc()
is possibly not invoked simultaneously. Each thread chooses a random number
from the interval [0, 2collisions−1], which is multiplied by a system dependent time
to obtain a random delay. This is shown in Algorithm 3.4.

Algorithm 3.4 Exponential Back Off policy addition to thread-safe malloc()
1: Function Expo_Delay(integer collisions)
2: x ← random([0, 2collisions-1])
3: delay← x * T . T is system dependent and in units of time
4: end Function

Due to an entry in the shared array Q of the addresses assigned to threads - we
need to carry out some form of pre-processing before the free() function is called
to release the memory into the free pool. The only need is to reset the entry in the
shared array to a zero. A value of zero has been carefully chosen so that no thread
which is reading the value at any instant of time sees a value of -1 due to the
internal boolean representation of 0 and -1. A -1 in 2’s complement is represented
by sixty four 1’s (assuming a 64 bit architecture) and a 0 is represented by sixty
four 0’s. Hence at no point in time a value of 0 can be interpreted as -1. This idea
is expressed in Algorithm 3.5.

Algorithm 3.5 Algorithm for free() compatible with Algorithm 3.3
Require: private: 〈 data-type 〉 ptr
Ensure: ptr 6= NULL
1: Function Nullify(ptr)
2: index ← 0
3: while Q[index] 6= p do
4: index ← index + 1
5: end while
6: Q[index] ← 0
7: end Function

Algorithm for free() compatible with Algorithm 3.3
8: ∀ instances of free()
9: Nullify(ptr)
10: free(ptr)

3.4 Thread-Safety with MPI Send and Recv

MPI_Send() is a point-to-point MPI operation used to send messages to a des-
tination MPI process. The MPI standard [1] defines several types of send calls

31

namely: blocking, non-blocking, buffered, ready and standard. Abstractly, the
blocking send call blocks until the data is transferred to the destination or to an
intermediate system buffer. A non-blocking send call returns immediately after
being posted and its completion involves using some form of a wait operation. A
buffered call attaches the send buffer to a user provided buffer for (possibly) later
delivery. A ready send can only be posted if the destination has already initiated
a receive call. A standard send may be either synchronous (blocking) or buffered.
The C language syntax for a standard send is shown below.

int MPI_Send(const void *buffer, int count, MPI_Datatype datatype, int desti-
nation, int tag, MPI_Comm comm)

The receive call is used to receive messages from a particular or from any source.
The latter in a receive call is specified by using a wild-card denoted by a named
constant MPI_ANY_SOURCE. There are two flavors of receive namely, blocking
and non-blocking. A blocking receive operation blocks until the process/thread
receives the complete data and frees the resources upon return. A non-blocking
receive returns immediately after being posted irrespective of whether data has
been received or not. It is the user’s responsibility to check if the non-blocking
receive has completed by calling some form of wait. The syntax for a blocking
receive is shown below.

int MPI_Recv(void *buffer, int count, MPI_Datatype datatype, int source, int
tag, MPI_Comm comm)

The syntax for both the calls look identical except for the fact that the buffer pa-
rameter in the MPI_Recv() call is modified during the process of receiving (except
when receiving message of size zero) and the source parameter is used instead of
the destination in MPI_Send(). There are two parts to the message: the data
and the message envelope. The particulars of data are specified by the first three
arguments in the MPI_Send() or MPI_Recv() functions and the envelope consists
of the source, destination, tag and the intra or inter-communicator on/through
which the communication takes place [1]. count gives the number of data elements
to be received or sent, datatype is a user defined datatype or a pre-defined data-
type like MPI_INTEGER, MPI_CHARACTER etc. and the tag can take any
valid integer value and can be used to identify a particular thread in a process
model.

A special value of tag in the receive operation can be MPI_ANY_TAG which
specifies that a message with any tag can be received by the receiving process. A
similar value denoted by MPI_ANY_SOURCE allows to accept messages from
any arbitrary source. In MPICH2 [4] the blocking synchronous send operation is
specifically named as MPI_Ssend() and the MPI_Send() function can be blocking
(synchronous) or buffered. In this report we specifically mention the word blocking
or non-blocking before the operation to avoid any ambiguity.

32

3.4.1 Thread-Safety issues with shared buffers in Send and
Recv

In the presence of multiple threads the shared buffer being used in the send or re-
ceive function call can be modified by a thread which is executing concurrently on
another core of the SMP. This problem is almost but not exactly the same as the
thread-unsafe scenario of MPI_Info(). The difference here is that MPI_Send()
and MPI_Recv() depend on each other to complete and hence are not necessarily
local to the SMP threads. These can be taken as a lock-key pair or a compli-
mentary set of calls which are incorrect if executed in isolation (except for a
send/receive to/from MPI_PROC_NULL). For every MPI_Send(), a matching
MPI_Recv() must be posted by another thread. Further, it is not necessary that
the MPI_Recv() is executed as soon as the MPI_Send() call is executed and vice-
versa. MPI specification delegates the responsibility to the user for synchronizing
the use of resources involved in a send or receive operation in case a thread is
de-scheduled due to a blocking send/receive and another is scheduled in the same
address space (section 3.4 of [1]).

To demonstrate and discuss thread-safety issues in point-to-point operations, we
assume two threads TA, TB are on the same SMP, and TC is on a different SMP,
operations Receive (R), Send (S) and Write(W) and a shared buffer BUF. We do
not discuss a read operation on a shared buffer separately as it is meted out the
same treatment as a Write(W) operation. An arbitrary thread is denoted by X
or Y where X 6= Y and a buffer is denoted by an empty paranthesis (), if the
argument does not matter. An execution of a Receive(R) by TA on shared buffer
BUF is denoted by TR

A (BUF). The following conditions should be allowed and
observed:

1. TW
X (BUF) ⇒ ¬ (TR

Y (BUF) ∨ T S
Y (BUF))

2. T S
X(BUF) ∨ TR

X (BUF) ⇒ ¬ TW
Y (BUF).

3. TR
A (BUF) ⇐⇒ T S

C () ∨ T S
B(BUF) ⇐⇒ TR

C ().

4. (TR
A (BUF) ⇐⇒ T S

B(BUF)) ∧ ¬ TW
X (BUF).

The first condition implies (⇒) that when any receive or (∨) send operation has
been initiated by some thread, no other thread in the same SMP can initiate a
write operation or vice-versa. The second condition is obtained from the first
condition by exchanging the LHS (Left Hand Side) of the equation with the RHS
(Right Hand Side) and transposing the negation operator (¬).

The third condition states that only one of the operations i.e. either receive or send
can be executing on the same buffer when communicating (⇐⇒) with a remote
thread (and not both the operations).

It is possible that two threads on the same SMP may communicate through MPI
point-to-point calls using the same buffer i.e. one thread sends a shared buffer to

33

another thread which receives the message in the same shared buffer. Such a call
is theoretically and practically possible although it may not serve any purpose as
the information is already available in the shared buffer. For the sake of correct-
ness and completeness such scenarios are allowed and the fourth condition above
encapsulates this case. We use the terminology local calls for such scenarios. As
opposed to this a thread can send or receive to/from another thread in a different
SMP (remote call). In the latter case only one of receive or send operation using
the same shared buffer should be allowed to progress.

Threads must be able to determine if the communication between the correspond-
ing thread is a local or a non-local one. Hence, a shared buffer is used for each
OS process in which a thread after initializing, records its presence in that process
by entering its rank in the global array (shared among threads/MPI processes of
an OS process). Using this scheme a thread when communicating with a destina-
tion can check the shared array to determine if the communication is a local or
a non-local one. Algorithm 3.6 shows how the conditions described above can be
handled in a thread-safe way.

Algorithm 3.6 Thread-Safety for shared buffer in point-to-point communication
Require: shared: Rank[MAX_THREADS], int sr_test, 〈datatype〉buffer, lock_t

w_lock, r_lock
Ensure: ∀ threads ∈ SMP initialize Rank[thread_ID]← thread_rank, sr_test ←

-1
1: Function Query(rank)
2: index ← 1
3: while index ≤ MAX_THREADS ∧ Rank[index] 6= rank do
4: index ← index + 1
5: end while
6: if index > MAX_THREADS then
7: return false
8: else
9: return true
10: end if
11: end Function

34

Thread-Safety for shared buffer in point-to-point communication
12: ∀ instances of MPI_Send()
13: Is_local ← Query(destination)
14: if Is_local == false then .Remote Communication
15: set_lock(w_lock)
16: MPI_Send(buffer,...,destination)
17: unset_lock(w_lock)
18: else .Local Communication
19: set_lock(w_lock)
20: while ¬ CAS(sr_test, -1, source) do
21: end while
22: MPI_Send(buffer, ..., destination)
23: unset_lock(w_lock)
24: end if

Thread-Safety for shared buffer in point-to-point communication
25: ∀ instances of MPI_Recv()
26: Is_local ← Query(source)
27: if Is_local 6= true then .Remote Communication
28: set_lock(w_lock)
29: MPI_Recv(buffer,...,source)
30: unset_lock(w_lock)
31: else .Local Communication
32: while ¬ CAS(sr_test, source,-1) do
33: nop .No operation
34: end while
35: set_lock(r_lock)
36: MPI_Recv(buffer, ..., source)
37: unset_lock(r_lock)
38: end if

Thread-Safety for shared buffer in point-to-point communication
39: ∀ instances ofWrite(buffer) . Also applies to any Read(buffer) operation
40: set_lock(w_lock)
41: set_lock(r_lock)
42: Write(buffer)
43: unset_lock(r_lock)
44: unset_lock(w_lock)

The shared array Rank[MAX_THREADS] for a particular OS process contains
the ranks of all the threads that share the address space of the process. The

35

threads while getting initialized, can store their rank at an index which is equal to
the thread ID of the thread and is specific to the threading library being used. For
example, the OpenMP threading library gives thread ID’s starting from zero to
the maximum number of threads minus one. It is recommended that some extra
space in the shared array be reserved as threads may create other threads which
store their ranks in the shared array Rank while getting initialized. The function
Query() takes as input the rank of a thread and returns true if that rank is found
in the shared array Rank, else returns a value of false.

For all instances of MPI_Send()/MPI_Recv(), we first determine whether the
communication will be local (intra-OS process ranked-thread communication) or
non-local (inter-OS process ranked-thread communication) by using the function
Query(rank). ForMPI_Send(), if the communication is non-local, a lock w_lock is
obtained which can only be held by a thread doing remote/local communication or
a thread doing a Write(W) on the shared buffer. The same sequence of operations
apply to a thread performing a non-local receive operation and guarantees mutual
exclusion from a thread intending to do a remote/local send or a Write(W) on
the shared buffer. Thus, the remote communication pseudo-code of MPI_Send()
and MPI_Recv() looks almost identical. Clearly, a non-local send or a non-local
receive or a local write on the same shared buffer is guaranteed not to interfere
with each other due to mutual exclusion implemented by acquiring a lock w_lock.
Figure 3.7 illustrates a local versus non-local communication.

	

Non-­‐Local	

Communication	

RANK	
 1	
 RANK	
 2	
 RANK	
 3	
 RANK	
 4	

OS	
 PROCESS	
 0	
 OS	
 PROCESS	
 1	

buffer1,	
 	

Rank[MAX_THREADS]	

buffer2,	
 	

Rank[MAX_THREADS]	

Local	
 Communication	

Figure 3.7: Local vs. non-Local communication

The algorithm must also guarantee that if there is a local communication between
two threads then both the local receive and local send must execute but prohibiting

36

a write to occur or vice-versa. This case is different from a non-local send or receive
as in the non-local case only one of send or receive is executed. This problem is
taken care of by MPI_Send() when it sets the variable sr_test after acquiring
the w_lock which in turn is done after determining whether the communication
is local or not. MPI_Recv() on the other hand tests the value of sr_test to see
if it has been set to its rank by the sending MPI process/thread. If it finds its
own rank in the shared variable sr_test, it proceeds towards acquiring the r_lock.
Acquiring r_lock guarantees that a write on this buffer will not interfere with this
either receive or send as a thread that wants to write to this shared buffer must
acquire two locks i.e. w_lock followed by r_lock precisely in that order. Further
the r_lock is released when the receive function returns and hence a write on the
shared buffer can only be initiated after receive returns. This describes and proves
the correctness of the algorithm when a send is posted before the corresponding
receive operation.

In the case when a receive is posted before the corresponding local send operation,
the receive does not acquire the lock r_lock as the value of the variable sr_test
is initialized to -1. During this time period it is possible for a write operation by
another thread to acquire the r_lock and proceed with the modification. A local
send which wants to start while this writing operation is going on cannot proceed
until the w_lock is released by the thread performing the write. After the thread
is done writing it releases both the locks and at some point in time the sending
thread can acquire the w_lock and set the variable sr_test to the rank of the
receiving MPI process/thread.

There is also a possibility that two or more threads are spinning on the variable
sr_test to check if it has become equal to the their rank and waiting for a local
communication. But even if multiple threads post the local send operation to
send messages to their counter-parts, only one of is able to acquire the w_lock
and sets the value of sr_test to the appropriate rank. The thread corresponding
to this rank (rank = value of sr_test) would then proceed towards acquiring r_lock
and posting a matching receive. There is possibility that due to a 64 bit7 read
operation, a thread with the incorrect rank may misinterpret the value of sr_test
to be equal to its own rank and hence acquire r_lock, resulting in a dead-lock.
To prevent this situation, a CAS operation does the comparison and the thread
performing it proceeds if a value of true is returned. The other CAS operation in
the MPI_Send() pseudo-code ensures an atomic write on the sr_test variable so
that the CAS operation in the receive operation pseudo-code reads an atomically
set value of sr_test. Since in a thread-as-rank model the ranks of threads are
unique, only one CAS operation executed by the receiving thread will succeed and
the others will fail.

The utility of a send and receive operation between two threads of the same
7A 64 bit read possibly is done in two 32 bit reads and hence a value being written into a

variable can be misinterpreted, if it is being read simultaneously. For example, different Intel
processors guarantee atomicity of different operations [27].

37

SMP comes into the picture when one thread wants to send a particular state of
the buffer to another thread without intervention from any third thread which
might possibly perform a write on the shared buffer. In such cases if a pure
shared memory model is used then the thread intending to receive the buffer must
acquire a lock on the buffer which in itself is a complex procedure as there are
a set of contending threads. Instead, the sending thread acquires a lock on the
buffer and the send lock and waits for the correct thread to acquire a read lock
on the buffer after the receiver examines the value of the variable sr_test. To
further clarify the scenario, the sending thread can transfer the contents of the
buffer to another private buffer preserving the exact state and then send it on to
the receiving thread. In such a case only the receiving thread needs to acquire a
write (w_lock) and read lock (r_lock) on the shared buffer.

3.4.2 Thread-Safety with MPI_ANY_SOURCE

The wildcard MPI_ANY_SOURCE when specified in a receive operations allows
an MPI process/thread to accept messages from any source. The send operation on
the other hand must specify a particular destination and hence a receiver posting
a wildcard receive can accept any message from the set of all the messages which
have destination as the rank of the receiver MPI process. This can potentially
cause a mismatch in the sequence of messages that are to be received and hence in
effect, may lead to a deadlock. This is shown in Figure 3.8 in which two threads
send a message to a destination thread and the application logic fails to match
the messages to the correct receive.

	

RECV	
 (MPI_ANY_SOURCE,	
 MPI_ANY_TAG)	

RECV	
 (SOURCE	
 =	
 5)	

SEND	
 (DESTINATION	
 =	
 2)	

SEND	
 (DESTINATION	
 =	
 2)	

RANK	
 5	
 2	
 8	

X	
 √	

Figure 3.8: Wrong order of receives using wildcard MPI_ANY_SOURCE

Figure 3.8 shows a thread-unsafe scenario where a message from thread ranked
5 meant for destination thread having rank 2 is received by the receiver thread

38

using a wildcard receive which actually is meant for some other thread (according
to the application logic). This message is received without any issues but when
another thread ranked 8 sends a message to destination thread 2, it does not find
a matching receive and hence the application deadlocks. A clear distinction here
is made that this thread-unsafety because of MPI_ANY_SOURCE comes into
picture because of the way it is used in the application and not because of any
thread-unsafe code within the implementation or specification [29].

The thread-unsafe scenario can be avoided by making use of the MPI_Probe()
function to find the source of the message and taking an appropriate option based
on the value of the source. The MPI_Probe() function has the following syntax
(section 3.8 of [1]):

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)

The function has arguments which are exactly the same as the arguments in a
receive call which constitute the message envelope. MPI_Probe() can return
the particulars of a message in the status argument i.e. tag, source and error
(MPI_TAG, MPI_SOURCE and MPI_ERROR). The value of MPI_SOURCE
allows us to inspect (with reference to Figure 3.8) whether the message sent from
thread ranked 8 is available or not. Listing 3.2 shows a solution for the scenario.
We place the probe operation in a loop (which does not look elegant) to avoid this
scenario. Instead we could have reversed the order of operations to receive the
message from source ranked 5 followed by a message from MPI_ANY_SOURCE.
The latter solution of simply reversing the two calls would lead to an erroneous so-
lution when the receives are non-blocking as there would always be a possibility of
accepting a message from thread rank 5 on the receive with MPI_SOURCE_ANY
which would lead to a deadlock. Hence, Listing 3.2 makes sure that the message
from thread rank 5 is received first, followed by a wildcard receive of any message
(though this approach leads to a lower performance at the cost of correctness).

Listing 3.2: Using Probe to prevent deadlock
if (rank == 2)
{

flag = false ;
comm = MPI_COMM_WORLD ;
while(flag == false)
{
MPI_Probe (5, MPI_ANY_TAG , &flag , MPI_COMM_WORLD) ;
}
MPI_Recv (buf , cnt , MPI_INT , 5, MPI_ANY_TAG , comm , & status);
MPI_Recv (buf , cnt , MPI_INT , MPI_ANY_SOURCE , MPI_ANY_TAG , comm , & status)
}

}

39

3.4.3 Thread-Safety with buffered Send

A buffered send requires a user defined shared buffer to be attached for calls to
MPI_Bsend() using a MPI_Buffer_attach() function call. This buffer is used
by MPI in the user space to store the outgoing buffered mode messages. Another
function callMPI_Buffer_detach() detaches the buffer after the pending messages
are sent (reference counting mechanism ensures this). The syntax for both the
functions is shown below [1].

int MPI_Buffer_attach(void* buffer, int size)
int MPI_Buffer_detach(void* buffer_addr, int* size)

A limitation of these functions is that multiple threads cannot call any of the
functions simultaneously. This is different from the shared buffer problem as
the problem is independent of a particular buffer. Even when two threads call
MPI_Buffer_attach() concurrently with different buffers, an error is thrown. It
must be ensured that these calls are serialized. The simplest method is to call the
functions outside the parallel regions i.e. function calls should be made only by
the main thread. If they are to be called by multiple threads then a single global
lock shared by the OS process can serialize the calls.

3.5 Thread-Safety with collective operations

Collective operations occurring on a communicator involve all the processes which
are a part of it. A communicator defines a group or a group of processes [1]. Col-
lective operations may have a root process which is the single sending or receiving
process in that operation. The amount of data sent to a process must be received
in some exact sized buffer specified by the receiver unlike the point-to-point oper-
ations and hence imposes a stricter check in collective operations. A blocking col-
lective operation finishes execution as soon as the call returns but a non-blocking
collective must to be tested for completion by using some form of wait operation as
in point-to-point non-blocking operations. MPI further guarantees that messages
generated on the same communicator by collective and point-to-point operations
will not be intermixed. The collective operations may or may not have the ef-
fect of synchronizing the various processes and it is up to an implementation to
choose the methods used for collective operations. The following discussion con-
cerns only intra-communicators and not inter-communicators to limit the scope of
the project. The four major categories of collective communications are:

1. One-to-All: One process dissipates data to all other processes and acts as
the root in the collective communication. Examples include MPI_Bcast(),
MPI_Scatter() and their respective non-blocking versions.

2. All-to-one: The root process receives information from all other processes.

40

Examples include MPI_Gather(), MPI_Reduce() and their respective non-
blocking versions.

3. All-to-All: Each process in the communicator sends and receives informa-
tion to/from all other processes. Examples are operations likeMPI_Alltoall(),
MPI_Allgather(), MPI_Allreduce() andMPI_Barrier() etc. MPI_Barrier()
is always a synchronizing collective operation in which all processes must ex-
ecute the barrier at some point in time but can exit asynchronously and no
user-level data is exchanged by processes.

4. Others: These do not pertain to any of the above categories and include
operations like MPI_Scan() and variations of it.

The non-blocking collective operations help to overlap computation with back-
ground communication and are not synchronizing in general. An non-blocking
operation which is synchronizing is MPI_Ibarrier(). The immediate return from
the call and testing their completion in a separate call gives the same advantage as
non-blocking point-to-point operations. Further, two non-blocking collectives can
be outstanding at the same time on the same communicator whereas two blocking
collectives on the same communicator cannot be outstanding at the same time
i.e. a blocking collective operation must be completed before the processes in
the communicator can proceed further. In case of intersecting communicators, a
blocking collective would lead to a dead-lock if there exists a cycle created by a
circular wait condition and hence is another area where non-blocking collectives
score over their blocking counter-parts.

3.5.1 Collective semantics in a rank-less thread model

Two threads belonging to the same process cannot issue two collective calls (same
or different) on the same communicator concurrently. MPI prohibits the afore-
mentioned scenario due to the possibility of mixing messages in any two or more
collective operation over the same communicator. This is especially true as the
messages may be fragmented, with a part of some message being matched incor-
rectly with a collective operation at a process. Listing 3.3 shows an erroneous
code snippet.

Listing 3.3: Erroneous code
if (threadID == 0)

MPI_Bcast (buffer , count , MPI_INT , 0, MPI_COMM_WORLD) ;
if (threadID == 1)

MPI_Bcast (buffer , count , MPI_INT , 0, MPI_COMM_WORLD) ;

Listing 3.3 shows two threads in the same process posting an identical broadcast
call over the communicator MPI_COMM_WORLD. Since a blocking call blocks
only the calling thread, the other threads are not affected by these calls and

41

all processes in the communicator have two threads waiting to receive messages
from process 0, which is the root in this operation. This communication fails
even though any of the threads i.e. threads having threadID 0 or 1 in the other
processes in MPI_COMM_WORLD can receive a message from threadID 0 or 1
of process 0. But there are reasons why this communication fails and hence should
not be allowed.

Considering an uneven fragmentation of messages in the event of a large message,
a thread may receive a message whose size does not equate to the buffer size
specified in the collective operation. The application fails due to a mismatch of
message sizes as MPI imposes strict matching of message sizes in case of collective
operations. MPI may try to succeed by creating a duplicate communicator for
one of the collective MPI_Bcast() calls analogous to separating the library com-
munication communication with user communication but doing so would again
require a collective operation on the same communicator which cannot be permit-
ted as it would lead to the same problem. In practice there are several algorithms
which are used in collective communication like message transfer based on binary
trees or binomial trees. If such algorithms are implemented then the intermediate
processes used to relay messages have no way of distinguishing between messages
coming from two different broadcasts (no tags being used in collective operations).
Hence, the MPI library disallows posting of any two or more collective operations
by different threads of the same OS process/MPI process (rank-less thread model).

3.5.2 Blocking collectives in a thread-as-rank model

The semantics of blocking collectives differ in a thread-as-rank model from that of
a rankless-thread model (described above) as the various threads/MPI processes
of an OS process are individually addressable by ranks. All the threads which are
part of a communicator must call the blocking collective operations in the same
order on that communicator. In case of intersecting communicators i.e. one or
more threads is common to two or more communicators, all blocking collectives
on all the communicators must be called in the same order on all the threads.
To illustrate possible thread-unsafe scenarios we assume two OS processes having
three MPI processes/threads each (shown in Figure 3.9).

42

	

0	
 1	
 2	
 3	
 4	
 5	
 RANK	

OS	
 PROCESS	
 OS	
 PROCESS	

0	
 1	
 2	
 1	
 0	
 2	
 THREAD	

ID	

Figure 3.9: Three threads/MPI Processes in two OS processes

To show the disparity between the rankless-thread model (process model) and the
thread-as-rank model, assume that a communicator Comm0 contains all the the
MPI processes. In the process model each MPI process is assumed to correspond to
a single OS process and hence the communicator Comm0 has two MPI processes
ranked 0 and 1 whereas in a thread-as-rank model the communicator Comm0
contains six MPI processes/threads ranked from 0 to 5, which in turn are contained
in two OS processes. The following code snippet is a valid snippet under the
process model but not under the thread-as-rank model.

Listing 3.4: Deadlocked code
if(ThreadID == 0)

MPI_Alltoall (sbuf ,cnt1 , MPI_INTEGER ,rbuf ,cnt1 , MPI_INTEGER ,Comm0);

The reason is that in the process model this code snippet results in each thread
of an OS process calling an MPI_Alltoall() collective operation which in effect is
equivalent to both the processes participating in the same collective call over the
same communicator. In the thread-as-rank model, all ranked threads must call
the same collective operation in the same order on the same communicator but
a threadID of 0 corresponds to threads ranked 0 and 3 only and hence threads
1,2,4 and 5 do not participate in the collective operation. Since not all MPI
processes in Comm0 call the execute the collective operation, this code deadlocks
in a thread-as-rank model.

It is not necessary that a scenario that is successful in a process model always fails
in a thread-as-rank model or vice-versa. As an example the following outlines a
scenario which fails in both the models. Assume that a communicator Comm1
contains both the processes for the process based model and contains threads with
ranks 0, 1, 3 and 4 for the thread-as-rank model. Posting the following operations
would lead to a dead-lock as MPI disallows any two threads of the same OS

43

process posting any two or more collective operations on the same communicator
concurrently. This is shown in Listing 3.5.

Listing 3.5: Erroneous/Deadlocked code
if(ThreadID == 0)

MPI_Alltoall (sbuf ,cnt1 , MPI_INTEGER ,rbuf ,cnt1 , MPI_INTEGER ,Comm1);
if(ThreadID == 1)

MPI_Allreduce (sbuf2 , rbuf2 , cnt2 , MPI_INTEGER , MPI_AND , Comm1);

Clearly, in a process based model, two threads in the same OS/MPI process call-
ing different collectives are not allowed by the MPI standard (see section 3.5.1).
Further, in a thread-as-rank model, not posting/executing the same collective on
all the threads/MPI processes of the same communicator causes a deadlock. In
general, a conclusion can be drawn that blocking collectives on all communicators
must be called in the same order on every MPI process in the communicator in
the thread-as-rank model. We conclude that there is no possibility of creation of
an algorithm which can solve the fundamental problems described above until and
unless the semantics of the blocking operations are changed.

It is also possible for a set of MPI processes to deadlock when a cycle is formed by
calling collectives on different communicators that have at least one MPI process
common to them i.e. the communicators are intersecting. As an example, consider
three communicators consisting of two threads each defined as C0 ={0,1}, C1 =
{1,2}, and C2 = {2,0}. The following code snippet will deadlock.

Listing 3.6: Deadlocked code
if(rank == 0)

MPI_Alltoall (sbuf ,cnt1 , MPI_INTEGER ,rbuf ,cnt1 , MPI_INTEGER ,C0);
if(rank == 1)

MPI_Allreduce (sbuf2 , rbuf2 , cnt2 , MPI_INTEGER , MPI_AND , C1);
if(rank == 2)

MPI_Bcast (sbuf3 , cnt3 , MPI_INTEGER , 2, C2);

The code in Listing 3.6 produces a cycle in which thread 1 is waiting for thread
2 to finish which in turn is waiting for thread 3 to finish which in turn is waiting
for thread 1 to finish. This is illustrated in Figure 3.10. Even if an algorithm
detects blocking calls on intersecting communicators, no corrective action can be
taken as the needed (correct) collective calls cannot be automatically inserted
by the algorithm. Thus, the only way that application level thread safety can
be maintained here is that the programmer must follow correct rules for placing
blocking calls on same or distinct communicators. Such programs if created can
be said to be completely erroneous as they surely deadlock or produce a certain
error for any possible permutation of thread-schedules (see section 2.6).

44

	
 0	
 1	
 2	
 Rank	

Figure 3.10: A cycle created by collective calls on intersecting communicators

3.5.3 Non-blocking collective semantics in a thread-as-rank
model

The behavior of non-blocking collectives is very similar to their behavior on thread-
as-rankless model/process model in the sense that the order of non-blocking collec-
tives on a particular communicator must be preserved. For example the following
code snippet indicates a valid piece of code if applied to Figure 3.9 where the
communicator C0 and C1 are defined as consisting of threads ranked 0 to 5 i.e.
C0 = C1 = {0,1,2,3,4,5}.

Listing 3.7: Valid code
if(rank == 0 || rank == 1 || rank == 2)
{

MPI_Ialltoall (sbuf ,cnt1 , MPI_INTEGER ,rbuf ,cnt1 , MPI_INTEGER ,C0);
MPI_Iallreduce (sbuf2 , rbuf2 , cnt2 , MPI_INTEGER , MPI_AND , C1);

}
if(rank == 3 || rank == 4 || rank == 5)
{

MPI_Iallreduce (sbuf2 , rbuf2 , cnt2 , MPI_INTEGER , MPI_AND , C1);
MPI_Ialltoall (sbuf ,cnt1 , MPI_INTEGER ,rbuf ,cnt1 , MPI_INTEGER ,C0);

}

The order of non-collectives must be preserved per communicator as it is possible
to have two same collectives having identical signatures being called one after
the other and hence would become impossible to distinguish between them if the
order preservation condition is taken away unless some form of tags are used. The
current MPI specification [1] does not specify the use of tags with collectives. A

45

future MPI specification might remove the constraint of maintaining the order on
non-blocking collectives but the relaxation must be weighed against the potential
benefits of this modification.

3.6 Dynamic rank assignment to threads in a
thread-as-rank model

Threads in threading libraries like Pthreads, OpenMP etc. are capable of spawning
threads. For example, the pthread_create() function can be used by any previously
created thread to create more threads and a parallel region within a parallel region
leads to the creation of threads by threads in OpenMP. In the following discussion
when threads are created for the first time, we refer to them as the first-level
threads. When the first-level threads create other threads, they are addressed as
second-level threads. The threads which are created by the second-level threads are
in general called nth-level threads. For example, the number of threads which are
specified with the help of OMP_NUM_THREADS environment variable before
the launch of a hybrid application are first level threads. These threads can spawn
more threads (second level) within the application code by using another parallel
region within a parallel region i.e. using #pragma omp parallel.

3.6.1 Dynamic process management in MPI

MPI currently provides a detailed specification of the creation and management of
processes created dynamically. Due to applications in which processes need to be
created dynamically [13], for example, servers creating separate processes to cater
to client requests, server task farms etc., MPI has provided several functions for
dynamic process creation and management. The function MPI_Comm_spawn()
creates an intercommunicator connecting two groups, the spawning process group
(local group) and the spawned process group (remote group). It is a collective
operation over the parents i.e. the spawning process group and also with respect
to the calls of MPI_Init() function in the processes that are created. The new
processes reside in a different MPI_COMM_WORLD i.e. the communicator con-
taining the parent and the communicator containing the spawned children/child
is different. An inference of the previous discussion is that the size of the par-
ent communicator does not change. For a collective operation to be effective on
both the communicators, it would require two different calls - one for the par-
ent intracommunicator and the other for the newly created intercommunicator.
The remote group of processes and the local group can be merged into one intra-
communicator using MPI_Intercomm_merge() and hence, take advantage of the
collective operations. But this newly created intracommunicator is still different
from the parent’s original intracommunicator.

46

3.6.2 Assigning ranks to threads with endpoints

The concept of endpoints is an attempt to assign ranks to various threads in the OS
process in a process-based model so that the threads can communicate indepen-
dently of the process interface. The problem lies in a limited set of endpoints being
distributed to an OS process. If there are a large number of threads contending
for a rank from a small set of endpoints, the delay in obtaining a rank can be non-
deterministic and possibly cause starvation8. Further, it is only when the request
for ranks is issued at application launch time that the granted ranks for threads be-
come part of MPI_COMM_WORLD. At the time of initialization (irrespective of
a static or dynamic interface) the ranks are a part of MPI_COMM_ENDPOINTS.
This is not intuitive as the threads now communicate over a separate communi-
cator and cannot be attached to the parent communicator. It is unclear as to
what happens when a thread in a particular process, which has attached itself to
an endpoint, accidentally addresses a rank which is not attached to a thread in
some other OS process. The threads may create other threads which would need
ranks again but this problem is not addressed in the endpoints proposal [18] (not
incorporated in MPI 3.0 standard [1]) and possibly the only solution is to request
another set of ranks or use the existing ranks and thus increase the contention.

3.6.3 Management of second-level threads by McMPI

McMPI [9], a rank based implementation of threads, does not allocate ranks to
second-level threads and assigns the responsibility to the parent thread to com-
municate on behalf of these second-level threads. Hence, effectively in McMPI if
a thread creates other threads, the thread support level of these set of threads
becomes MPI_THREAD_FUNNELED as all the requests of the second-level
threads are channeled through their first level parent. Implementations like TMPI
[7] do not support dynamic thread creation of the second-level.

3.6.4 Dynamic assignment of ranks using manager pro-
cesses

We propose a solution to the problem of dynamic assignment of ranks from second-
level to nth-level threads by uniformly dividing the rank-space in non-intersecting
intervals among hidden manager processes. When multiple threads spawn multiple
threads, it must be made sure that each of them gets a unique rank and hence it
requires serialization of accesses to the rank database. Further, it can be shown
that there is no necessity of creating an intercommunicator of the newly created

8A thread which wants to communicate is always denied a rank by a competing thread. The
term has its origin in scheduling of OS processes where a lower priority process in priority based
scheduling is denied CPU time by higher priority threads.

47

MPI processes/threads and they can become a part of the existing communicator
of the parent (except for MPI_COMM_SELF). The architecture of the scheme is
shown in Figure 3.11.

	

[A,	
 B)	
 [B,	
 C)	
 [C,	
 D)	
 [D,	
 E]	

HIDDEN	
 MANAGER	
 PROCESSES	

OS	

PROCESS	

OS	

PROCESS	

0	
 1	
 2	
 3	
 4	
 5	

6	
 7432	

MPI_Barrier	

MPI_Comm_thread_spawn()	

MPI_Init	
 MPI_Init	

Rank	

request	

Rank	

request	

Figure 3.11: Assignment of ranks to second-level threads by manager processes

The manager processes start as soon as the application is launched and are not
accessible/visible by/to the user. Assuming a rank space being represented by a 64
bit unsigned integer, each manager process keeps a particular range of ranks. For
example Figure 3.11 shows four manager processes and each contains 264

22 distinct
ranks forming a continuous interval of unsigned integer values. The manager
processes can communicate with each other in case a request for a rank arrives at
a manager process which has run out of ranks. Such a communication is analogous
to a primary DNS server forwarding a request to a secondary server for a name
resolution.

At the implementation level each rank can be represented by the position of a
bit in an array and the value of the bit specifies whether a particular rank has
been allocated or not. For increasing the concurrency these arrays can further
be divided so that locks of finer granularity can be applied to parts of the array
and multiple requests can be processed simultaneously. The implementation must
lock the sub-part of the particular array while searching for a rank for a newly
created thread. Not acquiring the lock can possibly result in returning the same
rank to two threads and hence making the rank distribution thread-unsafe. An
implementation can choose to dynamically tune the number of manager processes
depending on the number of threads which are initially spawned (in the thread-

48

as-rank model) at the application launch time. Figure 3.11 shows ranges of ranks
in the form of a closed-open/open-closed/closed-closed non-intersecting intervals
[X,Y)/(X,Y]/[X,Y].

The policy for assignment of ranks to threads remains uniform for first-level or
second-level threads. Each spawned thread calls the MPI_Init() function (more
specifically the MPI_Init_thread() function) which establishes a TCP connection
with any manager process to request a rank (or alternatively a single UDP9 request
packet to speed up the process). The manager process returns a free rank or
communicates with other manager processes (if it does not have a free rank) to
obtain a rank and forward it to the thread.

A key decision is to choose a communicator for the newly ranked-thread. The
most intuitive choice is to place the thread in the intracommunicator of the par-
ent so that the need for merging any intercommunicators can be avoided and
we can immediately start taking advantage of collective communications. The
problem is that there could be other threads performing point-to-point/collective
or other operations on the same communicator. A possible solution is to use
a synchronizing barrier i.e. MPI_Barrier() on the parent thread’s intracommu-
nicator and let all the threads/MPI processes belonging to the communicator
finish all operations on that communicator. This is followed by a call to a col-
lective function MPI_Comm_thread_spawn() (hypothetical function - MPI does
not have a function to create threads) from the root/parent thread and increment
the size of communicator atomically by the number of new threads which are
spawned. The collective communication ensures that each thread knows the new
size of the communicator as soon as it returns from the blocking collective call
MPI_Comm_thread_spawn(). A possible syntax for this call could be:

int MPI_Comm_thread_spawn(MPI_Comm comm, int numthreads, int root_rank)

The first argument specifies the communicator of the parent thread and it can
have several values depending on which communicators the parent thread be-
longs to. If the value is MPI_COMM_SELF, then logically the size of the
MPI_COMM_SELF should increase for this thread. Clearly, this would take
away the meaning of MPI_COMM_SELF and hence the implementation can
prohibit this particular value of the communicator. The second argument gives
the number of threads which are to be spawned. The third argument is signifi-
cant only at the root and gives the rank of the thread creating the second-level
threads. It allows an implementation to maintain a hierarchical relation between
threads. The biggest advantage is that the newly created threads belong to one of
the communicators that the parent thread belongs to and can immediately start
participating in collective communication. The choice of calling the MPI_Init()
function within the function MPI_Comm_thread_spawn() as the last statement
and incorporating a barrier after MPI_Comm_thread_spawn() would ensure that

9User Datagram Protocol (UDP) is an unreliable, connection-less, message oriented protocol
in the third layer of the TCP/IP protocol stack.

49

all threads become aware of the new size of the communicator before they start
any operations.

3.6.5 Problem of hardware resources in dynamic threading

When an application is launched on HPC machines, it usually reserves the num-
ber of cores, the time for which it will run, the number of processes that will
be spawned or the distribution of processes and threads. Creating a thread dy-
namically would ideally create a need for new resources like a CPU core, memory
resources, coordination with the operating system and possibly a restructuring of
the topology. A possible method of addressing this problem is to estimate the
resources in advance and overbook the resources in case the application needs to
create threads and may need additional resources.

3.7 One-sided communication

A Remote Memory Operation (RMO) allows one process to directly access the
memory of another process and accomplish data transfer without the remote pro-
cess invoking any exclusive routines. It is analogous to the concept of Direct
Memory Access (DMA) where an external processor can directly write into the
memory of another processor, without the intervention of the second processor.
The Bulk Synchronous Parallel10 (BSP) style of programming also uses remote
memory operations for communication with other processes. RMO can achieve
greater performance as opposed to the pure Message Passing Model (MPS) in
certain applications but requires special support from hardware. For example,
commercial systems like the Cray T3D and Cray T3E used fast hardware support
for RMO and an interface called shmem [30] (shared memory). The RMO model
is different from shared memory programming model where simple variable names
are used for referencing any memory address in a shared memory address space
accessible to all threads of execution (of an OS process) [13].

Typically, remote memory operations are called Remote Memory Access (RMA)
or One-sided Communication in MPI, as a single routine (usually) is equivalent
to two routines in a pure message passing model. A typical RMA has three steps.

1. Defining a memory window: This defines a local contiguous memory of
a process that will be used for RMA. This creates a new MPI object of type
MPI_Win. The window object has the same role as that of a communicator
in the message passing model. This operation is similar to declaring dynamic

10A model of programming where the computation and communication sections are separated
by using barriers. Remote memory operations are used to get and put the data. Since the
completion of communication and computation is handled by a single blocking barrier, these are
called "bulk synchronous" [13].

50

memory in shmem as opposed to the usual approach of using statically allo-
cated memory variables which are guaranteed to have the same address on
each process (ensured by the Cray compiler and loader).

2. Moving the data: by specifying details of the sender and the receiver.
The MPI RMA routines used for this purpose are: MPI_Put(), MPI_Get()
and MPI_Accumulate(). The location in the remote memory window is a
combination of offset provided in the origin process and the displacement
unit specified in the target process.

3. Determining completion of data transfer: An MPI_Win_fence() op-
eration is like a blocking MPI_Barrier() which guarantees that all pend-
ing operations will complete before the process enters the barrier. In the
simplest model for ensuring data completion local writes to buffers in the
window should be separated by MPI_Win_fence() from any MPI_Put(),
MPI_Get() and MPI_Accumulate() operations as in the BSP model. This
method is called Active Target Synchronization (ATS) as the target pro-
cess (and all other processes that are part of the window object) must call
MPI_Win_fence() to complete the RMA calls. A second method for carry-
ing out ATS involves the origin process issuing a call to MPI_Win_start(),
followed by a MPI_Win_complete() and the target process synchronizes11

by issuing a MPI_Win_post(), followed by a call to MPI_Win_wait().

Passive Target Synchronization (PTS) makes use of MPI_Win_lock() and
MPI_Win_unlock() routines at the origin process to synchronize it with the
target process, without involving the other processes in the window object
group and without the target process calling any exclusive RMA routine.
For an atomic access a value of MPI_LOCK_EXCLUSIVE is used as op-
posed to MPI_LOCK_SHARED as an argument to MPI_Win_lock(). The
latter allows multiple RMA operations simultaneously on the same window
and the lock/unlock routines just imply completion of a RMA operation at
the origin process. With MPI_LOCK_SHARED, the application developer
must ensure that there are no conflicting concurrent operations modifying
the same or overlapping parts of the window (see Figure 3.12). Implemen-
tations are allowed to restrict the use of PTS with a window allocated with
MPI_Alloc_mem() routine which has the same function as malloc(). This
particular memory is freed with MPI_Free_mem().

3.7.1 Memory coherency with RMA

In general local operations and RMA operations can be conflicting. For example,
if a local load operation on window is not separated from an MPI_Put() being
carried out by a process on this window, it might produce a non-deterministic

11RMA operations between the starting synchronization call and the completing synchroniza-
tion call are said to constitute an epoch.

51

result. Local load and store operations are not guaranteed to be atomic and
hence a partial load and a partial MPI_Put() will produce an erroneous value of
a variable (except for data being accessed atomically).

!"#$%&'()*+* !"#$%&'()*,* -()./'0&*
123425&* 123425&61234700585/%/(%96:&($#* ;#:*
1234<#&* 123425&61234700585/%:&($#* ;#:*

1234700585/%&#* 123425&61234700585/%/(%96:&($#* ;#:*
=&($#** 123425&61234700585/%<#&* ;#:*
>(%9* 123425&61234700585/%&#* ;#:*
>(%9* 1234<#&* ?(*

!
Figure 3.12: Conflicting vs. non-conflicting RMA operations

As can be seen from Figure 3.12, only one combination of operations i.e. an
MPI_Get() and a local load are non-conflicting. These operations are conflicting
independently of the presence of multiple threads because a particular window
could be the target for two or more remote processes. Hence using the simplest
approach of the BSP model, the conflicting operations must be separated by an
MPI_Win_fence() barrier. We do not consider conflicting load-load operations
in the same window (this requires multiple threads) here as they do not involve
any RMA operation.

3.7.2 Thread-Safety semantics of RMA operations in the
thread-as-rank model

We first consider the ATS method of performing RMA operations using the syn-
chronization forced by MPI_Win_fence() and assume the BSP model of program-
ming. MPI_Win_fence() is a collective operation over the entire set of ranked
threads that are a part of the communicator over which it is called. We suggest
and explore two methods to ensure thread-safety.

The application of the first method demands that no thread in the origin OS
process apart from the thread issuing the RMA call or any other thread in any OS
process which is part of the communicator, should perform any RMA operation
on the window which is being accessed by the origin thread, between the two calls
to MPI_Win_fence(). Secondly, no thread of the target OS process can perform
any local store/load operation. The second condition is accounted for in the BSP
model of programming where local computation and RMA operations cannot be
interspersed in the same epoch. Trivially, the second condition also implies that no
local load/store operation can be done by any thread on the local window, as the
either the data is being written or being read from the local window. Figure 3.13
shows illustrates the first method using three OS processes each of which contains

52

three ranked MPI processes/threads. The origin thread performs RMA operations
on the window in the target OS process. As can be seen from Figure 3.13, the
other threads perform a “no operation (nop)” which is practically equivalent to
having an empty code block. Although this is thread-safe, it deteriorates the
performance as the remaining threads (except for the origin thread) do not perform
any useful computation. Further, several threads can participate in the operation
MPI_Accumulate() with the usual restrictions as illustrated in Figure 3.12.

	

MPI_Win_fence	

MPI_Win_fence	

MPI_Win_fence	

MPI_Win_fence	

MPI_Win_fence	

MPI_Win_fence	

Figure 3.13: Thread-Safety with ATS using MPI_Win_fence() and empty epoch

The second approach we explore combines the ATS with the PTS model but
subtracts away the BSP model of programming. What this means in effect is that
now within an epoch initiated by MPI_Win_fence() operation, the origin thread
can perform RMA operations while the other threads can perform non-conflicting
MPI or non-MPI operations. We proceed to enumerate the salient points in this
hybrid strategy.

1. The origin thread calls MPI_Win_lock() with MPI_LOCK_EXCLUSIVE
on the local window followed by MPI_Win_fence() which in turn is fol-
lowed by a MPI_Win_lock() on the remote OS process window. This en-
sures no thread in the OS process in which the origin thread resides per-
forms any load/store on the local window as it is locked. Instead of calling
MPI_Win_lock() on the local window, the origin thread can also acquire a
per-object or global lock on the window-objects/window. The idea is that
none of the other threads should be able to access the window during the

53

epoch, neither for reading or loading (conflicts with MPI_Get()) nor for
writing or storing (conflicts with MPI_Get() and MPI_Put()).

2. The other threads in the OS process which contain the origin thread can
perform any local computation using local non-window resources or RMA
operations on any OS process window but they must obtain an exclusive lock.
They can even request an exclusive lock on the target OS process which is
currently being manipulated which, needless to say would be serialized.

3. The threads of the target OS process must not perform any operation in an
epoch bounded by MPI_Win_fence(). To ensure this one and only one of
the threads must obtain a per-object lock on all the objects in the window.
This would ensure that an RMA operation can proceed but not a local load
or store operation on the window objects. The locks can be released before
the epoch finishes.

	

1.	
 Lock(local)	

3.	
 Lock(target)	

4.	
 RMA	

5.	
 Unlock(target)	

7.	
 Unlock(local)	

MPI_Win_fence	

MPI_Win_fence	

2.	
 MPI_Win_fence	

6.	
 MPI_Win_fence	

2.	
 MPI_Win_fence	

6.	
 MPI_Win_fence	

1.	
 Lock(local)	

3.	
 Lock(target)	

4.	
 RMA	

5.	
 Unlock(target)	

7.	
 Unlock(local)	

Compute	

Compute	

Lock(per-­‐object)	

Unlock(per-­‐object)	

Figure 3.14: Thread-Safety with ATS-PTS using MPI_Win_fence() and non-
empty epoch

Figure 3.14 shows the second method of making RMA thread-safe. The order of
operations, wherever relevant (and complex), is indicated by numbers preceding
the operation. The dotted lines show an operation which is not currently active.

A thread-safe scheme for a completely Passive Target Synchronization (PTS)
method of RMA should also be devised. However, due to its expected complexity,
it is not being explored due to limited time and to limit the scope of the project
but has been added to the future work.

54

Chapter 4

Quantitative analysis

The two main types of computational complexities used in the analysis of algo-
rithms are (1) Space and (2) Time complexity. The latter of the two i.e. time
complexity enjoys a wider attention in literature as the space complexity is of
diminishing importance due to a steady increase in the working memory. Hence,
an increase in the memory footprint of an application is becoming more and more
acceptable. The space complexity can be defined as the number and size of objects
used in the solution used to resolve contention and restrict access to the critical
section. Time complexities are calculated with regard to a hypothetical machine
where the time taken to execute an operation is assumed to be O(1) (read as
‘Big Oh’ of 1) for a single comparison, assignment, evaluation and other types of
operations. The aim is to quantify the the worst case or the average performance
in terms of the number of influencing entities, for example, like the number of keys
in a sorting algorithm.

An additional measure of complexity related to the number of lines of code used in
software projects is Lines of Code (LOC) which only brings to light the increase in
the source code size of a particular piece of code. This is misleading in terms of the
resources which are devoted to running the piece of code which certainly have an
impact on the scalability, performance and load on the system. Examples in such
classes include recursive algorithms which incur a heavy cost of computation and
resource allocation on the system stack as opposed to their iterative counter-parts
whose LOC might far exceed the former.

In algorithms which use locks, atomic lock-free operations or a combination of
these, two cases are of particular interest: deadlock freedom and starvation free-
dom. The latter is stronger than the former and implies that all the threads
trying to enter their critical section will eventually enter their critical section. A
critical section is piece of code/pseudo-code which can only be executed by only
one thread at a time. An algorithm is supposedly fast if in the absence of con-
tention the critical section can be entered in a constant amount of time [24]. The
contention-free time complexity is not always O(1) for all implementations, as is

55

mostly the case in lock-free algorithms and certain lock-based algorithms. For
example, the contention-free time complexity in our thread-safe MPI_Info() al-
gorithm Algorithm 3.1 is O(1). But for the lock-free algorithm using malloc() i.e.
Algorithm 3.3, the complexity depends on the number of elements to be traversed
in the shared array Q and hence is certainly not constant-time (O(1)) when the
number of elements start growing.

4.1 Complexity analysis of thread-safety algo-
rithm for MPI_Info

The space complexity of Algorithm 3.1 which solves the mutual contention be-
tween threads to grant access to a single thread using a lock based approach is
proportional to the total number of shared locks of type lock_t used for every
shared MPI_Info object. Hence, the total space complexity is equal to the size
occupied by the total number of lock objects created. The computation of this
complexity is both trivial and computationally unintensive.

To compute the worst case time complexity when threads compete against one
another to acquire the lock, we assume n as the total number of threads in an SMP
and k shared objects of type MPI_Info. Clearly the total number of lock objects
is nL = k. We further assume that the total number of operations is of the order of
O(p) for some finite positive integer p and the time taken to perform each of these
operations is O(1). These assumptions are valid as the implementation limits the
number of keys which can be set for an MPI_Info object and further, setting the
value for these keys, querying the value of a key, finding the N th key etc. can be
done in a very small constant amount of time. For a calculation on a real system,
these values can be replaced with the actual system time the implementation uses.
In general these assumptions are sufficient for calculating the time complexity on
a hypothetical machine running on a homogeneous architecture.

In the worst case scenario, all the threads i.e. n are competing to acquire a lock
to manipulate a particular object. The total time for performing these operations
by a thread can be divided into two parts:

1. Time spent in waiting before the lock is acquired (Twait)

2. Time spent in performing the actual manipulation (Twork).

In general the upper bound on the waiting time for each thread is Twait = O(np)
i.e. no thread waits for a time longer than the product of maximum number of
operations and the maximum number of threads in the SMP. For a detailed upper
bound calculation and a precise total waiting time, the following can be noted
regarding the waiting times (Twait) and working times (Twork) of threads:

1st thread: Twait = 0 and Twork = p
2nd thread: Twait = p and Twork = p

56

3rd thread: Twait = 2p and Twork = p
.
.
nth thread: Twait = (n− 1)p and Twork = p

Summing up the various values of Twait and Twork, the total time for all the threads
(Ttotal) can be written as:

Ttotal = n(n− 1)p
2 + p (4.1)

The second term in the equation above is not np i.e Ttotal 6= Twait + Twork exactly
as depicted above because while a thread is performing p operations, the other
threads are waiting for this interval of time. Hence the waiting time of a thread and
operating time of another thread overlap and hence should correctly contribute
only p to the total time and not 2p. The average taken over the total number of
threads i.e. n gives us the average time taken by any/one thread to perform the
operation presented in Equation 4.2.

Taverage = (n− 1)p
2 + p

n
(4.2)

For the case when there is only one thread performing the operation, this time
reduces to Ω(p) for the lower bound and O(p) for the upper bound. This is correct
as a single thread takes O(1) time to acquire the lock and performs p operations.
Clearly, from the above analysis the worst case total time (Ttotal) is bounded by
O(n2p) when n >> p (in Equation 4.1).

A more realistic/practical case would not have all the threads n competing for the
same operation at the same time and hence would in-turn reduce the contention at
any other instance of MPI_Info by spinning on the lock on the previous instance
of MPI_Info. Further, if the kth thread frees the MPI_Info object, the remaining
n−k threads would just query the function IsExists() inO(1) time and not perform
any operation. The total time Ttotal in this case becomes (k−1)p+1+(n−k) as the
last n− k threads acquire the lock and perform operations in O(1) time. Clearly,
when k = 1 i.e. the first thread frees the MPI_Info object and the expression is
bounded below (tight lower bound) by Ω(n).

4.2 Analysis of thread-safe algorithms for mal-
loc()

To analyze the non-blocking and wait-free thread-safe algorithm for malloc() i.e.
Algorithm 3.3, we assume that for each call of malloc() there are n threads which
participate in that call. At each of these calls the participating threads are divided

57

into k classes denoted by si such that each class si, where 1 ≤ i ≤ k has an equal
number of threads and the address allocated to all the threads in class si is Ai i.e.
∀ threads t ∈ si, Address(t) = Ai. Hence, for classes si where i is from 1 to k the
following two properties hold.

k∑
i=1
|si| = |sn| (4.3)

In words, Equation 4.3 states that the sum of total number of threads from each
class is equal to the total number of threads participating in the malloc() call at
any specific point in time. The second property is as follows:

k⋃
i=1

si = sn (4.4)

Equation 4.4 implies that the union of all sets of threads gives back the original
set of threads participating in the malloc() call at any particular point in time.

We further assume, without any loss of generality, that the operation of the threads
is synchronous in the sense that for each class si, only one of the threads proceeds
after registering its address in the shared array Q and the others back-off and call
malloc() again. Synchronicity further implies that these threads wait for other
threads which have backed-off from other classes at malloc() and the function is
called by all the threads which have backed off together. These assumptions have
been taken to make the analysis more fluent and intuitive. A part of the time
taken is spent traversing the shared array Q and searching for the value of the
address which is assigned to a thread. If the address is found then the thread
backs-off, otherwise it continues its search and executes the CAS (Compare-and-
Swap) operation in order to register its address in the shared array. In the first
part of execution, k threads in total, one from each class si register themselves
and proceed. The remaining n − k threads call malloc() again. The number of
comparisons made by all threads in the ith class before and including the time
when one thread registers itself is given by:

n

k
[i(i+ 1)

2] + (n
k
− 1)i (4.5)

The first term n
k
in Equation 4.5 gives the number of threads in partition class si

and is same for all the classes as mentioned above. Each of threads traverses until
the ith position in the array as the previous i − 1 positions are occupied by the
addresses assigned to the other threads from the first i − 1 classes. Finding the
ith position empty, the threads execute the CAS instruction and after one of them
succeeds - it registers itself in the ith position. The remaining threads in this class
then take one more iteration and traverse until the ith position to find out that

58

their address has already been taken and hence back-off. These two comparison
cycles are taken into account by the terms i(i+1)

2 and n
k
−1 in Equation 4.5. Clearly,

the total number of comparisons to assign addresses to the first k positions in the
shared array Q by one thread each from class si is then given by Equation 4.6.

k∑
i=1

n

k
[i(i+ 1)

2] + (n
k
− 1)i (4.6)

After the first collective/parallel execution of malloc(), k threads are successfully
assigned memory and the remaining n− k threads must call the function again in
search of a different address. Equation 4.7 expresses the condition that holds just
before the next set of k threads are assigned memory.

k∑
i=1
|si| = n− k. (4.7)

These threads are again partitioned into k classes with each class having a total of
n−k

k
threads each. Repeating the same procedure again, the thread in the ith class

occupies a position at the (k+ i)th index. Hence the total number of comparisons
performed in order to register k addresses in the shared array, one from each class
si where 1 ≤ i ≤ k and |si| = n−k

k
is given by Equation 4.8.

k∑
i=1

(n− k)
k

[ik + i(i+ 1)
2] + [(n− k)

k
− 1](k + i) (4.8)

∃ x ≥ 0 and x ∈ I+, denoting the number of sets of k threads each such that
n−xk

k
= 1, which after solving gives the value of x as:

x = n− k
k

(4.9)

Clearly, after x sets of execution of malloc(), |si| = 1 and hence only k threads
remains having a different address Ai, each of which needs to register in Q and
thus complete the assignment of different addresses to all threads. Hence, the
total cost in terms of comparisons in the shared array Q is given by the following:

ć =
(n−k)

k∑
x=0

k∑
i=1

(n− xk)
k

[xki+ i(i+ 1)
2]+[(n− xk)

k
−1](xk+i)+

k∑
i=1

(n−k)i+ i(i+ 1)
2

(4.10)

In Equation 4.10, the first (double summation) term accounts for the comparisons
taking place until and including the x sets of k threads each and the second term

59

(single summation) sums the number of comparisons in k sets having one thread
each. Equation 4.10 only gives the cost of comparisons.

The total cost of memory assignment must also include the number of times mal-
loc() is executed. Assuming that the order of execution time ofmalloc() isO(p) i.e.
the function malloc() is assumed to be made up of p operations each of which takes
approximately O(1) amount of time, the following is the total cost of executing
malloc():

np+(n−k)p+(n−2k)p+...+(n−xk)p+kp = p[nx−k(1+2+3+...+x)+k] (4.11)

which on solving and substituting x = (n−k)
k

from 4.9 gives the total cost as:

Tmalloc = p[n(n− k)
2k + k] (4.12)

In practice, it is desirable to have a large value of k ≈ n, indicating a high
level of non-conflicting concurrency and reducing the number of times malloc()
is executed due to an increased number of threads which back-off. Hence, it is
important to realize the level of contention formalloc() in the application though it
it unpredictable due the non-deterministic thread-schedules. This helps to decide
whether one should incorporate a wait-free non-blocking malloc() strategy, as this
implementation is not only complex but may back-fire due to the number of CAS
based comparison operations which add towards the total execution time.

In general, any atomic instruction would employ locks at the hardware level which
incurs some additional cost as compared to a simple comparison operation and
also limits the number of non-competing threads which can register their addresses
into the shared array Q. An improvement over this algorithm would be to alternate
the entry of threads of each of these sets from the rear and front of the shared
array Q and maintain two entry-point indexes. This would lead to an increase
in the concurrency as two CAS operations can be carried out successfully on two
different indexes and thus, two registrations of addresses in the shared array Q
can be made at the simultaneously.

Algorithm 3.2 which uses a global lock for serializing the calls to malloc() can be
a worthy competitor of Algorithm 3.3 if the value of k assumed in calculations
above is not large enough. Further, the global lock approach is easy to implement,
reducing the burden of the application developer to a few lines of source code.
Assuming n threads and the order of operations in malloc() to be O(p), the total
complexity of the global approach is given by the sum of wait times of n threads
and the time taken by the last thread to execute malloc(), as depicted by Equation
4.13.

60

Ttotal = (n−1)p+(n−2)p+(n−3)p+ ...(n−(n−1))p+p = n(n− 1)p
2 +p (4.13)

Equation 4.13 is clearly of the order of O(n2p).

Let T (n) denote the time taken to solve a problem of size n, which in this case
is the time taken to allocate memory to n threads. The time complexity of non-
blocking and wait-free malloc() can also be expressed as:

T (n) = T (n− k) +O(p) + c1 (4.14)

where T (n) is the total cost of allocating memory to n threads in terms of time,
T (n − k) is the problem size after k threads have been successfully allocated
memory, O(p) is the cost of executing malloc() and c1 is the total number of
comparisons done in the shared array Q in the process of allocating memory to
the first k threads in Equation 4.14. Expanding this expression gives:

T (n) = T (n− k) +O(p) + c1

= T (n− 2k) + 2O(p) + c1 + c2 = ...

= T (n− xk) + xO(p) + c1 + c2 + ...+ cx

(4.15)

where x−nk = k at the beginning of the (x+ 1)th iteration indicating that only k
threads remain to be allocated memory. Clearly, from Equation 4.9 x = n−k

k
and

the expression in Equation 4.15 is equivalent to T (n) = T (k) + (n−k
k

)O(p) + c1 +
c2 + ... + cx. T (k) is the time taken to assign memory to the last set of threads
and T (k) can be solved in O(p) + cx+1 time or more precisely (substituting the
value of x) in O(p) + cn

k
amount of time. Also, the sum c1 + c2 + c3 + ... + cn

k
is

nothing but ć in Equation 4.10. Hence, T (n) can be precisely expressed as:

T (n) = n

k
O(p) + ć (4.16)

which is of the order of O(np/k) if ć is negligible. In the best possible case
k = n and hence T (n) = O(p) + ć, which clearly shows that in the case when
malloc() assigns diffrent memory locations to all the threads executing malloc()
concurrently, the operation is perfectly parallel and uses only O(p) time. The
analysis shows that there a gain of factor of O(n/k) over the global malloc()
scheme which is of the order O(n2p). For an exact comparison, the value of ć
should be computed precisely. The same mathematical treatment can be applied
to Algorithm 3.4 which uses the Exponential Back-Off policy to generate a random
time interval which causes threads to arrive at different times at malloc() after
backing-off. Analysis of Algorithm 3.4 is deliberately being avoided here to avoid
unnecessary repetition and to limit the scope of the project.

61

4.3 Time complexity of free() compatible with
non-blocking and wait-free malloc()

Algorithm 3.5 first nullifies the value in the global shared arrayQ and then calls the
standard ANSI C function free() to deallocate the memory assigned to a thread.
The complexity of these operations should be dependent on the time taken to
search for an entry in the shared array Q and then the order of operations in
free().

Assuming ` = MAX_THREADS * MAX_MALLOC i.e. ` denotes the maximum
length of the array Q. Also, let MAX_THREADS = n and MAX_MALLOC =m.
In the worst case all the threads have called all the malloc() functions on their path
of execution and call free() at the end. Without any loss of generality, we assume
that thread 0 has all its entries in the first m = MAX_MALLOC positions (1st

block), thread 1 has all its entries in them = MAX_MALLOC positions in the 2nd

block and so on. The first thread must make (1 + 2 + 3 + ...+m) comparisons, the
second thread must make (m+1)+(m+2)+ ...+(m+m) comparisons and so on.
Clearly the nth thread must make ((n−1)m+1)+((n−1)m+2)+...+((n−1)m+m)
comparisons. In general the ith thread needs (i − 1)m2 + m(m+1)

2 comparisons.
Summing up the comparisons we get:

Tcomparisons = n(n− 1)
2 m2 + m(m+ 1)

2 = (n− 1)
2 `m+ m(m+ 1)

2 (4.17)

In addition to Tcomparisons as given in Equation 4.17, each thread calls the ANSI
C function which incurs a cost of Tfree = O(p) operations per thread and hence
the total cost of freeing all the chunks of memory is Ttotal = Tcomparisons + Tfree.

4.4 Analysis of shared buffer problem in point-
to-point communication

The analysis of Algorithm 3.6 can be divided into three logical parts, one each
for a Send, Receive and Write/Read problem. We first exhaustively derive the
time complexity for a non-local MPI_Send() operation and then logically argue
to show that the time complexity for an MPI_Recv() and Write() operation is
approximately the same. In all the parts we assume n̄ threads which participate
in that operation, where n̄ is less than the total number of threads n in the
SMP node. An approximation is taken here to ensure that there is a conflicting
operation which is not the same as the operation being analyzed. For example,
we cannot have n threads carrying out the local send operation as there would be
no thread which posts the receive operation.

62

Considering the case when n̄ threads want to perform a non-local send operation,
the Query() function takes O(1) time to execute as the rank can just be mapped
to an index in the Rank array and the value at that index returned as the re-
sult. Assuming that the order of operations in both MPI_Send() and Write() is
of the order of O(p), in the worst case all remaining n − n̄ threads contend to
perform a write operation and thus spin on the w_lock as well. In such a case if
the MPI_Send() operation is performed after the remaining threads perform the
Write() operation and keep performing this operation before any thread performs
the MPI_Send() operation, the Twait and Twork times of n̄ threads is the sum of
the following:

1st thread: Twait = (n− n̄)p and Twork = p
2nd thread: Twait = 2(n− n̄)p and Twork = p
.
.
n̄th thread: Twait = n̄(n− n̄)p and Twork = p
Summing up for all the n̄ threads we get the total time Ttotal as:

Ttotal = p(n− n̄) n̄(n̄+ 1)
2 + n̄(n̄− 1)p

2 + p (4.18)

Equation 4.18 clearly has a tight upper bound of O(p(n−n̄)n̄2). Further, it can be
verified by substituting n̄ = n that the total time taken by n threads to perform
MPI_Send() is of the order of O(n2p) as Ttotal reduces to n(n−1)p

2 +p. In the case of
a local MPI_Send() being attempted by n̄ threads, the time complexity is again
of the order of O(p(n− n̄)n̄2) as it can be logically argued that the remaining n− n̄
threads perform aWrite() operation first and then post an appropriate local receive
operation. In this argument based proof for time complexity we assume that the
send operation after performing O(p) operations releases the w_lock and allows
another thread to acquire the lock which is enough time for the receive operation
to complete. If we do not make this assumption then the time complexity of a
local send by n̄ threads increases by n̄p. The time complexity for an MPI_Recv()
and Write() operation can be similarly derived and expressed as in Equation 4.18.
In both the cases i.e. MPI_Recv() and Write(), we can assume that there are n−n̄
threads trying to perform a conflicting Write() or a local/non-local MPI_Send(),
respectively.

4.5 Abstract reference model for estimating the
complexity of thread-safe source code

We attempt to estimate the number of lines of code (LOC) in the source code
which will make a thread-unsafe code thread-safe. The motivation is to judge the

63

complexity of coding while making a code thread-safe. The model is abstract be-
cause the exact number of LOC would depend on the actual application, methods
for acquiring locks, usage of shared variables/data-structures and the total num-
ber of thread-unsafe scenarios. For building this model we assume the following
and give the reason for the assumption along with it.

1. Assumption: A lock-based approach will be used for with two basic oper-
ations of locking and unlocking an object/function. The declaration/initial-
ization of a variable of lock_t type will not be counted towards the lines of
source code. Further, the algorithms established in this project can be used
as the details of these are completely available in the project.
Reason: Lock based approach is simple and deterministic as compared to a
lock-free approach, which can be implemented in several ways. Using a lock
object automatically implies it has been declared/initialized.

2. Assumption: The performance factor is not taken into account i.e. code
optimization is not our aim.
Reason: To account for performance we again need to choose between
numerous lock-free approaches maximizing the concurrency or lock-based
approaches. Since the former is not being used, we cannot guarantee or
emphasize on performance of code.

3. Assumption: No reordering of code is permitted.
Reason: If code reordering is permitted then for example all malloc() calls
of a thread can be clubbed together and made thread-safe by using a single
lock. This is not possible for operations like MPI_Send() etc., and hence
not permitted.

4. Assumption: Some functions in the implementation are not thread-safe at
the implementation level.
Reason: The assumption is realistic as a function likeMPI_Buffer_attach()
is not thread-safe in MPICH2.

5. Assumption: The function calls are either point-to-point, collective, RMA,
functions which require dynamic allocation, completely-thread unsafe func-
tions or MPI functions which manipulate or read attribute values of an object
which can be freed.
Reason: The assumption has been made as the current project addresses
thread-safety scenarios related to the categories of functions mentioned above
only. Further, this is an approximation model and not an exact estimate.

We describe the model using a flow-chart like approach (but not exactly a flow-
chart due to a loose ordering of operations). The estimated lines of code for a
particular type of function can be calculated by going from the function type till
the end of flow. The following discussion is with reference to Figure 4.1 showing
the Abstract reference model.

64

Figure 4.1: Abstract reference model for calculating approximate LOC

There are six high level function types namely (1) Attribute Value (AV) (2) Mem-
ory Allocation (MA) (3) Point-to-Point (P2P) (4) Collective (C) (5) RMA (6)
Completely Thread-Unsafe (CTU).

The AV class consists of functions like MPI_Info_set() and MPI_Comm_size()
etc. that set the value of an attribute, query the value of a fixed attribute of
a hidden object etc. It becomes important ascertain whether the object or the
attribute being manipulated exists or not. This was elaborated in Algorithm 3.1.
The Lines of Code (LOC) marked along the arrows are estimated from Algorithm
3.1 and also can be inferred from the generalized flow-chart shown in Figure 3.3.
If the attribute is not dynamically added or created, then we can move directly
from the node marked “Object Existence” to the node marked as “End” (shown
by a dashed arrow).

The MA class caters to functions which call dynamic memory allocation func-
tions or simply allocating objects/variables dynamically. This specifically refers
to the C language function malloc(). There is a sub-category of functions which
call malloc() internally for e.g., MPI_Comm_create(), MPI_Comm_split() and
MPI_Bsend_init() etc. The global approach to locking as described in Algorithm
3.2 takes only 2 LOC and the non-blocking wait-free method takes about 18+5 =
23 LOC, including memory allocation and deallocation as described in Algorithm
3.3 and 3.5, respectively.

65

The P2P class can be taken care of by Algorithm 3.6 but there is subtle minor
scenario which should be taken care of. A simple buffer/user datatype being used
inside a point-to-point operation can be freed and hence calls for checking the exis-
tence of the object. This takes about 15 LOC for anMPI_Send() andMPI_Recv()
(separately). The point-to-point may further display an MPI_ANY_SOURCE
thread-unsafe scenario, which can be taken care of by pseudo-code shown in List-
ing 3.2 and takes approximately 3 LOC.

The C class can be made thread-safe by changing the order of collectives to get
the correct order, by removing multiple collectives on the same communicator by
multiple threads and hence takes 0 LOC. The only issue here is that if it is using
a dynamic object which can be freed, it must be tested for its existence and hence
the arrow going from C class to the node “Object Existence”.

The RMA class can be made thread-safe using the methods described in section
3.7.2 and Figures 3.13 and 3.14. The ATS (empty epoch 3.13) approach takes only
2 LOC and the ATS-PTS approach, which is more flexible takes about 8 LOC.
Further, a routine like MPI_Mem_alloc() which might have allocated memory to
the window objects would fall in the MA category. It is again important to check
for the existence of objects in the window and hence an arrow from nodes labeled
“ATS”, “ATS-PTS” to “Object Existence”.

The last class CTU has “some” function which is not thread-safe implementation-
wise and hence should be called by a single thread only. The lock approach yields
at least a LOC of 2.

66

Chapter 5

Conclusion

This chapter summarizes the project by giving an overall view of the various
investigations carried out and the ideas proposed in the current project. The
generalized conclusions which can be drawn from the study are summed up. The
summary is occasionally supplemented with a conclusion and thus fragments of
the latter can be found alongside the summarized work. Further, it ends with a
critical evaluation of the project and various ideas for future work.

5.1 Summary of the project

This project is a thought experiment which proposes and discusses some algorithms
for various scenarios requiring thread-safety due to MPI functions and attempts
to generalize them to make them applicable to a wide range of functions. Code
snippets have been used instead of pseudo-codes to highlight more details when a
proper algorithm does not suit the scenario. A brief summary of the project is as
follows:

An idea of the correctness of a program is constructed and proposed that math-
ematically defines a correct/partially correct/quasi-erroneous or a completely-
erroneous program. Shared resources like allocated buffers, objects defined by MPI
and their associated attributes or attribute values can be modified or freed/deleted
by threads and thus produce a thread-unsafe program if there are concurrent
conflicting operations being carried out by other threads simultaneously. The
MPI_Info object is used to illustrate a general category of scenarios requiring
thread-safety. A simple lock-based scheme is used to first query the object’s exis-
tence and then carry out any modification/updation/addition of any attribute or
value. The existence of an object and its attributes can be treated separately and
this is generalized into a sequence of operations and illustrated by a flow-chart.
A lock-based and lock-free approach to make malloc() thread-safe is explored.
Though the complexity of implementation of a non-blocking wait-free malloc() is

67

estimated to be much higher than the scheme using a global lock, the former is
expected to give higher performance as it exploits concurrency of non-conflicting
accesses.

MPI_Send() and MPI_Recv() are used to illustrate the shared buffer problem
when multiple threads in an SMP produce conflicts by writing, posting local/non-
localMPI_Send()/MPI_Recv() routines on shared buffers. An application thread-
unsafe scenario is created when MPI_ANY_SOURCE is used in MPI_Recv()
function and can be averted by the use of MPI_Probe() in an inefficient manner.
The semantics of blocking and non-blocking collective operations are discussed
using pseudo-codes. It is shown that it is not possible to rectify a thread-unsafe
blocking collective scenario due to a wrong permutation of calls being posted on
the same or intersecting communicators. Prevention is suggested as the best cure
for the same. A future specification of the MPI standard might remove the order
of calls on non-blocking collective operations using additional tag fields. Imple-
mentations are free to use an additional tag field as per the advice of the current
MPI 3.0 standard.

A thread-safe way of assigning ranks to threads spawned dynamically is presented
by using hidden manager processes and a hypothetical collective operation namely,
MPI_Comm_thread_spawn(), which adds the newly ranked thread to the com-
municator of the parent thread specified as an argument to the function. The
time complexities of various proposed algorithms are derived and analyzed which
serve as a basis for recommending lock-based or lock-free thread-safety solutions in
various scenarios. Two methods for making RMA operations thread-safe are pro-
posed. The first method uses a mutually agreed upon empty epoch surrounded by
two calls to MPI_Win_fence(), with only the origin MPI process/thread issuing
RMA calls. The second method uses a combination of Active Target Synchroniza-
tion (ATS) and Passive Target Synchronization (PTS) techniques to provide a
more flexible approach by letting the non-origin and non-target threads perform
independent computations and further, allowing them to issue RMA operations
on the target thread but protected by exclusive locks. An abstract reference model
for approximating the number of lines of code (LOC) for making a given source
code thread-safe is constructed.

5.2 Conclusions

We divide the conclusions into logical levels viz.: abstract or higher level conclu-
sions and specialized or lower level conclusions. The abstract conclusions empha-
size the importance of thread-safety as a whole and the specialized conclusions
concentrate on the what can be learnt from the specific scenarios discussed in this
project.

• Abstract conclusions: Several general/high-level conclusions can be drawn
from the project. The semantics of a thread-as-rank model are different from

68

the rank-less-thread model/process-model that is defined in the MPI spec-
ification. Thread-safety is a broad field and when applied to MPI, involves
resolving simultaneous conflicting MPI function calls by multiple threads by
using any lock-based/lock-free or a hybrid approach. It is a clear fact and in-
ference that a thread-unsafe program cannot be compared to its thread-safe
counterpart for performance purposes as there is no comparison between a
correct program and a non-deterministic erroneous program. It is not al-
ways possible that a program can be made thread-safe until the underlying
application logic is changed and hence in practice not all programs should
be made thread-safe. Thread-safety comes with a cost and implies that syn-
chronization among threads incurs additional overhead. In addition to the
application, the implementation should support thread-safe functions and
states. The MPI specification tries to minimize the global variables/states
and thus, in effect, tries to make the specification of functions thread-safe.
Due to the wide variety of functions and their interactions, it is not possible
to form an exhaustive set of rules for each and every function and hence func-
tions should be categorized into generic classes to investigate thread-safety
issues.

• Specialized conclusions: The following is a discussion pertaining to spe-
cialized or low-level conclusions. An object/attribute of an object which can
be freed or deleted, when used in an MPI function, must be checked for its
existence. This can be done by acquiring a per-object lock on that object to
guarantee atomic access. This is true for any MPI function being used by
any thread on a SMP. If the implementation of a function is thread-unsafe
then its use must be locked in addition to the per object lock for the shared
resources being used by it. Non-re-entrant ANSI C functions used by sev-
eral MPI routines must be made thread-safe inside the implementation, as
well as in the user code by using a lock-based or lock-free strategy. The
global scheme of locking limits the access to a single thread and thus does
not scale well when the number of threads are increased. Further, the time
that threads spend spinning on the lock can be used to perform some useful
computation if a lock-free non-blocking approach is used.

The use of MPI_ANY_SOURCE wildcard can cause a mismatch if a mes-
sage is overtaken by a wrong message and hence causing a dead-lock. The
routines MPI_Probe() or MPI_Mprobe() can be used to match messages
in a deterministic manner, thus making the application thread-safe. Two
separate locks can be used to allow simultaneous local Send and Recv op-
erations to proceed on a SMP and to incorporate a thread-safe non-local
MPI_Send()/MPI_Recv() scenario, where only one of them can proceed at
a time. Further, any conflicting read or write operations can be controlled
with the same strategy. Blocking collectives can only be made thread-safe
by correcting the permutation of posted collective operations to the same
sequence on all communicators and also avoiding cycles due to intersecting

69

communicators. Removal of the order constraint for non-blocking collec-
tives must be weighed against the usefulness of the concept and currently
the author sees no significant advantage in doing so.

MPI endpoints propose a method to distribute a set of ranks to threads but
may cause a serious contention problem in an increasing multi-core era. To
circumvent this a thread-safe framework to assign ranks to various dynamic
threads has been proposed which has an additional advantage of adding
the threads to the communicator of the parent thread, thereby letting them
take advantage of collective communications immediately. However a dis-
advantage can be seen when the size of the communicator is large and a
synchronizing MPI_Barrier() possibly lessens the performance of execution.
Thread-safety in RMA operations can be ensured by not letting any local
load/store operations to proceed on the window while a one sided commu-
nication is under progress. Hence, it is the responsibility of the programmer
to protect the objects in the window of the origin and target thread/MPI
process from local load/store operations and RMA operations from other
MPI processes in the communicator/window object. It is very difficult to
estimate the number of lines of source code which are needed to make a
thread-unsafe code thread-safe. Non-trivially it depends on the application,
the thread-unsafe MPI routines being used, the frequency of usage of shared
resources like buffers or objects and the method being used to make the rou-
tine thread-safe. Lock-free and hybrid methods for thread-safety are being
explored to exploit the concurrency between non-conflicting operations and
thus, enhance the performance of execution.

5.3 Critical evaluation

This section analyzes the level to which the aims in the final proposal were fulfilled
and mentions some difficulties which were faced during the course of the project.

1. First aim: The first aim of the project was to formulate the necessary and
sufficient rules for the thread-safety of a program. This aim was satisfied
to a good extent in the form of formulation of algorithms, generalization
and the illustration of some thread-unsafe scenarios with the help of code
snippets. Ideally, each and every function in the MPI standard should have
been examined (more than 300 functions) along with the methods to make
them application thread-safe. But given the time for the project, it was only
possible to examine the fuzzy representatives of the thread-unsafe abstract
classes. Further, the MPI specification only gives an understanding of the
rank-less thread model/process model, the semantics of which differ from
a thread-as-rank model. The MPI standard currently does not recognize
the thread-as-rank model and hence there are no established guidelines from
bodies like the MPI Forum for the same that can limit or guide the think-

70

ing when applying standard MPI function semantics to the thread-as-rank
model.

2. Second aim: The second aim was to quantify the difficulty in changing
an existing pure MPI code to a thread-safe code which was explored by
an abstract lock-based model determining the source code complexity in
terms of LOC. The aim was found to be abstract in the sense that the code
complexity non-trivially depends on the actual application code and further
in practice while using lock-free methods, there are several ways and several
data structures which can be used to make the code thread-safe. A lock based
approach is not always preferred due to a possible performance bottleneck
when scaling to thousands of threads but is considered in the abstract model
due to the limited number of primitive statements which allows us to make
the code thread-safe i.e. locking a lock object and unlocking it. Apart from
skimming the surface while describing the abstract model, a time complexity
analysis of the various algorithms created as part of the project was carried
out in detail to give an estimate of the worst case execution time of an
algorithm.

3. Third aim: The third aim of the project was to compare the performance of
thread-safe snippets with thread-unsafe snippets. This aim was found to be
redundant as mentioned in the conclusion and this was realizable throughout
the project work. Thread-safety is about correctness and hence a thread-
unsafe program cannot be compared to its thread-safe sibling. Thread-safety
produces deterministic programs at the cost additional overhead incurred by
using lock-based and/or lock-free methods. Ideally, this is not an overhead
as the correct execution of the program is paramount.

4. Difficulties faced/Aim fulfillment level: A difficulty was the unavail-
ability of a thread-as-rank MPI library in C language. TMPI (Thread MPI)
was last updated in 2002 and does not support the thread support level
MPI_THREAD_MULTIPLE. IBM MPI claims to be thread-safe but does
not support the thread-as-rank model. MiMPI (Multithreaded Implemen-
tation of MPI), another thread-safe library became obsolete in 1999. The
author of this project report being incompetent with C# language, could
not use McMPI (Managed-Code MPI), though it supports the thread-as-
rank model. Although the risks were known before the project began but a
need for an implementation was still felt for possible application development
and testing of ideas to input a feedback into the thought process. Overall,
the main aims of the project that were to investigate/explore the necessary
and sufficient rules to make a code thread-safe in a thread-as-rank model
and to construct pseudo-codes/algorithms for the same, were met to a good
extent. In addition to exploring some thread-unsafe scenarios in depth with
the help of algorithms/pseudo-codes, the project also expanded breadth-
wise by including an elaborate discussion on the three main communication
models in MPI namely, point-to-point, collective and RMA operations and

71

consolidating the explored thread-unsafe classes into an abstract reference
model for calculating the complexity of making a given code thread-safe in
terms of lines of code (LOC).

5.4 Future work

The number of cores on SMP’s are growing with time to gather more compute
power and because the clock speeds of processors have reached a threshold due to
high power dissipation. The increasing amount of shared memory of SMP nodes,
developments in threading libraries for automatic work distribution, efforts to
increase interoperability of MPI with other programming models etc. all point in a
direction where threads will play a major role. Threads not only share the address
space of the process, offer lower context switching time as compared to processes,
utilize fewer resources during creation, they also remove the process-interface level
interaction in MPI when equipped with a rank. Reaching the Exascale level is not
just about running a large number of processes but about successfully running
fully enabled applications which can solve a given task correctly in the shortest
possible time, which would need correct thread-safe and semantics. We discuss
some ideas pertaining to thread-safety in the thread-as-rank model which can be
regarded as natural extensions to the current project.

• Thread-Safe framework: There is an immediate need to build a thread-
safe framework for application thread-unsafe library functions found in the
current implementations (process based model) compliant with the MPI
specification and abstract away the details of making a function thread-
safe from the user. Every function in the MPI library should be inspected
to identify its thread safety requirements and a wrapper function/separate
library doing the needful can be created. This leads to fulfillment of a
three fold goal: maintaining correctness, making MPI more fault tolerant
and reducing thread-safe application development time by reinventing the
wheel. Automatic generation of help messages when an operation cannot
proceed due to a conflicting operation by another thread can give an in-
sight into the execution of the application. This is true specially for small
to medium sized programs with the LOC being the measure. Incorporating
such messages does not reduce the role of debuggers, visual viewers as the
purpose for they have been created are many-fold for example, identifying
bottlenecks, identifying/isolating errors in a single-threaded/multi-threaded
process based programs, creating a graphical representation of execution etc.
If the user so desires, the thread-safety features can be switched on/off at
an application or individual function level. The latter supports usage of
the thread-safe framework at a finer granularity and implies that whenever
needed, a user can implement thread-safe logic for a function on his/her own,
hence providing a flexibility in implementation in case the framework offers

72

a restrictive wrapper for a particular function.

• Dynamic one-to-one rank assignment: MPI endpoints offer a method
for assigning ranks to threads but the contention among threads for a rank
can become a performance bottleneck. A scheme for dynamically assigning
ranks to threads on a one-to-one basis as suggested in the framework devel-
oped in the current project is recommended for realization. This not only
solves the contention between threads by utilizing the rank space fully but
also provides a method of making the ranks renewable and the possibility of
incorporating the threads in the parent thread’s communicator, thus letting
them take immediate advantage of collective operations.

• Passive Target Synchronization (PTS) thread-safety: A scheme for
making a scenario thread-safe when using only MPI_Win_lock() followed
by a MPI_Win_unlock() for RMA should be devised and explored in detail.
The complexity in this case arises because the target process does not ac-
tively issue an RMA call, because of which it is difficult to know the period
during which the local-window should be protected from being corrupted by
any target OS process threads.

• Thread-Safe Thread-as-RankMPI: A thread-safe thread-as-rank (TSTR)
MPI implementation in C language where a thread inherently has a rank
needs to be realized. Statistically speaking, C language seems to be the
preferred language for implementation. There have been several attempts
to implement either a thread-safe or a thread-as-rank MPI library but not
both. Further, the latest MPI standard prescribes bindings for functions in
C, Fortran but C++ bindings stand deprecated. Internally, thread-safety
can be achieved by using a lock-free, lock-based or a hybrid approach de-
pending on the performance achieved. Functions for dynamic creation and
manipulation of threads should be a part of the MPI implementation but the
interoperability of MPI with other threading libraries must be maintained
to cater to the needs of various applications and developers.

73

Bibliography

[1] Message Passing Interface Forum. MPI: A Message-Passing Interface Stan-
dard, Version 3.0. September 12, 2012.

[2] OpenMP Architecture Review Board. OpenMP Application Programming
Interface, Version 3.1. July 2011.

[3] POSIX.1c, Threads extensions IEEE Std 1003.1c 1995.

[4] Mpich.org. MPICH | High-Performance Portable MPI. [online] Available at:
http://www.mpich.org/ [Accessed: 31st July 2013].

[5] Open-mpi.org. 2013.Open MPI: Open Source High Performance Computing.
[online] Available at: http://www.open-mpi.org/ [Accessed: 10th June 2013].

[6] Smith, Lorna, and Mark Bull. Development of mixed mode MPI/OpenMP
applications. Scientific Programming 9.2 (2001): 83-98.

[7] Tang, Hong, and Tao Yang. Optimizing threaded MPI execution on SMP
clusters, In Proceedings of the 15th international conference on Supercom-
puting, pp. 381-392. ACM, 2001

[8] Erik D. Demaine. A Threads-Only MPI Implementation for the Develop-
ment of Parallel Programs .In Proc. of the 11th International Symposium
on High Performance Computing Systems (HPCS’97), pages 153-163, Win-
nipeg, Manitoba, Canada, July 1997.

[9] Daniel Holmes.McMPI - a Managed-code Message Passing Interface Library
for High Performance Communication in C#. P.hD. Thesis, University of
Edinburgh, October 2012.

[10] Caglar, Sadik G., Gregory D. Benson, Qing Huang, and Ch-W. Chu.
USFMPI: a multi-threaded implementation of MPI for Linux clusters. In Fif-
teenth IASTED International Conference on Parallel and Distributed Com-
puting and Systems, pp. 674-680. 2003.

[11] García, Félix, Alejandro Calderón, and Jesús Carretero. MiMPI: A
multithread-safe implementation of MPI. In Recent Advances in Parallel Vir-
tual Machine and Message Passing Interface, pp. 207-214. Springer Berlin
Heidelberg, 1999.

74

[12] Plachetka, Tomas. (Quasi-) thread-safe PVM and (quasi-) thread-safe MPI
without active polling. In Recent Advances in Parallel Virtual Machine and
Message Passing Interface, pp. 296-305. Springer Berlin Heidelberg, 2002.

[13] William Gropp, Ewing Lusk, Rajeev Thakur. Using MPI-2, Advanced Fea-
tures of the Message-Passing Interface. Scientific and Engineering Compu-
tation Series, 1999, ISBN-13 978-0-262-57133-3.

[14] Balaji, Pavan, Darius Buntinas, David Goodell, William Gropp, and Ra-
jeev Thakur. Fine-grained multithreading support for hybrid threaded MPI
programming. International Journal of High Performance Computing Appli-
cations 24, no. 1 (2010): 49-57.

[15] ISO/IEC 9899:201x, Committee draft N1570. International Standard, Pro-
gramming Languages C, April 12, 2011.

[16] Goog-perftools.sourceforge.net. TCMalloc : Thread-Caching Malloc. [online]
Available at: http://goog-perftools.sourceforge.net/doc/tcmalloc.html [Ac-
cessed: 25th June 2013].

[17] Ftp. Untitled. [online] Available at: http://ftp://g.oswego.edu/pub/
papers/C++Report89.txt [Accessed: 6th July 2013].

[18] Dinan, James, Pavan Balaji, David Goodell, Douglas Miller, Marc Snir, and
Rajeev Thakur. Enabling MPI Interoperability Through Flexible Communi-
cation Endpoints. Conference Paper, EuroMPI 2013, Madrid, Spain.

[19] Andrew S. Tanenbaum. Computer Networks. 4th Edition, Prentice Hall, In-
ternational Edition (6 July 2009), ISBN-13: 978-7302172758.

[20] Keir Fraser. Practical lock-freedom. P.hD. Thesis, University of Cambridge,
February 2004, ISSN 1476-2986

[21] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming.
Elsevier 2008, Morgan Kauffman Publishers, ISBN: 978-0-12-370591-4.

[22] Skjellum, Anthony, Boris Protopopov, and Shane Hebert. A thread taxonomy
for MPI. MPI Developer’s Conference, 1996. Proceedings., Second. IEEE,
1996.

[23] Gropp, William, and Rajeev Thakur. Thread-safety in an MPI implementa-
tion: Requirements and analysis. Parallel Computing 33.9 (2007): 595-604.

[24] Gadi Taubenfeld. Synchronization Algorithms and Concurrent Program-
ming. Pearson Education Limited 2006, ISBN: 978-0-13-197259-9.

[25] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford
Stein. Introduction to Algorithms, Second Edition. ISBN 0-262-03293-7 (hc.:
alk. paper, MIT Press).-ISBN 0-07-013151-1 (McGraw-Hill).

75

[26] Protopopov, Boris V., and Anthony Skjellum. A multithreaded message pass-
ing interface (MPI) architecture: Performance and program issues. Journal
of Parallel and Distributed Computing 61, no. 4 (2001): 449-466.

[27] IntelR© 64 and IA-32 Architecture, Software Developer’s Manual, Volume 3A,
Systems Programming Guide, Part-1, June 2013.

[28] Wiki.mpich.org. 2013. Developer Documentation - Mpich. [online] Available
at:http://wiki.mpich.org/mpich/index.php/Developer_Documentation
[Accessed: 10th August 2013].

[29] William D. Gropp. Personal Communication. 1st July 2013.

[30] Cray Research. Application Programmer’s Library Reference Manual, Vol.
1, November 1995. Publication SR-2165 2.0.

[31] Wiki.nss.cs.ubc.ca. 2013. FineGrainMPI - NssWiki. [online] Available at:
http://wiki.nss.cs.ubc.ca/FineGrainMPI [Accessed: 21st August 2013].

[32] Daniel Holmes. Personal Communication. 21st August 2013.

76

Appendix A

List of symbols used

Symbol Name Usage Meaning
== Equal to x == y Is x Equal to y ?
∀ For all ∀x For all x
← Assignment x←a x takes the value a
≤ Less than Equal to x ≤ y x is less than or equal to y
* Product x*y Product of x and y
∧ AND x∧y x AND y
++ Increment x++ x ← x + 1
6= Not Equal to x6=y x is Not Equal to y
[] Inclusive Range [x,y] Including and between x and y
. Comment . A comment Not part of pseudo-code logic
: Colon private: x, y Starting of a block
⇒ Implies x ⇒ y x implies y
¬ Negation/Not of ¬ y absence of y
∨ OR x ∨ y x OR y
⇐⇒ Mutual Communication x ⇐⇒ y x and y communicate
∈ In x ∈ y x Belongs to/In y
> Greater than x > y x is Greater than y
� Greater than greater than x � y x is Greater than greater than y∑b

i=a(expr) Summation ∑n
i=1 i Sum of first n numbers⋃k

i=1(set) Union ⋃k
i=1 si s1

⋃
s2

⋃
...

⋃
sk

≈ Approximately x ≈ y x is approximately equal to y
≥ Greater than equal to x ≥ y x is Greater than or equal to y
∃ Exists ∃x There exists some x∏ Product ∏5

i=1 i 1*2*3*4*5
→ Tends to/Limit x →0 x tends to 0 or x approaches 0
| | Set cardinality |x| number of elements in set x
I+ Positive integers set x ∈ I+ x is positive integer

77

Appendix B

Asymptotic notations

B.1 O(g(n)) - Big Oh notation

Definition: O(g(n)) = {f(n) : ∃c, n0 ≥ 0 such that 0 ≤ f(n) ≤ cg(n),∀n ≥ n0}
O(g(n)) is a set and all functions f(n) which satisfy the definition above and
formally we say f(n) ∈ O(g(n)). The Big Oh notation gives the tight upper
bound of a function within a constant factor [25].
For example:

n∑
i=1

i = O(n2)

B.2 Ω(g(n))- Omega notation

Definition: Ω(g(n)) = {f(n) : ∃c, n0 ≥ 0 such that 0 ≤ cg(n) ≤ f(n),∀n ≥ n0}
Ω(g(n)) is a set of functions f(n) which satisfy the definition above and formally
we say f(n) ∈ Ω(g(n)). It gives the tight lower bound of a function within a
constant factor [25].
For example:

n∑
i=1

i = Ω(n2)

78

Appendix C

Working sample code for
Algorithm 3.1

/* (1) AUTHOR: Gaurav Saxena */
/* (2) PROGRAM: Thread-safety for MPI_Info */
/* (3) COMMENTS: Removed to manage space */

#include<mpi.h>
#include<stdio.h>
#include<omp.h>

int IsExists(MPI_Info info);

void main(int argc, char *argv[])
{

MPI_Info info ;
omp_lock_t info_lock;
int required = MPI_THREAD_MULTIPLE, provided ;
int rank, size, threadID, threadProcRank ;
MPI_Comm comm = MPI_COMM_WORLD ;

MPI_Init_thread(&argc, &argv, required, &provided);
MPI_Comm_size(comm, &size);
MPI_Comm_rank(comm, &rank);

if(rank == 0)
{

if(required != provided)
MPI_Abort(comm, 1);

else

79

printf("\nMPI_THREAD_MULTIPLE was successfully initialized");
}

MPI_Info_create(&info);
omp_init_lock(&info_lock);

#pragma omp parallel private(threadID,threadProcRank) shared(comm)
{

threadID = omp_get_thread_num();
MPI_Comm_rank(comm, &threadProcRank);
printf("\n Thread ID %d, Process rank %d", threadID, threadProcRank);

if(threadID == 0)
{

omp_set_lock(&info_lock);
if(IsExists(info))
{
MPI_Info_set(info, "striping_factor","4");
MPI_Info_set(info, "striping_unit","65536");
MPI_Info_set(info, "start_iodevice","2");
}
omp_unset_lock(&info_lock);

}
else
{

omp_set_lock(&info_lock);
if(IsExists(info))
{
MPI_Info_free(&info);
}
omp_unset_lock(&info_lock);

}
}

MPI_Finalize();
}

int IsExists(MPI_Info info)
{

if(info == MPI_INFO_NULL)
return 0;

else
return 1;

}

80

C.1 Hardware

The program “Thread-safety for MPI_Info” was executed on Morar, a 128 core
machine which is partitioned into two shared memory nodes of 64 cores each.
Each processor is an AMD Opteron (TM) Processor 6276 with a speed of 2.3
GHZ approximately. The cache size is 2048 KB with a cache alignment of 64.

C.2 Method of job submission

The following SGE (Sun Grid Engine) script was submitted using the command:

qsub -cwd -pe mpi 4 Info.sge

The number of processes specified were four and the Info.sge file having the follow-
ing contents specified the number of threads in each process using the environment
variable OMP_NUM_THREADS.

#!/bin/bash
#$ -cwd -V

MPIEXE=‘basename $REQUEST .sge‘

echo "--"
echo "Running MPI program <$MPIEXE> on" $NSLOTS "processes"
echo "--"
echo

export OMP_NUM_THREADS=4

(time mpiexec -n $NSLOTS ./$MPIEXE) 2>&1

echo
echo "--------------------"
echo "Finished MPI program"
echo "--------------------"
echo

81

Appendix D

Implementing MPI routines
without using malloc()

It is not necessary that an implementation needs to/must use themalloc() function
for allocating memory to MPI routines. Elementary but customized implementa-
tions of malloc() can be implemented easily by using the basic sbrk() system call.
As an example, the MPI_Comm structure can be statically allocated memory in
the application code by the developer. To elaborate it further, assume a binary
tree structure or a binary hyper-cube structure for collective communication as
shown in Figure D.1.

Figure D.1: Top: Complete Binary tree (n=7 nodes), Bottom: Binary Hyper-cube
(n=8 nodes)

82

Each MPI process/thread/rank needs O(log2(n)) information to locate the re-
maining (n − 1) ranks. Assuming a million MPI processes i.e. n = 1000000, the
value of log2n is ≈ 19.93. If we assume that the user statically allocates approx-
imately 32 structures per MPI process/ranked-thread which contain information
about other ranks/MPI processes/ranked-threads, then the MPI process can lo-
cate and communicate with 232 = 4294967296 or approximately 4.2 billion MPI
processes/ranked-threads [32]. Recent efforts using FG-MPI (Fine-Grain MPI)
[31] have lead to a successful execution of more than a 100 million MPI processes.
Clearly, using 32 statically allocated information structures for storing informa-
tion regarding location of other MPI processes leads to a scale of at least 4 billion
MPI processes (4000 Million) and hence, an MPI library may not be required to
allocate space dynamically [32].

83

