
Poisson Solvers for Electrokinetic Problems

Ruairi Short

August 23, 2013

MSc in High Performance Computing

The University of Edinburgh

Year of Presentation: 2013

Abstract

This report sets out to investigate the use of Fast Fourier Transforms (FFTs) to solve
Poisson’s equation in the lattice Boltzmann code Ludwig. The parallel 3D FFT library
P3DFFT was used to conduct the FFTs, though it was found to be difficult to integrate
with the current code. An algorithm to switch between Cartesian and pencil decom-
positions was written to combine this library and Ludwig. Results were obtained from
tests conducted against the old successive over-relaxation (SOR) solving method and
theoretical solutions to the Gouy Chapman and liquid junction problems to provide ev-
idence that the FFT method was consistent. Timing results on HECToR phase 3 and
BlueGene/Q also showed the FFT method to solve Poisson’s equation approximately
100 times faster than the SOR solver, with BlueGene/Q showing excellent scaling up to
4096 cores.

Contents

1 Introduction 1
1.1 Report Structure . 2

2 Background Information and Theory 3
2.1 Ludwig . 3

2.1.1 Ludwig Internals . 3
2.2 Successive Over Relaxation . 6
2.3 Solving Poisson’s equation with Fast Fourier Transforms 7

2.3.1 Fourier Transforms . 8
2.3.2 Parallel FFTs in 3D . 9
2.3.3 k2 Multiplication . 10

2.4 Transforming between Processor Decompositions 11
2.5 Tests of Accuracy . 12

2.5.1 Gouy Chapman Problem . 13
2.5.2 Liquid Junction Problem . 13

2.6 High Performance Computing and Performance Metrics 14
2.7 Programming . 15

3 Design & Implementation 16
3.1 Target Architecture . 16
3.2 Three dimensional FFT Libraries . 17

3.2.1 Installing P3DFFT . 17
3.3 Integrating with Ludwig . 19
3.4 Cartesian and Pencil Decompositions 19

3.4.1 Decomposition Switching Implementation 21
3.5 FFT routine . 22

3.5.1 k2 multiplication . 23
3.6 Testing . 25

3.6.1 Unit tests . 25
3.6.2 Timing . 25
3.6.3 Gouy Chapman Reference Problem 26
3.6.4 Liquid Junction Potential Problem 26
3.6.5 Scripts . 27

4 Results 28

i

4.1 Accuracy . 28
4.1.1 Single Solve - Unit Tests . 28
4.1.2 Gouy Chapman problem . 31
4.1.3 Liquid Junction problem . 34

4.2 Performance . 35
4.2.1 Gouy Chapman problem . 35
4.2.2 Liquid Junction Problem . 36
4.2.3 Under Subscribing Nodes . 39
4.2.4 Weak Scaling . 40
4.2.5 Decomposition Initialisation & Switching 41

4.3 Other Results . 44
4.3.1 P3DFFT stride1 flag . 44

5 Discussion 45
5.1 Work plan . 45
5.2 Risk Analysis . 46

6 Conclusions 47
6.1 Further Work . 48

A Information on Ludwig 49
A.1 SVN Revision details . 49
A.2 File Changes . 49
A.3 File Additions . 50

B Compiler flags 51
B.1 BlueGene/Q compiler flags . 51

C Results & Tables 52
C.1 Extra Plots . 52
C.2 Experimental Parameters . 53

C.2.1 Gouy Chapman problem . 53
C.2.2 Liquid Junction Potential Problem 55

D Workplan and Riskanalysis 56
D.1 Workplan . 56
D.2 Risk Analysis . 59

ii

List of Tables

4.1 Comparison of times with and without stride1 flag on HECToR . . . 44

iii

List of Figures

2.1 Lattice used in Ludwig . 4
2.2 Speedup of SOR on Mare Nostrum . 5
2.3 1D Slab decomposition . 10
2.4 2D Pencil decomposition . 10
2.5 Cartesian and Pencil Decompositions 11
2.6 Gouy Chapman SOR results against theory 14

3.1 Pencil decomposition before and after FFT 24

4.1 Potential in unit test . 29
4.2 Fractional difference between SOR and FFT solvers in unit test 30
4.3 Gouy Chapman results for FFT solver 32
4.4 Gouy Chapman results for FFT with no stride1 flag 32
4.5 Liquid Junction accuracy test results on HECToR 33
4.6 Liquid Junction accuracy test results on BlueGene/Q 34
4.7 Liquid Junction timings for 643 grid 36
4.8 Liquid Junction timings for 2563 grid 37
4.9 FFT and SOR solve times for differently sized grids on HECToR 39
4.10 Speedup for Liquid Junction problem with 2563 grid and under-subscribed

nodes . 40
4.11 Weak scaling of liquid junction potential problem 41
4.12 Decomposition initialisation timings 42
4.13 Decomposition switching times on HECToR 43

C.1 Fractional difference between SOR and FFT solvers in unit test with no
points removed . 52

C.2 Gouy Chapman results on HECToR for ρ0,± = 1 · 10−3 53
C.3 Liquid Junction timings for 1283 grid 54
C.4 Liquid Junction timings for 5123 grid 54

iv

Acknowledgements

I would like to thank both of my project supervisors, Dr. Kevin Stratford and Dr. Oliver
Henrich. They were extremely helpful throughout the course of this project, providing
me with guidance and assistance in the direction of the project.

Chapter 1

Introduction

Poisson’s equation is of fundamental importance in computational physics. The equa-
tion appears in Newtonian gravity (specifically Gauss’ Law for gravity), electromag-
netic and hydrodynamic problems. These cover a very wide range of applications. For
example, in an electrostatics problem with electric charges in a system, the solution to
Poisson’s equation describes the electric potential for a given charge distribution[16].
The electric potential must be found in order to determine the forces acting on particles
in the system, so that their positions can be updated.

Poisson’s equation is an elliptical partial differential equation. As such it is not, in
general, analytically solvable. A number of different methods are employed to solve it
numerically. These include Fourier methods[31], multigrid methods[34] and particle-
mesh methods[19], each with varying degrees of speed and complexity.

This project is concerned with Poisson’s equation in a piece of code called Ludwig. In
its most general form, Ludwig is a "parallel lattice Boltzmann code for complex flu-
ids". The term complex fluids covers a large number of materials but can be described
in general as "[f]luids showing non-linear viscous behaviours, as well as viscoelas-
tic materials"[7]. Everyday examples include ice-cream and shaving foam, though
these are not usually modelled in Ludwig. It was started by Jean-Cristophe Desplat
of the Edinburgh Centre for Parallel Computing, along with Ignacio Pagonabarraga
and Peter Bladon of the Department of Physics and Astronomy in the University of
Edinburgh[11]. Now, it is updated and maintained by a much larger team in many dif-
ferent locations. The purpose of Ludwig is to provide a framework for future users to
build upon. In reality, it is a set of codes, that use a set of common routines, such as
communications and I/O. This allows the user to concentrate on the physics they wish to
model and not have to worry about the parallel computing part. Development is still ac-
tive and ongoing. The main code was recently ported to GPUs on Titan[33], the world’s
largest supercomputer at the time, in a bid to see performance improvements[14].

Work is currently active on a new electro-kinetics module, and this is where Poisson’s
equation appears. This new module will simulate systems that contain electric charges
which are able to freely move about the system. For example modelling what occurs

1

when two liquids containing electric charges are brought into contact. In order to update
the position of these charges, it is necessary to know the electric potential in the system,
and this is found by applying Poisson’s equation.

In the first incarnation of this electro-kinetics module, successive over-relaxation (SOR)
was used to solve Poisson’s equation. While the physics being modelled was correct,
and the implementation was relatively easy, the performance seen was quite poor. The
scaling to large numbers of cores was cited as the main problem[24] with this algorithm.
Obviously this poses issues for large three dimensional problems, where one would like
to use large numbers of cores, and where the most interesting physics is inevitably
found.

Another solution was necessary and Fast-Fourier Transforms (FFTs) were the next log-
ical step as a method to solve Poisson’s equation. Faster methods such as multigrid
were deemed too complex to implement in the short amount of time that was available
for this project.

This project sets out to determine if FFTs are a better method of solving Poisson’s
equation, through the use of a parallel FFT library. Two main architectures were used
for this, HECToR and BlueGene/Q, in order to investigate performance on both and to
see how the implementation might translate between systems.

1.1 Report Structure

This report begins by introducing the background necessary to understand Poisson’s
equation. A discussion of the problems with the SOR solver is followed by an explana-
tion of FFTs and how they can be used to solve Poisson’s equation. Also provided is a
description of the methods of improving the performance of 3D FFTs by using a pencil
decomposition. In order to ensure the FFT solver is working correctly, some accuracy
tests will be necessary and the theory behind these is also provided.

The second chapter is an outline of the design and implementation, with details of the
main target architectures and compilation methods. Here, the specifics of implement-
ing an FFT solver for Poisson’s equation in Ludwig are also outlined, including the
installation of the library used.

Next, the results of the accuracy tests are presented followed by a comparison of the
SOR solver and the FFT solver. These are analysed and discussed with graphs used to
show the details.

Finally, the impact of using an FFT solver instead of an SOR solver will be discussed in
the conclusions, along with suggestions of further improvements that could be made.

2

Chapter 2

Background Information and Theory

2.1 Ludwig

Ludwig is a "parallel lattice Boltzmann code for complex fluids"[11]. As a project, it
is current with many different branches. Initially the focus was on binary fluid mix-
tures with and without solids present[11]. This has since expanded to include colloidal
suspensions and liquid crystal flows. It has been used for some interesting results, in-
cluding binary fluid simulations and colloidal suspensions For examples see [22] and
[6]. For the purposes of this project we will be working in the electro-kinetics module.
As a general overview of the operation of the code, the main steps of an execution of
are outlined below:

• Initialisation: read input files and set up domain. Electric charges are placed
throughout the system according to the problem to be modelled. Then the follow-
ing are iterated over:

• Field Computation: ρ(~x), the electric field at all points, is computed.

• Solve Poisson’s equation: This gives the potential Ψ for the system.

• Solve the Nernst Planck equation: This updates the positions of the charged fluid.

This allows for systems containing electric charges, where the electric charge carriers
can move, to be modelled. An everyday example of a problem this can be used to model
is an oil and water mixture, in the presence of electric fields. This particular problem
can produce some interesting results as can be seen in the paper by Rotenberg et al.[32].

2.1.1 Ludwig Internals

Ludwig splits the problem volume into lattice sites, the number of which is specified
by the user at runtime, giving the problem size. Every lattice site has integer value
coordinates corresponding to its location in the lattice. This can be thought of as each

3

Figure 2.1: Diagram of the lattice used in Ludwig in two dimensions. Lattice sites are
located at y = 1, . . . , N . Here lattice sites are represented by full circles and halo sites
by open circles. The third dimension is added by stacking many of these grids on top of
each other and the inclusion of halos at the ends. The lattice sites will then be located
at the centre of a volume. Reproduced from [24]

lattice point occupying the centre of a control volume one lattice unit on a side. The
effect of this is that the edges of the system have an offset of half a lattice unit from
the lattice points themselves and this must be remembered, in particular when plotting
graphs.

The code provides a number of environments to allow ease of use. The parallel envi-
ronment abstracts the basic environment. This allows the code to be used in serial or
parallel, by returning the appropriate values depending on the number of processors.
Parallelism is introduced through the use of message passing. When run in parallel
this environment supports communications in MPI_COMM_WORLD. A coordinate en-
vironment is provided that allows external routines access to the Cartesian coordinates
that represent the system. This includes routines that provide access to the MPI Carte-
sian communicator which handles most of the communication. Also included in this
module, that will be of use for this project, are routines to access the total system size,
the Cartesian coordinates of the calling process in the Cartesian communicator, and the
global coordinates of the first element of the local array.

In order to allow the user greater control over the simulations to run, Ludwig uses an
input file to intitialise many parameters in the system. This uses key value pairs which
are maintained throughout execution and the values can be retrieved by the user. As a
feature, this should prove useful for running tests, as different input files can be specified

4

without the need for recompiling between each run.

In order to parallelise the computation, Ludwig uses a domain decomposition method.
These domains are normally chosen to keep the load as balanced as possible and min-
imise the size of the boundaries, as the SOR solver requires halos to be swapped. Since
there are never holes in the system to be modelled this means that a three dimensional
Cartesian processor decomposition is used with the sizes of each dimension as close
as possible. No process ever holds all the data. Processors initialise the data indepen-
dently at start-up. This improves the efficiency of the program by reducing the memory
footprint of the program as a whole and reducing the amount of communication neces-
sary. It is also possible for the user to specify a different decomposition by changing
the appropriate values in the input file before execution.

Typically problems are 643 or larger, but not more than 2563, as this is large enough to
produce interesting results while larger problems would take excessively long to run. It
is important to note that the problems are solved using periodic boundary conditions,
which also gives the effect of a larger simulation volume.

In previous tests the current method of solving Poisson’s equation, by successive over-
relaxation (SOR), was shown to be slow and scaling poorly as can be seen in figure 2.2.
Here, a problem size of 1283 was being solved on the Mare-Nostrum supercomputer

Figure 2.2: Graph of Speedup against MPI tasks for the current SOR solver in Lud-
wig. Mare-Nostrum is a supercomputer in the Barcelona Supercomputing Centre. This
shows the poor performance of the SOR solver compared with the other main time
consuming piece of the code, the Nernst-Planck equation. Reproduced from [24]

in the Barcelona Supercomputing Centre. This graph shows also shows the scaling of
the part of the code dealing with solving the Nernst-Planck equation. Looking at the

5

absolute times on two processors, one sees that for this problem size solving the Nerst-
Planck equation takes 1.07 s while solving Poisson’s equation takes 19.8 s1. These are
the two major time consuming parts of the electro-kinetics module of Ludwig. As can
be seen the SOR method of solving Poisson’s equation has much worse performance
as the MPI tasks are increased. For this reason it was seen as a bottleneck preventing
larger problems being modelling in reasonable times and has thus become the focus of
this project.

2.2 Successive Over Relaxation

As a method for solving PDEs, SOR is an old one, having been fairly standard practice
in the 1970s[31]. It is an improvement on the Gauss-Seidel algorithm, through the
use of over-relaxation and Chebyshev acceleration. For a full discussion the reader is
referred to section 19.5 of Numerical Recipes in C[31].

When dealing with electrostatics, as we are in Ludwig, Poisson’s equation takes the
form

∂Ψ(~x)2

∂2x
= −ρ(~x)/ε. (2.1)

Here, Ψ is the electric field and ρ is the electric charge at each x. Only problems where
ε, the dielectric permittivity, does not vary with x will be dealt with. The case where it
varies is significantly more complex. The SOR update equation then takes the form:

Ψn+1
i,j,k = Ψn

i,j,k −
δtρi,j,k
ε

. (2.2)

Ψ is found by iterating over the lattice sites and through solutions to this equation,
choosing an optimum δt in order to improve the rate of convergence. Ludwig further
improves on the rate of convergence by updating δt at each iteration through the use
of Chebyshev acceleration. Unfortunately, while easy to program, this method is still
inefficient when it comes to large problems[31].

In order to compute the solution, each lattice site must be iterated over, resulting in 6
operations per site. It is an iterative refinement scheme, so this process must be repeated
until the error is acceptable. Optimally, this method takes N iterations to converge for
an N × N × N grid[31]. However, the optimum is rarely attained. The total number
of operations is thus of O(N4) for three dimensional problems. To be more exact,
assuming N iterations the number of operations is given by:

Complexity = 6×N3 ∗N (2.3)

This method does not match what should be attainable with a different algorithm, as
methods with computational complexity of O(N) exist.

1On HECToR for the liquid junction problem which will be discussed later

6

2.3 Solving Poisson’s equation with Fast Fourier Trans-
forms

Three main further options were noted to be possible to implement; Fast Fourier Trans-
forms(FFTs), the Fast Multipole Method(FMM) and Multigrid methods. Of these, FFTs
are the most well known and thus well documented and used. Libraries exist for solving
FFTs whereas the other methods would need to be implemented entirely from the be-
ginning. They are all complex to code with much thought necessary in order to achieve
the best performance, which is critical in this project. Due to the relatively short time
available it was decided that FFTs would be the best solution to use.

The method of solving Poisson’s equation with FFTs is relatively easy to derive. We
shall present it in 1D, and the 3D solution is easily obtainable from this.

The general form of the Fourier Transform is given by

θ(k) =
1√
2π

∫ −∞
∞

Ψ(x)e−ikxdx (2.4)

where θ(k) is known as the Fourier transform of Ψ(x). The set of coordinates k, is often
called Fourier space, while the set of coordinates x is usually referred to as real space.
The inverse operation is

Ψ(x) =
1√
2π

∫ −∞
∞

θ(k)eikxdk. (2.5)

If we call σ the Fourier transform of ρ, we can rewrite Poisson’s equation as follows:

1√
2π

∫ −∞
∞

θ(k)
∂2

∂2x
eikxdk = − 1

ε
√

2π

∫ −∞
∞

σ(k)eikxdk. (2.6)

Here, we have brought the second derivative of x inside the integral as the integral is
over k. Also, since ε has no x dependence, we could bring it outside of the integral on
the right hand side. Cancelling the 1√

2π
from each side is the next step. Then conduct

the differentiation on the left hand side, giving∫ −∞
∞
−k2θ(k)eikxdk = −1

ε

∫ −∞
∞

σ(k)eikxdk. (2.7)

The next step is not so obvious. In order for the integrals to be equal, the integrands
must be equal since the integral is over the same variable with the same limits. This
allows us to remove the integrals and multiply across by −eikx, leaving us with

k2θ(k) =
1

ε
σ(k). (2.8)

Since we ultimately want to solve for θ,

θ(k) =
1

k2ε
σ(k). (2.9)

Ψ is then found using equation 2.5. Thus, solving Poisson’s equation using Fourier
transforms can be broken down into three steps.

7

• Compute σ, the Fourier transform of ρ.

• Multiply by 1
k2ε

in Fourier space, giving θ.

• Compute the inverse Fourier transform of θ, resulting in Ψ.

The generalization of this method to three dimensions is simple. Fourier transforms are
just integrals so in three dimensions there are integrals over the x, y and z directions.
There are no interdependencies, each can simply be performed in turn.

2.3.1 Fourier Transforms

In Ludwig, the system is split into a lattice. As such, discrete Fourier transforms will
need to be used. This is only natural in computational scenarios. Discrete Fourier
Transforms estimate the Fourier Transform of a function by sampling a finite number
of its points. If we have a domain such that 0 ≤ x ≤ L in one dimension, we can define
a lattice of N equally spaced points such that xn = nL

N
, n = 0, . . . , N − 1. The function

is sampled at each of these points. The discrete Fourier coefficients are then given by

θ(k) =
N−1∑
n=0

exp(−2inkπ

N
)Ψ(n) (2.10)

with inverse transformation

Ψ(n) =
1

N

N−1∑
k=0

exp(
2inkπ

N
)θ(k). (2.11)

Computing the Fourier transform is then just computing each of these coefficients and
again is easily generalisable to three dimensions in the same way as the general form.
For example:

Ψ(l,m, n) =
1

L×M ×N

L−1∑
kx=0

M−1∑
ky=0

N−1∑
kz=0

e
2ilkxπ
L e

2imkyπ

M e
2inkzπ
N θ(kx, ky, kz). (2.12)

This has a computational complexity of O(N2)[30], which is better than the SOR
scheme but can be improved upon.

In the mid 1960s, J.W. Cooley and J.W.Turkey rediscovered (originally found by Gauss
in 1866) a scheme for computing Fourier transforms in O(Nlog(N)) operations[8]
where N is the total number of points in the lattice. In the most simple terms, this can
be achieved by repeatedly splitting the Fourier transform into the odd and even sites in
the interval, until each site has been isolated. The total computational complexity for
solving Poisson’s equation can then be computed roughly using:

Complexity = 2×Nlog2(N) +N. (2.13)

We multiply by two since a forward and backward Fourier transform must be consid-
ered. The addition of N is due to the k2 multiplication, which must take place at each
lattice site. While some operations are requires to calculate k2, this much less than N
operations. Thus, this equation should closely approximate the complexity.

8

2.3.2 Parallel FFTs in 3D

Ordinarily when a 3-dimensional problem is decomposed among a group of processors,
a 3-dimensional processor decomposition is chosen. This is often used because of the
communication patterns that are most often present in parallel codes. Ludwig uses a
3-dimensional Cartesian processor decomposition as the information adjacent to each
lattice point in each direction is important and this decomposition allows for minimising
the communications necessary, by minimising the sizes of the boundaries between each
processor.

When conducting FFTs, they are done row by row. The impact of this is that a 3D
processor decomposition will not work, as each processor needs the entire row of data
in order to do the FFT. 1D slab, or 2D pencil decompositions are used instead. The 2D
pencil decomposition is the most desirable as it allows for a larger number of processors
to be used. If the 1D slabs are used, the number of processors is limited by the extent of
each dimension in the problem. For example, with a problem size of 64× 64× 64, the
maximum number of processors that can be used with 1D slabs is 64, as any dimension
cannot be split into more pieces than it contains. 2D pencils will allow for up to 64 ×
64 = 4096 processors.

There is a downside to the pencil decomposition however, more communication is nec-
essary. With the slab decomposition 2 dimensions are kept on any processor at any
given time, so the data needs to be transposed across processors only once in order to
conduct the 3D FFT. When using the pencil decomposition, each processor will only
have one entire dimension at any time, so two global transposes will be necessary to
compute the FFT, and one more if the data is required in Fourier space in the original
decomposition.

Each of these global transpositions are done using MPI_Alltoall calls. These calls
will most likely prove to be what limits the scalability of using FFTs for this problem.
MPI_Alltoall calls are largely limited by the bi-sectional bandwidth of the network
being used for communication. This is due to the fact that each group holds half the data,
and must send half of that data, which is a quarter of the total, through the bisection.

Many large HPC systems today are made up of shared memory nodes. Thus, by having
the first all-to-all take place only inside a node significant performance gains can be seen
as messages can be passed in shared memory. The library being used, P3DFFT, should
do this to some degree, but it is important that the user specify appropriate numbers of
processors for the problem.

The large number of processors that can be used make the pencil decomposition more
useful. It would also be possible to use clever communicators and shared memory pro-
gramming to improve performance on current shared memory nodes systems. Also, the
library we will use leaves the data in transposed form in Fourier space, and returns it to
it’s original form upon computing the backward transform. This improves performance
by reducing the number of all-to-all communications by two.

9

Figure 2.3: Steps involved in computing a 3D FFT with slab decomposition. Repro-
duced from [20]

Figure 2.4: Steps involved in computing a 3D FFT with pencil decomposition. Repro-
duced from [20]

2.3.3 k2 Multiplication

The last piece necessary to solve Poisson’s equation is the multiplication by 1
k2

. It is not
immediately obvious how it can be computed from the original lattice. k2 is given by

k2 = (k2x + k2y + k2z). (2.14)

10

The kx value at each point can be calculated from

kx =
2πl

Nx

(2.15)

with Nx being the system size in the x-direction, with l = 0, . . . , Nx − 1 representing
the lattice point position, and similarly for the y and z dimensions. For the discretised
system, in three dimensions, we simply compute this value at each lattice point. ky and
kz are computed similarly. k2 is then easily found from this.

2.4 Transforming between Processor Decompositions

As discussed earlier, the optimal processor decomposition for computing parallel 3D
FFTs is a pencil decomposition. For this reason, P3DFFT expects input such that the
processors are in a pencil decomposition. Since Ludwig uses a 3D Cartesian decompo-
sition it is necessary to transform between these two decompositions before computing
the FFTs.

There are two distinct stages to this, sending and receiving. The first step is to determine
what data must be sent, and what process to send it to. To compute this, each processor
should look at the global position of the lattice points that are in its local domain.

Figure 2.5: Diagram showing how 8 processors are decomposed in Cartesian (left)
and pencil (right) decomposition. Colours correspond to processors with the same
MPI_Rank.

The first thing to note is that only the non-contiguous memory directions are important
to consider when looking at the location. In the pencil decomposition, each processor
has a full depth (z dimension in figure 2.5) stored locally. This means that for any given

11

location in the z direction, with the same x and y coordinates, the destination proces-
sor is the same. Once the row and column dimensions of the pencil decomposition are
known the destination processor can then be computed. We will only be solving prob-
lems with numbers of processors and decompositions where the entire domain can be
divided evenly across all the processors. This means that each process can use its local
knowledge of the pencil decomposition sizes. The other information that is necessary
is the dimensions of the actual decomposition, i.e. the number of processors in each
dimension.

The coordinates of the destination processor in the pencil decomposition can be com-
puted using

pencil_proc_coordx = global_coordx ∗ pencil_sizex.

and similarly for the y-direction. pencil_proc_coordx is the x coordinate of the destina-
tion processor in the pencil decomposition, global_coordx is the position of the lattice
point in the global lattice with respect to the x dimension, and pencil_sizex is the size
of the local arrays in the x dimension. Finally,

dest_proc = pencil_proc_coordx ∗ pencil_sizey + pencil_proc_coordy (2.16)

can be applied to each lattice site in order to compute the destination for that element.

Following this, we must also compute processors to receive from. A similar method
can be used but the depth must now be considered:

recv_proc = cart_proc_coordx ∗ cart_sizey ∗ cart_sizez+
+ cart_proc_coordy ∗ cart_sizez + cart_proc_coordz. (2.17)

2.5 Tests of Accuracy

Before the FFT solver could be timed and declared fit for use, it was necessary to
perform some tests to ensure the behaviour was consistent. Two main avenues for
testing were identified, testing directly against the SOR solver on one solve and testing
the results given by Ludwig for the Gouy-Chapman theory for electric double layers in
front of a charged wall[25].

Firstly, it was desired to test the FFT solver against the SOR solver in a standalone
test. This would allow for problems to be corrected quickly if they were encountered.
In order to obtain the correct answer using the SOR solver, it is necessary to have an
overall electroneutral system. Ludwig already contains a test for the SOR routine. Thus,
it would be simple, while also accurate, to compare the FFT solver to the SOR solver
using the already existing test case. The current test case sets a uniform wall of charges
at the z = 0 and z = Lz boundaries of the system and fills the inside uniformly such
that the system is overall charge neutral. The SOR solution is then compared to that

12

of the Gauss-Jordan method. In order to test the FFT solver it will be sufficient to test
it against the SOR solver for this problem. When comparing the solutions, one must
remember that the final answer may be offset by some constant value. This problem
does not have an exact analytical solution so it will serve only as a guide to whether or
not a consistent answer is being obtained with the FFT solver.

2.5.1 Gouy Chapman Problem

The Gouy-Chapman problem deals with a flat surface with a specified surface charge.
The electrolyte is symmetric and counter-ions are placed as necessary for the SOR
solver to function correctly. Thus the system is overall electroneutral and it models
an electric double layer. There is an analytical solution to this problem in the one-
dimensional case in the low potential approximation and the results from running Lud-
wig can be compared with this solution. The expected solution is of the form

Ψ(x) = ΨDexp(−κx)

where Ψ(x) is the potential and ΨD is the Stern potential at the surface of the wall and
is realted to the surface charge. κ is the inverse Debye length, κ = l−1D =

√
8πlBI .

lB = βe2

4πε
is the Bjerrum length with β−1 = kBT , e is the unit charge and ε = ε0εr

is the dielectric permittivity. Finally I is the ionic strength of the electrolyte given by
I = 1

2

∑
k z

2
kρB,k with zk as valencies of species k. ρB,k is the bulk charge density of

species k not at the wall.

As can be seen in figure 2.6 the results were close to the theory. The documentation for
Ludwig contains the parameters that were used in the original tests are given and these
can be used to repeat the results. They are also documented in the appendix, section
C.2. Reproducing the graphs generated with the SOR solver, by using the FFT solver
would give a positive indication that the FFT solver is working correctly.

2.5.2 Liquid Junction Problem

Timing of the FFT solver was conducted on one other real world problem, where the
problems with the scalability of the SOR solver were first seen. In the liquid junction
problem two liquids, each containing electrolytes of slightly different concentration and
diffusivity of the charged species, are brought into contact. The charges move such as to
equalise the charge, so charges from the higher concentration regions diffuse to regions
of lower concentration. Since the two species have different diffusivities however, they
migrate at different speeds and this causes parts of the system to remain charged. For
the full description of the effect refer to [26]. Again, the input parameters are given in
the documentation and the appendix. These can be used to verify that the solution is
correct before timings are conducted.

13

Figure 2.6: Plot of Ψ against position for the Gouy-Chapman problem comparing the
analytic and simulation results with ρ0,± = 1 · 10−2. Reproduced from [24].

2.6 High Performance Computing and Performance Met-
rics

The problems that are dealt with in Ludwig are in general quite large. This means that,
while the program has been written with the hope that laptop and desktop machines
can run it, usually high performance computing resources are necessary to compute the
solutions for large problems. For this project the two main systems that will be used are
HECToR[17], the UKs national supercomputing service and Bluegene/Q[3], an IBM
machine run by EPCC in the University of Edinburgh. A more thorough discussion of
the specifics of these machines will be presented later.

When building parallel applications, the main objective is that they will perform well on
a large number of processing elements. Measuring how well a program performs from
this perspective is usually done with the use of a metric called the speedup. Ideally if
n processors are used on a problem, the solution should be found n times faster. The
actual speedup of a piece of code can be found from:

Speedup(N) =
Tserial
TN

.

Here, Tserial is the time taken to execute in serial, and TN is the time taken to execute on
N processors. With effective parallelisation the value for speedup should be close to the

14

number of processors used. There are external factors that can cause this relationship to
deviate from the expected linear behaviour. For example, when using more processors
there may be more cache available, resulting in a speedup of the code. On the other
hand an increase in the number of processors will inherently increase the amount of
communications and will impact negatively on the performance. Modern supercomput-
ers usually have a mixed architecture, with shared memory nodes connected together
on a network. When running jobs on these machines, it is usually necessary to request
full nodes. This means that if the number of cores used is less than the node size, the
cores have access to more memory and cache than they would otherwise. As a result of
this it is common to compute speedup relative to the number of cores in a node and this
is what will be done in this project.

Normally this metric is used with a fixed problem size. This case is known as strong
scaling. The opposite of this is weak scaling, where the problem size is increased as the
processor count is increased. More precisely, the amount of data that must be processed
by each compute core remains the same. The latter is easier to achieve, but this project
will look at both.

Another term that will be used is the bi-sectional bandwidth. The bandwidth available
on a network describes the rate at which data can be transferred through it. In order to
compute the bi-sectional bandwidth of a parallel machine one can split the processors
into two equally sized groups. These groups should be chosen to have the smallest
number of network connections possible between the two groups. The bandwidth across
the split is the bi-sectional bandwidth.

2.7 Programming

Ludwig is currently written in ANSI C (1989) with the exception of calls to the library
function erfc() in the Ewald summation code. Still, most of the code attempts to
use abstract data types, which are usually more suited to object-oriented languages. To
avoid the overuse of void pointers that would arise from the use of C and abstract data
types, the criteria for encapsulation have been relaxed in some parts. For the parallelisa-
tion of the code, the message passing library MPI has been used. This allows for much
larger numbers of processors to be used than shared memory programming, which is
limited to not many more than 100. Ludwig has been successfully run on up to 131,072
MPI tasks[24]. The code has been written with the intention that it can be run in serial,
through the use of an MPI stub library and a parallel environment.

15

Chapter 3

Design & Implementation

In this section we shall discuss the main design of the code written, and some of the
specifics of how it was written. We will also mention the target architectures and how
the problems were actually run on these machines. Finally a discussion of the accuracy
tests and timing tests will be presented.

3.1 Target Architecture

Two main systems were used for this project, HECToR and BlueGene/Q.

HECToR is the UK’s national supercomputer service, though it will be replaced by
ARCHER at the end of 2013[17]. HECToR is a Cray XE6 system with that uses 16
core AMD Opteron 2.3GHz processors. Each node contains two of these processors
and is coupled with a custom built Cray Gemini interconnect to connect the processors
in a 3D-torus. These links have a peak bi-directional bandwidth of 8GB/s with latency
of 1-1.5µs. This allows for a high MPI point-to-point bandwidth and a low latency[17].
There is 32GB of memory available per node which is shared between all the cores in
a node. Altogether, 2816 XE6 compute nodes are offered, resulting in a total of 90,112
cores with a theoretical peak performance of 800Tflops. On HECToR speedup will be
referenced to 32 cores as this is the node size.

Bluegene/Q is hosted by EPCC as part of the DIRAC project, the UK’s supercomput-
ing facility for theoretical modelling. It is composed of custom chips with 16 1.6GHz
Powerpc64 A2 cores, each of which is capable of 4-way multi-threading. One of these
16 core processors comprises a node and in total there are 6144 nodes, meaning a to-
tal of 98,304 cores. This can show a peak performance of 1.26Pflops. The memory
available is 16GB per node, again shared between all the cores in the node. The in-
terconnect is also custom built and is a 5D-torus, capable of 40GB/s[3], allowing for
extremely high quality communications. For measurements, we will reference speedup
to the time taken using 16 cores on BlueGene/Q.

16

It is believed that both systems should perform well when conducting FFTs. Due to the
slower clock speed of the processors, BlueGene/Q is expected to perform worse than
HECToR on low core counts. However there is an excellent interconnect and as a result
the scalability should be better than that on HECToR.

For development and debugging purposes MORAR was used. The architecture of this
machine is similar to HECToR, but with one AMD Opteron processor comprising a
node. It also uses a factory standard interconnect. This is a machine maintained by
EPCC primarily for the use of MSc students in the University of Edinburgh. Timings
were not conducted on this machine as there is a maximum of 64 cores available. This
is too small to provide any interesting results but since it is less busy than the aforemen-
tioned machines, queue times are much shorter.

3.2 Three dimensional FFT Libraries

It was decided that due to the amount of time available for this project, a library
would be used for computing the 3D FFTs. Implementing an efficient 3D Fast Fourier
Transform algorithm would be an entire project in itself. There are two main 3D
FFT libraries, P3DFFT[29] and 2DECOMP&FFT[23], both of which show similar
performance[5]. P3DFFT is probably the most well known and it is a dedicated FFT
package whereas 2DECOMP&FFT has extra functionality such as routines for allocat-
ing arrays that were not needed for this project[23]. Although both libraries are written
in Fortran, P3DFFT provides a C interface. This is not the case with 2DECOMP&FFT.
For these reasons P3DFFT was the library of choice. P3DFFT takes care of all of the
messages necessary to perform 3D FFTs and provides routines to determine the sizes
of the local arrays on each processor. It then uses the FFTW[12] or IBM’s ESSL[4]
library to perform the actual transforms in each dimension.

For this project version 2.5.1 of P3DFFT was used. On HECToR it was built using
FFTW 3.3.0.1 as the base, which was already installed. On the BlueGene/Q machine
it was built on ESSL 5.1.1-0.ppc64, again already installed. For development purposes
the School of Physics computer lab machines and MORAR were used and here FFTW
version 3.3.3 was used. FFTW and P3DFFT are freely available according to the GNU
General Public License as published by the Free Software Foundation, however ESSL
is an IBM proprietary library and must be purchased.

3.2.1 Installing P3DFFT

P3DFFT has been written with four main compilers in mind. These are the GNU, PGI,
Intel and IBM compilers. It provides wrapper functions to make calling from C easier.
This means that when compiling to use with C, certain linker libraries need to be used to
ensure Fortran intrinsic functions are recognised. Due to its nature as a Fortran module,
the names of functions in the object file may also differ depending on the compiler.

17

Currently this is resolved by using compiler-specific FORT_MOD_NAME macros but as
a result compiling with any other compilers is extremely difficult. On HECToR the
PGI compiler was chosen as the best option. This is known to produce faster code than
the GNU compiler. The Cray compiler that is also available was not deemed to be an
option, due to the complication of compiling with it.

P3DFFT provides a configure script for generating makefiles. Using this it was simple
to install on HECToR. The exact command used was

./configure --prefix=/home/d45/d45/s1256564/work/build/
p3dfft-2.5 --enable-pgi --enable-stride1 --enable-fftw
--with-fftw=/opt/fftw/3.3.0.1/interlagos FC=ftn CC=cc
FCFLAGS=-O3 CFLAGS=-O3

Note the use of the -O3 flag here to ensure optimised code was produced. On HEC-
ToR, tests were conducted with and without the -O3 flag specified. The test_sine
program provided as part of P3DFFT was used as this prints the amount of time taken
per FFT forward and backward solve in seconds. When using 1 MPI task, time per
loop averaged over 25 iterations, the time per iteration was 0.082s with the -O3 flag,
whereas without it the time taken was 0.095s. Thus, it was decided that this flag should
be used for all timing .

On BlueGene/Q installation was somewhat more complicated. A number of issues
were encountered with both the configure script and the code itself when being used
with the ESSL library. As a result some work was necessary before the library could be
successfully used.

The first problem was that in order to compile MPI code with the IBM compiler, the
compiler wrappers mpixlc_r and mpixlf90_r were used. These did not, by de-
fault, know the path of the ESSL library. In general IBM compilers can find the li-
brary simply by passing the -lessl flag, and this was the case for the serial compil-
ers xlc_r and xlf90_r. The configure script of P3DFFT assumes that passing the
-lessl flag will find the library, so it was necessary to change the configure script
slightly. The proposed solution was to edit the configure script to stop it assigning the
-lessl flag in the Makefile and the path to the library was included manually in the
Makefile.am files in the appropriate locations. The configure script was then run with
the following command:

./configure --prefix=/home/e01/e01/rshort/p3dfft/
--enable-ibm --enable-essl --enable-stride1 CC=mpixlc_r
FC=mpixlf90_r CFLAGS=-O3 FCFLAGS=-O3

Again the -O3 flag was used for the final tests that were run.

Once this problem was resolved the code was successfully built and installed. The
library has testing routines as part of the source code and these were executed. On
HECToR the correct answers were obtained but it was found there was a problem with
allocating some arrays on BlueGene/Q. The correct answer would be obtained but the
program would crash. Again, this was a problem associated with the ESSL library but

18

this time to do with the actual P3DFFT code. A number of #ifdef statements are
included in the code, as the different base FFT libraries require different input. When
the ESSL library was being used the code attempted to allocate some arrays twice.
They are also deallocated twice, which caused the crash. It was again possible to fix
this with some relatively small changes to the code. Simply adding a test (using the
allocated() function available in Fortran) to see if the arrays were allocated before
allocating or deallocating. A final problem was discovered when trying to run the code
on one MPI task on BlueGene. This was to do with the interaction between the P3DFFT
library and the ESSL FFT routines. Unfortunately the cause was not found in this case.
As the main goal of this project was a parallel FFT library implementation it was not
deemed of too much concern. As will be discussed later, it is intended to replace the
library with code written by the authors of Ludwig to improve the ease of use.

A .tar file was created containing the changed version of the offending files and this
is available from the author upon request. The exact changes that were required are
given in appendix.

3.3 Integrating with Ludwig

It was necessary to make some changes in the Makefile used in Ludwig in order to use
the P3DFFT library in combination with it. The fact that P3DFFT is a Fortran library
means that it requires some extra flags to allow the C compiler use some of the built-in
Fortran routines. On HECToR the addition of the -pgf90libs flag, along with links
to the P3DFFT and FFTW library locations were all that was necessary. Bluegene/Q
needed more flags, as there is no single flag that provides all of the linking libraries
with the IBM compiler. Also passing of the locations of the libraries was required. The
complete list necessary for successful compilation is included in Appendix A.1.

In order to choose between using the SOR and FFT routines, function pointers were
used. The appropriate function is then pointed to at initialisation. The user can change
which solver to use by changing a variable in the input file at runtime. A full list of the
changed files is available in the appendix.

3.4 Cartesian and Pencil Decompositions

In order to use FFTs to solve Poisson’s equation in Ludwig it was required to write code
that would first execute the decomposition swapping before computing the solution of
the equation. Ludwig always uses a three dimensional Cartesian processor decompo-
sition. As mentioned earlier, in order to avail of a large number of processors when
computing FFTs it is necessary to use a pencil decomposition. As such it was necessary
to write code that would transform from the Cartesian to the pencil decomposition and
back again.

19

It was decided that this would be done via four main routines:

• Initialisation.

• Cartesian to pencil.

• Pencil to Cartesian.

• Clean up.

This was chosen as it was believed that the set up required for initiating the transfor-
mation should only be done once. The actual solution of Poisson’s equation will be
needed thousands of times in a typical run of Ludwig, thus the amount of work to be
done when computing this should be minimised. To achieve this, variables can be cre-
ated and given values in the initialisation phase. These variables are declared in file
scope with the static keyword to prevent external routines accessing them, while
allowing internal functions access to the values later in the execution. This allows for
data structures to be created in the initialisation and then used when actually conducting
the decomposition switching. As a result a clean-up routine is also necessary to ensure
all memory is freed and default values are reset.

The method chosen of communicating the data between processes was point-to-point
communication using MPI_Isend. Other methods such as defining sub communica-
tors and using Alltoall transformations were looked at but deemed too complicated
to implement easily. Thus, initialisation must include determining the correspond-
ing processors for swaps in both directions and setting up a method to execute these.
An array of MPI_Subarrays is used to keep a reference of which data corresponds
to which destination processor. This is much simpler to use than MPI_Vectors as
MPI_Subarrays are designed for use in multidimensional arrays and are associated
with a specific part of the array. Only the sub-array needs to be stored, and not the
starting address of the part of the array it corresponds to. These can then be used in
all subsequent communications. The other information that must be computed is the
number of processors that must be communicated with. Due to it being necessary to
allocate the various arrays, this is an important quantity.

Finally, it was decided to use this module to initialise the P3DFFT library. Before it can
be used to compute Fourier transforms, the dimensions of the problem must be passed
to P3DFFT. It also takes a variable that allows for overwriting of the input transform,
meaning a saving on memory, which will be valuable for larger problem sizes. P3DFFT
then provides a routine to allow the user find the sizes of the local pencil arrays, in both
real and Fourier space. This routine also returns the global starting address of the arrays,
which is useful for computing the k2 value. In order to reduce the number of calls to
the library from outside the decomposition switching module, the arrays of sizes and
starts were declared with the static keyword and routines written to provide access
to these arrays. To further save on memory, it was decided to use the same array in the
pencil decomposition for both spaces. Fourier space is made up of complex numbers, so
twice the memory would be needed to store the data points. However, it is also periodic
over the interval and half of the data in one dimension does not need to be stored. This

20

means that it is not immediately obvious how much memory should be allocated for
storing the pencil arrays. A routine which would return the larger of the two spaces was
thus written to allow for easy allocation.

3.4.1 Decomposition Switching Implementation

P3DFFT requires the processor dimension as input so it is necessary for either the user
to give this or it to be calculated by the program. The Ludwig runtime environment
allows for the user to set values in an input file at run time. An extra option was added
to this input file to allow for the pencil decomposition grid size to be specified. It was
also necessary to provide a default pencil decomposition for when the user does not
specify one, or an invalid one is specified. The MPI function MPI_dims_create is
useful in this instance. In general the best performance is seen when this grid is as close
to square as possible[5] [29]. This is usually the output of the MPI_dims_create
function, although it can be implementation dependent.

In the case where the Cartesian grid is also two dimensional, it was possible to simply
copy the data between two arrays on the same process. The same array cannot be used
for the entire program as the Ludwig arrays contain halo data and this must be removed
before passing it to P3DFFT. It is important to note that the pencil array must be exactly
the same, apart from these halos, as the two dimensional Cartesian array. If they differ
in any dimension the Fourier transforms will be incorrect. Thus some fairly rigorous
checking is required upon initialisation. This only needs to be done once as a variable
can be set to ensure the correct transformation operation between decompositions is
performed.

For all other cases, significantly more work is necessary. We will refer to figure 2.5 to
aid in the understanding of this section. From this figure, the x direction is referred to as
the column, y as row and z as depth. We also note that z is the direction of contiguous
memory. The first step is to compute how many messages must be sent. This can be
done by looking at the destination process of the first point in the local array, and then
iterating over the array until each element has been associated with a destination. The
size of the sub-array at each point can be used to skip over other points that have the
same destination process. This means that only a subset of the local array elements need
to be iterated over. Interestingly, the amount of processing necessary actually increases
with larger processor counts as more messages will be sent. Following from this, the
arrays for the sub-arrays and list of destination processors can be allocated.

Now, we have somewhere to store the data so the computation proceeds to find which
processes must swap with which using the formula in equation 2.16. We will look in de-
tail finding the destination from the Cartesian grid. The computation for the processes
to receive from in the pencil grid proceeds separately and is similar. Alternatively, it
would be possible to compute the destination processes in the Cartesian decomposi-
tion and then send the information. The receiving processes would then post wildcard
receives. The problem here is that it is difficult to work out before hand how many

21

receives are necessary, without doing most of the work towards finding out what pro-
cessors to receive from. It would also be unnecessary communication and for this reason
the former method was used.

To save on computation, the current implementation computes the sizes of the sub-
arrays to be sent (and consequently received) and sends these sizes to the receiving
process. It is important to remember that the Cartesian arrays in Ludwig have halos,
though the pencil arrays do not. This is done after the computation of the number of
destination processes, though there is some overlap in the computation. The sub-array
sizes mostly correspond to the size of the destination array, but care must be taken to
ensure the point corresponds to the first one in the destination array. This can be done
by subtracting global_coord%pencil_size from the sub-array size. That sub-
array can then be skipped over to the start of the next one. This is done in the rows, and
then columns. For the computation of the destination processes in the Cartesian decom-
position, note that only the row and column information is necessary. The processes in
the pencil decomposition have one entire dimension stored on them, the dimension that
is contiguous memory. Thus for any point with a given row and column coordinate the
destination process is the same regardless of the depth coordinate.

The receiving processes conduct a similar set of operations but they do not need to
compute the sub-array sizes, as these are received, and equation 2.17 is used. Also, it
is much easier to guess at the number of processes that will need to be received from
and accurately allocate memory based on this. Each process must receive one message
from each processor in the z-direction. If, after these have been accounted for, there
is more data to be received, at least twice as many processes must be received from
i.e. another full depth. If there is still more data to be processed, the total messages
must be at least twice this again, two further full depths. Both the x and y sizes of
the pencil arrays are in general the same as, or smaller, than the x and y sizes of the
Cartesian arrays. Thus, having to send four full depths is unusual. It is possible for
the user to specify pencil decompositions where this is not the case, though these will
show poor performance for the FFT as well as in this part of the code. For these reasons
the arrays were allocated with the minimum number of elements and then reallocated
to be twice as large if the arrays became full. For transforming back from the pencil
decomposition, the same sub-arrays and destination processors can be used as it is just
the inverse transformation.

Actually swapping between the two decompositions is then simply copying between
arrays, or a number of MPI_Isends. Non-blocking communication is used throughout
to allow for calculation to proceed simultaneously to communication.

3.5 FFT routine

In order to solve Poisson’s equation another routine was written for tha main computa-
tion. The first step is to find σ, the Fourier transform of ρ, the electric charge. Ludwig

22

has the capability of modelling different charge carriers. These are stored in one large
array with multiple entries for each lattice point. In order to compute the actual charge
density a routine is provided, psi_rho_elec, that returns the total charge at each
point. This is used to fill an array with the charge values.

This array is reordered so the data is in the pencil decomposition the Fourier transform
can applied to it.

Now equation 2.9 can be solved. It is important to note that the library being used com-
putes a non-normalized transform. Thus computing the forward and backward trans-
forms will multiply the input byN , whereN is the total number of points in the system,
and this must be accounted for. In order to save on the number of divides that would
occur in the routine, the entire divisor was computed before the divide. This means that
σ was multiplied by a factor of 1/(Nεk2). The reason for this is that divides are not
hardware pipelined and thus impact severely on performance.

Following this the inverse Fourier transform can be computed with the answer being
the desired electric potential, Ψ.

The last step is to transform the data back to the Cartesian processor decomposition so
that Ludwig can continue with the rest of its operations.

We will now discuss in more detail some of the more complicated parts of this routine.

3.5.1 k2 multiplication

When computing discrete Fourier transforms, there are different conventions for num-
bering the frequencies in Fourier space. It is important to follow the conventions of the
library or method being used. P3DFFT uses FFTW to do the Fourier transforms so the
FFTW documentation is relevant in this case. It was noted that the output was in the
standard order, that is "the k-th output corresponds to the frequency k/n"[13]. ESSL
also uses this convention, improving the portability of the code. A clearer way to state
this is in terms of frequencies. The positive frequencies are stored in the first half, while
the negative frequencies are stored in backwards order in the second half of the output.
The simplest way to achieve this is to compute an adjusted lattice point index, l, with
−Nx/2 ≤ l < Nx/2 and use this in equation 2.15 to find the kx values. Given is the
algorithm used to compute the kx values at each point, using ix to represent l:

ix = global_coord[X] - n_total[X]*
*((2*global_coord[X])/n_total[X]);

kx = (2.0*pi/n_total[X])*iz;

Note that integer division is exploited here to determine whether the global coordinate is
in the first or second half of the interval when computing (2*global_coord[X])/
n_total[X]. This gives values −π ≤ kx < π with positive frequencies in the first
half of the interval and negative frequencies in the second half, as required by the con-
vention.

23

The P3DFFT library provides useful calls to give the global position of the first element
of the local array, allowing for simple computation of the global coordinate values.
They must be manually updated as the array is iterated over.

k2 is then computed using equation 2.14. The actual code used is:

k_square = 1/((kx*kx + ky*ky + kz*kz)*epsilon*
*(n_total[0]*n_total[1]*n_total[2]));

In the case kx = ky = kz = 0, k2 is set to be zero. Then k_square is multiplied by
the Fourier transformed ρ array.

There are two other important considerations in this part of the code. Firstly, as P3DFFT
is a Fortran library, it considers the arrays to be contiguous in memory in the first index.
C uses the opposite convention, memory contiguous in the last index. This is not a prob-
lem when indexing arrays returned from P3DFFT, as they can be addressed in the usual
manner in C. An issue does arise when considering arrays that contain the information
about the sizes or positions of other arrays. For example, the values of the istart
array used in the code were created by P3DFFT. It contains the global address of the
first element of the local Fourier transform array. The value of istart[0] is infor-
mation pertaining to the contiguous memory direction (z-direction). Ordinarily, when
using C, this information would have been stored in istart[2] (for a 3D problem).
Care must be taken to ensure the correct elements of the array are used.

To further complicate matters, after computing the Fourier transform, P3DFFT leaves
the data in transposed form. The transposed decomposition can be seen in figure 3.1.

Figure 3.1: Diagram showing how the data is decomposed across the processors before
the FFT (left) and after the FFT (right). The decomposition stays the same regardless of
the stride1 flag. It only changes the local memory arrangement. Reproduced from
[18]

When building the library, the user has the option to specify a flag, -enable-stride1,
recommended by the author as it can show a significant improvement in performance[29].
It was thus used for all timing runs of the code. This flag changes the ordering of the
transposed array in memory. When not specified, the array retains the original ordering
from before the FFT was conducted. If specified, the array changes to the opposite

24

ordering after the FFT, i.e. the direction that was contiguous before the transform is
now the least contiguous. The result of this is a change in the lattice point that each ele-
ment of the array corresponds to depending on whether the flag is specified or not. The
P3DFFT library defines a preprocessor macro if the flag was used. Thus an #ifdef
preprocessor directive was used to check at compile time if the library has been built
with the stride1 setting enabled. This directive is defined in the file config.h
which is not automatically copied to the include directory. It must be copied manu-
ally to ensure the correct calculation is performed. Depending on the result, the order
in which the directions are iterated over is switched to ensure the next lattice site cor-
responds to the next one in memory. Care must also be taken to ensure the sizes of
the local Fourier transformed array correspond to the correct physical direction in the
simulation, as these are opposites in the two cases.

3.6 Testing

3.6.1 Unit tests

A unit test was written for the decomposition switching code. This test initialises each
location on the lattice with a unique number based on its location in the global grid
while in the Cartesian decomposition. Then the switching takes places and each lattice
point is tested to check if it has the correct value in the global grid while now in the
pencil decomposition. The decomposition can then be switched back and the values
can be checked again.

A unit test already exists in Ludwig for the psi_sor_poisson update routine. This
test consists of a system with two uniformly charged walls at z = 1 and z = Lz.
The rest of the system is initialised with charges to ensure the overall system is charge
neutral. Comparison with a Gauss Jordan routine is how the accuracy is then verified.
In order to test the psi_fft_poisson routine, the initialisation of this test was used,
and the results of the FFT were compared with the SOR results. This was written as a
new unit test however, to ensure that each file has a separate test.

3.6.2 Timing

Ludwig provides timing routines and these were availed of. These actual times are
taken using the MPI_Wtime function, which returns the wall time. Using these timers
was simpler than writing new ones. A routine, TIMER_statistics, is provided that
prints the values of all the timers that have been used in the code. The values printed are
the minimum time, maximum time, average time and number of calls. It is important
to ensure the number of calls is large enough to give an appropriate average time for
the computation. This allows for easy collation of the data at the end of a timing run,
especially if multiple parts of the code are being tested. The code in Ludwig makes

25

heavy use of assertions to ensure accuracy. These were turned off for timing runs to
improve speed and the flag -O3 was passed to the compiler to allow it to perform
optimisations.

3.6.3 Gouy Chapman Reference Problem

The Gouy Chapman problem is a 1 dimensional problem. However, using a one dimen-
sional grid limits the number of processors that can be used when solving with FFTs
to one. For this reason the grid used was 64 × 8 × 8. The data was then replicated,
such that the system was composed of many one dimensional problems and thus the
testing will actually test the 3 dimensional nature of the FFTs, while still appearing one
dimensional. Tests were conducted using 8 and 16 cores in order to test the various
decomposition possibilities.

In order to verify the accuracy of the FFT solver plots of the electric field in the system,
Ψ, were created after a large number of steps. These plots should agree with the one
presented in figure 2.6

3.6.4 Liquid Junction Potential Problem

The liquid junction problem is a truly three dimensional one. As well accuracy test-
ing, timing tests were conducted on this problem. Accuracy tests were performed on
problem sizes of 1283 and 2563. The problem sizes used for timings were 643, 1283,
2563, 5123 and 10243. It should be noted that the number of points in the 2563 system
is 1.6 · 107. This is very large, and storing a double for each one of these points can
pose memory problems. On BlueGene/Q the 2563 problem could not be run on less
than 8 cores and the 5123 problem not on less than 128. On HECToR, where there
is twice as much memory available per node the 2563 problem could be successfully
executed on one node. The 5123 problem must use at least two nodes however, so 64
was the minimum number of cores used for this. It is also worth noting that running the
problem with this problem size can produce output files totalling up to 26GB. The user
must be careful that the required space is available. Problem sizes of 5123 and larger
would not in general be used for physical problems for this reason, but for the purposes
of this project they were investigated in order to better understand the performance of
the solver.

When it came to timing tests, core counts ranged from 2 to 32, 768. Most tests were con-
ducted with the nodes fully subscribed, though some were done with under-subscribed
nodes in order to determine if a performance benefit could be seen. The data obtained
from these tests could then be applied to understanding both the strong and weak scaling
of the code along with looking at the absolute time taken.

At this stage some timings were also taken for the decomposition switching initialisa-
tion, to determine if it was time critical and needed more work or not.

26

3.6.5 Scripts

Further to this a bash script was written to combine the data into easily readable for-
mats for plotting. This also allowed for consistency when extracting the results for a
particular run of the code.

27

Chapter 4

Results

The results have been divided into two main sections. First the results of checking the
accuracy of the FFT solver are presented and discussed. Following this, the main timing
results will be shown and further analysed. Note that all physically measured quantities
will be presented in terms of simulation units.

4.1 Accuracy

In this section the results of the accuracy testing will be presented. Tests were con-
ducted on both BlueGene/Q and HECToR to allow for any errors that may be caused
by the different base libraries. This also tests that the implementation itself is hardware
independent which is important in Ludwig.

4.1.1 Single Solve - Unit Tests

First the decomposition switching was tested. This test was conducted on various core
counts and problem sizes to ensure all possibilities were accounted for. When it was
found to be working correctly, development and further testing of the FFT routine could
continue.

Next, testing of the FFT routine was conducted on the unit test outlined in section 2.5.
Comparing the FFT solution against the SOR solution showed that the general form
of the results on the 643 grid size for this problem are the same. Figure 4.1 shows a
plot of the potential in this system, with the x and y coordinates held constant and the
z coordinate varied. The x and y coordinates are not as interesting as the potential is
constant across them.

From this graph we see that the shape of the potential is consistent. However, if we look
in more detail at this plot, the values at the edges of the system are not as similar as
were originally expected. In this example, the value from the FFT solver was 0.001271

28

-0.001

-0.0005

 0

 0.0005

 0.001

 0.0015

 0.002

 0 10 20 30 40 50 60

Ψ

z

FFT
SOR

Figure 4.1: Plot of the potential with varying z coordinate in a 643 system for the unit
test. The shape generated by the SOR and FFT solvers is the same.

on the boundary points, while the SOR solver produced a value of 0.001282. This is
a fractional difference of about 0.9%. Usually two different algorithms of the same
method could be expected to have a difference of less than 0.01%, with differences only
being caused by numerical inaccuracies.

In order to understand this further the fractional difference was plotted against the po-
sition. This should show where the difference comes from. As can be seen in figure
4.2, this fractional difference varies depending on the system size, with smaller grids
giving a larger error. It also shows that the main source of error is the boundaries. The
error spikes near 20 and 100 on the z axis are due to the fact that the potential is close
to zero at these points. As a result, computing the fractional difference entails dividing
by a small number, so the results are not informative. In figure 4.2 some of these points
have been removed to improve clarity. A complete plot can be seen in the appendix in
figure C.1.

The variance with system size can be explained by poor discretisation. The FFT al-
gorithm multiplies by 1/k2 in Fourier space. Smaller grids approximate the space less
well than larger ones. This could result in incorrect values being found on the smaller
grids.

It is important to note that, in reality, the SOR and the FFT solvers are different methods
of solving Poisson’s equation. With the SOR method, the derivative is approximated by

29

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 20 40 60 80 100 120

Ψ

z

Lz=128
Lz=64
Lz=32
Lz=16

Lz=8

Figure 4.2: Plot of the fractional difference between the SOR solver and the FFT solver
for the unit test problem sizes from Lz = 8 to Lz = 128. Lx and Ly were held constant
at 64. The z positions have been scaled so all data sets will fit onto the same plot. This
shows how the error becomes more prevalent with smaller sizes. Some points have been
removed where the fractional error is distorted due to dividing by a small number. A
plot with these points included can be seen in the appendix in figure C.1.

a finite difference and iteratively solved. The FFT solver approximates the derivative
in a different way, multiplying by ik in Fourier space. This is where the deviations
between the two methods stem from. For the particular problem being solved in the
unit test, there is no analytical solution. There is only an approximate one. The fact
the the SOR and FFT solvers show similar behaviour shows they both approximate the
solution well. However, it is not possible to say which is exactly correct. Still, the total
potential in the system is the same to a high degree of accuracy, with a difference of
approximately 1 · 10−13 when the total potential is approximately 1 · 10−3. The FFT
solver was also noted to have an advantage over the SOR solver. The FFT solver does
not require the system to be overall charge neutral, which will allow for new problems
to be simulated in the future.

In general, Lx = 64 is the smallest length that is used when looking for interesting
physical results. Larger grid sizes are used more often. This means that the differences
displayed on small grids are not a problem for general cubic problems, and become less
so the larger the problem.

30

If long, thin systems are to be modelled there will be some issues. In this case the poor
discretisation in the shorter dimensions will reduce the accuracy of the solution. To
determine the effect of this problem different grid shapes and sizes were experimented
with. It was found that systems with high aspect ratios (e.g. 256×4×4) will not obtain
the correct results. In general, the smallest the grid should be in any dimension to obtain
correct physical simulations is 32, though larger is better if possible.

It is difficult to quantify exactly how problematic this error is. It changes depending on
each grid dimension. Below 32 in any dimension, it cannot even be guaranteed that a
reasonable solution will be found. For example, using a 256× 4× 4 grid will produce
results that differ from the SOR solver by up to a factor of 10. The shape of the potential
generated is not even similar. When used in the main part of Ludwig, ’not a number’
errors appear due to the large inaccuracies in the solution to Poisson’s equation. On the
other hand, solving a 64 × 4 × 4 grid with the FFT solver gives only slightly different
results from the same solver on a 643 grid.

This has an impact on comparing the performance of the SOR solver and the FFT solver.
When using the SOR solver for physical modelling, grid sizes such as 256×4×4 would
be used, with the system periodic in the second and third dimensions. This leads to the
effect of modelling a larger system but using a smaller number of actual points. The
FFT solver would need a problem size of at least 256 × 32 × 32 in order to reliably
obtain the correct answers. As a result of having less lattice points it is possible the
SOR solver could produce a result for this problem in a shorter time. On truly three
dimensional problems it is still expected that the FFT solver will perform better. This
was then introduced as a test to be conducted in the liquid junction potential problem.

The unit test was also used to test the algorithm in the case that the -enable-stride1
flag had not been passed to the P3DFFT library at build time. In this case, the same re-
sults were found as when the flag was passed.

At this stage, it was not known how much of an impact the small differences near
the boundaries would affect physical simulation. Thus it was decided to continue and
determine if the physics modelled were correct.

4.1.2 Gouy Chapman problem

Testing was conducted on the Gouy Chapman problem on a 64×8×8 grid as originally
intended. The results from the Gouy Chapman problem are presented in the form of
plots of the potential compared with the analytical value in figure 4.3.

This problem was initialised with zero potential and ρ0,± = 1 · 10−2. Comparing these
plots from both Bluegene/Q and HECToR with figure 2.6, we see the same behaviour
as has been modelled before. The parameters used were the same as those used in the
original test and these are given in the appendix C.2. After the simulation is run, the
potential has a negative value in the centre. In the SOR case this was Ψc = −2.364 ·
10−6, whereas the FFT solver produced a value of Ψc = −2.3307 · 10−6. The origin

31

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

 0 5 10 15 20 25 30

lo
g
 Ψ

x

FFT simulation
Guoy Chapman

(a) HECToR

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

 0 5 10 15 20 25 30

lo
g
 Ψ

x

FFT simulation
Guoy Chapman

(b) BlueGene/Q

Figure 4.3: Results for the Gouy Chapman problem on HECToR and BlueGene/Q.
The plots compare the simulation results when using the FFT solver with the analytical
solution for ρ0,± = 1 · 10−2. This can be compared against figure 2.6.

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0 5 10 15 20 25 30

lo
g

 Ψ

x

nostride FFT simulation
Guoy Chapman

Figure 4.4: Results for the Gouy Chapman correctness test on HECToR when the
stride1 flag was not passed to the the P3DFFT library.

of this background term is obscured and it is expected that it would differ from method
to method. When comparing with the theory, this background is subtracted as only the
gradients of the potential are physically relevant. This also ensures that all values are
above zero which is necessary to present this as a log plot.

32

 0

 2e-08

 4e-08

 6e-08

 8e-08

 1e-07

 1.2e-07

 1.4e-07

 1.6e-07

 1.8e-07

 0 200 400 600 800 1000

Ψ

Time/100

sor Lx=128
fft Lx=128

ΔΨP

(a) Lx = 128

 0

 2e-08

 4e-08

 6e-08

 8e-08

 1e-07

 1.2e-07

 1.4e-07

 1.6e-07

 1.8e-07

 0 50 100 150 200 250 300 350 400

Ψ

Time/100

sor Lx=256
fft Lx=256

ΔΨP

(b) Lx = 256

 0

 2e-08

 4e-08

 6e-08

 8e-08

 1e-07

 1.2e-07

 1.4e-07

 1.6e-07

 1.8e-07

 0 10 20 30 40 50

Ψ

Time/100

 sor Lx=128
 fft Lx=128

 fft32 Lx=128
 fft128 Lx=128

ΔΨP

(c) Lx = 128

 0

 2e-08

 4e-08

 6e-08

 8e-08

 1e-07

 1.2e-07

 1.4e-07

 1.6e-07

 1.8e-07

 0 10 20 30 40 50

Ψ

Time/100

 sor Lx=256
 fft Lx=256

fft256 Lx=256
ΔΨP

(d) Lx = 256

Figure 4.5: Results for the liquid junction potential test on HECToR. Here we see the
shape generated by the FFT solver is similar to that generated by the SOR solver. In the
zoomed in plots, the sizes of the two other dimensions were varied and these sizes are
indicated on the plot.

The bulk charge densities were found to be ρB,+ = ρB,− = 1.043 · 10−2 for the SOR
solver and ρB,+ = ρB,− = 1.044 · 10−2 for the FFT solver. This also agrees with the
original test of the SOR solver which found a value of 1.044 · 10−2 for both bulk charge
densities. The difference in the SOR solver results is due to the original simulation
running on a 64× 2× 2 grid, while this test was on a 64× 8× 8 grid.

In the appendix, figure C.2 is also presented. This shows a plot of the SOR and FFT
solver results for the Gouy Chapman problem against the analytical solution for the
case where ρ0,± = 1 · 10−3. Again we see close agreement with the theory suggesting
that overall the FFT solver is producing acceptable results.

Presented in figure 4.4, is a plot of the potential for the Gouy Chapman problem when
the P3DFFT library was built without using the -enable-stride1 flag. This shows
that the alternative k2 multiplication implementation is also correct.

Using the stride1 flag led to another slightly different value for Ψc = −2.3289·10−6.
This shows how even a small change to the algorithm effects the background value,

33

while retaining the correct physical answers.

Overall, the FFT solver was found to provide excellent agreement with the theoretical
answer to the physical Gouy Chapman problem. The project could thus continue to
look at the liquid junction potential problem.

4.1.3 Liquid Junction problem

In order to check the correctness of the FFT solver in the liquid junction problem, plots
were produced which show the evolution of the mean potential over time. These are
shown in figures 4.5 and 4.6.

 0

 2e-08

 4e-08

 6e-08

 8e-08

 1e-07

 1.2e-07

 1.4e-07

 1.6e-07

 1.8e-07

 0 200 400 600 800 1000

Ψ

Time/100

sor Lx=128
fft Lx=128

ΔΨP

(a) Lx = 128

 0

 2e-08

 4e-08

 6e-08

 8e-08

 1e-07

 1.2e-07

 1.4e-07

 1.6e-07

 1.8e-07

 0 100 200 300 400 500 600

Ψ

Time/100

sor Lx=256
fft Lx=256

ΔΨP

(b) Lx = 256

 0

 2e-08

 4e-08

 6e-08

 8e-08

 1e-07

 1.2e-07

 1.4e-07

 1.6e-07

 1.8e-07

 0 10 20 30 40 50

Ψ

Time/100

 sor Lx=128
 fft Lx=128

ΔΨP

(c) Lx = 128

 0

 2e-08

 4e-08

 6e-08

 8e-08

 1e-07

 1.2e-07

 1.4e-07

 1.6e-07

 1.8e-07

 0 10 20 30 40 50

Ψ

Time/100

 sor Lx=256
 fft Lx=256

ΔΨP

(d) Lx = 256

Figure 4.6: Results for the liquid junction potential test on BlueGene/Q. Here we see
the shape generated by the FFT solver is similar to that generated by the SOR solver.

From these plots we see that the overall shape of the curves are quite similar and there
is no difference between the results on HECToR and BlueGene/Q. There is however a
slight deviation from expected when using the FFT solver. We see the asymptotic value
reached is correct, but the number of time steps taken to reach it is slightly different.

It was during these tests that the problem of using long thin systems was first discov-
ered. If a problem size of 128 × 2 × 2 was used the answer was completely incorrect.

34

Increasing this to 128 × 4 × 4 improved the result significantly. On HECTOR, using
an even larger grid, such as 128× 32× 32, was tested. This moved the answer slightly
closer to the SOR solution. A cubic grid of 1283 shows even closer agreement to the
curve obtained by the SOR solver. These differences are only seen in the initial phase
of the problem and the decay lengths are similar.

When testing the Lx = 256 system, a grid of 256× 4× 4 was used for the SOR solver.
This does not give the correct answer with the FFT solver. The smallest grid that could
be used was one of size 256× 32× 32. A larger 2563 grid was also tested on HECToR
to determine how much of an influence the grid sizes have on the accuracy. In this
example there was little difference between the grid sizes. This is due to the fact that 32
is a large enough value to produce acceptable results.

Overall the results for FFT solver in the liquid junction potential problem show agree-
ment with the SOR solver and thus the theory. It is posited that the difference in the
boundary values cited in section 4.1.1 is the source of the difference between the SOR
and FFT solvers. From this it can be deduced that the FFT solver will give reasonable
physical approximations in further simulations.

4.2 Performance

Now the results of the performance and timing testing will be presented. In all cases the
FFT solver was found to produce results much faster than the SOR solver, though the
scaling of the FFT solver on HECToR has not improved over the SOR method. Some
differences in performance were found between HECToR and BlueGene/Q and these
are mostly down to the difference in processor speeds and communications networks.

4.2.1 Gouy Chapman problem

An immediate performance gain was seen when using the FFT solver over the SOR
solver. For the Gouy Chapman problem, with a 64× 8× 8 (4096 total points) grid, on
8 cores the FFT solver averaged 0.00017 s for each update of Ψ. On the other hand,
the SOR solver averaged 0.0145 s for the same problem. This is a speed up by a factor
of over 100. The improvement in time comes from the reduction in the number of
operations that must be performed. Using equations 2.3 and 2.13 we can look in more
detail at the actual number of operations that must be performed. For this problem the
SOR solver took 200 iterations for one solve. This equates to a total of 6×4096×200 =
4915200 operations. The FFT solver takes 2 × 4096 × log(4096)

log(2)
+ 4096 = 102400

operations. In theory this could show a speedup of up to 200 times. Swapping between
decompositions and the all-to-all communications limit this to only 100 times speedup.
The k2 multiplication has also only been roughly accounted for and in reality the FFT
algorithm requires more operations than this.

35

4.2.2 Liquid Junction Problem

In this section we see more performance increases when using the FFT solver instead
of the SOR solver. The issue of scalability has not been solved with this new method on
HECToR, but using the FFT solver is significantly faster than the SOR solver. However,
BlueGene/Q shows excellent scaling for the FFT solver, surpassing that of the SOR
solver in some cases and improving on the times for the FFT solver on HECToR on
high cores counts.

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 4 16 64 256 1024 4096 16384

S
p

e
e
d
u
p

MPI Tasks

Ideal speedup
FFT

SOR

(a) HECToR - 643 speedup

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 4 16 64 256 1024 4096 16384

S
p

e
e
d
u
p

MPI Tasks

Ideal speedup
FFT

SOR

(b) BlueGene/Q - 643 speedup

 0.001

 0.01

 0.1

 1

 10

 1 4 16 64 256 1024 4096 16384

Ti
m

e
 (

s)

MPI Tasks

FFT
SOR

(c) HECToR - 643

 0.001

 0.01

 0.1

 1

 10

 1 4 16 64 256 1024 4096 16384

Ti
m

e
 (

s)

MPI Tasks

FFT
SOR

(d) BlueGene/Q - 643

Figure 4.7: Speedup and actual time per solve for the FFT solver and the SOR solver.
This used a problem size of 643 for the liquid junction problem on HECToR and Blue-
Gene/Q. The SOR solver took an average of 190 iterations to solve this system. Speedup
is referenced to the number of cores in a node.

In figure 4.7 we can see the various measurements that were made for the 643 problem
size on HECToR and BlueGene/Q. The speedup in these plots has been computed rel-
ative to the number of processors per node in the respective machines. The first thing
that one notices is that the speedup of the SOR solver has not been improved upon and
that HECToR has worse speedup than BlueGene/Q. However the actual time per solve
has been improved upon significantly, by almost a factor of 100 on both machines.

It is interesting to compare HECToR and BlueGene/Q for this problem. We see that on

36

a low number of cores the performance of HECToR is much better. As the core count is
increased, BlueGene/Q improves and even surpasses HECToR. The poor performance
at low core counts is because BlueGene/Q has slower cores than HECToR (1.6GHz vs
2.3GHz). On the other hand, on paper, BlueGene/Q has better network capabilities.
This is shown to be true by the performance of the FFT solver on larger numbers of
cores as 3D FFTs are ultimately limited by communication.

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 4 16 64 256 1024 4096 16384

S
p

e
e
d
u
p

MPI Tasks

Ideal speedup
FFT

SOR

(a) HECToR - 2563 speedup

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 4 16 64 256 1024 4096 16384

S
p

e
e
d
u
p

MPI Tasks

Ideal speedup
FFT

SOR

(b) BlueGene/Q - 2563 speedup

 0.01

 0.1

 1

 10

 100

 1000

 1 4 16 64 256 1024 4096 16384

Ti
m

e
 (

s)

MPI Tasks

FFT
SOR

(c) HECToR - 2563

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 4 16 64 256 1024 4096 16384

Ti
m

e
 (

s)

MPI Tasks

FFT
SOR

(d) BlueGene/Q - 2563

Figure 4.8: Speedup and actual time per solve for the FFT solver and the SOR solver
on the liquid junction problem. This used a grid size of 2563 for the liquid junction
problem on HECToR and BlueGene/Q. Speedup is referenced to the number of cores
in a node.

In figure 4.8 we see that BlueGene/Q shows excellent scaling on the 2563 problem, but
slower performance on low numbers of cores. For this size of problem we see again
that for large core counts BlueGene/Q can actually be faster than HECToR due to this
scaling. This turnaround occurs at 1024 MPI tasks. BlueGene/Q takes 0.014 s per solve
while HECToR takes 0.015 s. With higher numbers of tasks, BlueGene/Q continues to
improve, while HECToR has reached its optimum performance.

The increase in problem size means that each processor has significantly more work to
do and this affects BlueGene/Q more strongly for low core counts as it has the slower
processors. Looking at the performance on HECToR we are interested to see how the

37

FFT solver compares relative to the SOR solver on larger problems. We see that, on
2 cores, increasing the problem size to 2563, the FFT solver only slowed down by a
factor of about 100. The SOR solver performed approximately 400 times slower. The
computational complexity is dependent on the number of points in the system. Thus a
lower complexity method shows more relative gains for larger problems and the FFT
solver could be used for very large problems on machines with good communication
networks.

When tested on the 1283 problem size similar results were found as can be seen in figure
C.3. BlueGene/Q’s excellent scaling properties result in the time for solves improving
over the times on HECToR above 512 MPI tasks. The unpredictability of communica-
tions can also be seen in the plot of the times on HECToR in this problem (figure C.3c).
Times on 256 MPI tasks are slower than on 128 MPI tasks for both the SOR and FFT
solvers in this case. It is likely that for this particular problem size and processor count
the network becomes overloaded.

Times for the two solvers were also analysed for a problem size of 5123. A plot of
these times is available in the appendix, figure C.4. The FFT solver continues to show
a speedup of a factor of 100 over the SOR solver. However, the performance on large
numbers of cores is only about 10 times better on HECToR. In this problem the FFT
solver must transmit more data, both in the decomposition switching stage and when
computing the Fourier transforms. On large numbers of cores this is becoming a size-
able overhead. The performance is still better than that of the SOR solver because of the
huge reduction in the number of actual operations that must be conducted. BlueGene/Q
continues to show how good the interconnect is and the scaling seen is almost ideal. In
this example it outperforms HECToR on core counts higher than and including 1024. If
large problems are to be run with many cores, BlueGene/Q should be used over HEC-
ToR. Using small numbers of cores, HECToR is the recommended machine because of
the improved performance and the shorter queue times.

Finally a problem size of 10243 was tested. This was done mostly as a proof of concept,
that the FFT solver could solve this system in a reasonable time. Running this size is
difficult, as it requires a large amount of memory and the output files created by Ludwig
are also large. On HECToR with 2048 cores, each solve took 0.5 s. At this rate it would
be possible to solve problems of this size, if the memory and storing of the resulting
data were not issues.

One other thing noticed was the core counts that show the best performance on HEC-
ToR. These correspond to evenly decomposed pencil grids. For example we see peak
performance on the 643 and 2563 problems on 256 MPI tasks. This corresponds to a
16 × 16 pencil grid. The 5123 problem shows peak performance on 1024 cores, or a
32 × 32 pencil grid This validates the proposal that the dimensions of the pencil grid
should be kept as similar as possible.

In figure 4.9 the times taken for the SOR solver and the FFT solver with different size
grids are presented. The SOR solver used a 256× 4× 4 grid while the FFT solver used
a 256× 32× 32 grid. This plot was produced with the goal of determining whether the

38

 0.001

 0.01

 0.1

 1

 1 2 4 8 16 32 64 128 256 512

Ti
m

e
 (

s)

MPI Tasks

FFT 256x32x32
SOR 256x4x4

Figure 4.9: Plot of the times taken per solve of Poisson’s equation for the SOR and FFT
solver on differently sized grids on HECToR. The SOR solver used a 256× 4× 4 grid,
while a 256× 32× 32 grid was used for the FFT solver.

FFT solver was actually a better method for solving a current physical problem. With
the SOR problem size, there is a much lower limit on the core count that can be used.
We are also concerned with the amount of budget on our machine that will be used up
by solving this problem. On HECToR, where this particular experiment was conducted,
there are 32 cores per node so the amount of time for this core count is important. As
can be seen, the FFT solver clearly still solves the system much faster, even though it is
larger. This shows that the constraint of not being able to use narrow systems is not a
problem, and the FFT solver will still save the user time and money. It is expected that
this will be the same on BlueGene/Q though it was not tested.

4.2.3 Under Subscribing Nodes

In order to look at other possibilities of improving the performance of the code, un-
der subscribing nodes was briefly analysed. The speedup using 8 cores per node on
BlueGene/Q, along with the speedup using 8 and 16 cores per node on HECToR are
presented in figure 4.10.

We see here that there has been a very small performance benefit. This is due to the
increased amount of cache and main memory available to the processors. The perfor-

39

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 4 16 64 256 1024 4096 16384

S
p

e
e
d
u
p

MPI Tasks

Ideal speedup
FFT

FFT 16 cores per node
FFT 8 cores per node

(a) HECToR

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 4 16 64 256 1024 4096 16384

S
p

e
e
d
u
p

MPI Tasks

Ideal speedup
FFT

FFT 8 cores per node

(b) BlueGene/Q

Figure 4.10: Plot of speedup on BlueGene/Q and HECToR for the 2563 problem for
under subscribed nodes. The original speedup with full node subscription is included
for reference.

mance gain is such that it is not worth using this for real simulations as it would lead
to significant increases in the amount of CPU time used. When nodes are under sub-
scribed, the entire node is allocated and charged to the budget, which must be paid for.
There are other issues with this as well. For example, on HECToR the cores on the node
are filled from the start. This means that when using 16 cores in a node, they are all
located on one processor1. If the user were to ensure that the cores were spread across
these two processors it may be possible to show further performance increases. This
was not deemed worthwhile for this project for budget reasons and due to it being a
high risk endeavour, it is not likely that performance gains will be seen.

4.2.4 Weak Scaling

Now that it was clear that the FFT solver performed significantly better than the SOR
solver, the weak scaling of the FFT solver could be analysed.

Figure 4.11 shows the weak scaling on both HECToR and BlueGene/Q with different
size problem domains. When the grid size is increased the width and height of the
domain on each processor must decrease to accommodate holding the entire depth of
the problem. Were it the SOR solver we looked at, this would have a significant impact
on the amount of communication taking place. When computing FFTs each processor
must send almost the entire local data set to other processors. There will be more actual
communications due to the increased number of processors and this will determine if
communications are the limiting factor in this algorithm. The fact that the speedup tails
off in figure 4.11a shows that this is the case. This is to be expected due to the heavy
use of MPI_Alltoall. However, we again see that the network on BlueGene/Q
is better than that of HECToR. Figure 4.11b shows almost perfect weak scaling on

1Since HECToR has two 16 core processors per node

40

 1

 4

 16

 64

 256

 1024

 4096

 1 4 16 64 256 1024 4096

S
p

e
e
d
u
p

MPI Tasks

Ideal scaling
32768
65536

131072

(a) HECToR weak scaling

 1

 4

 16

 64

 256

 1024

 4096

 1 4 16 64 256 1024 4096

S
p

e
e
d
u
p

MPI Tasks

Ideal scaling
32768
65536

131072

(b) BlueGene/Q weak scaling

Figure 4.11: Plots showing the weak scaling of the FFT solver on the BlueGene/Q and
HECToR system for the liquid junction problem. The numbers show how many ele-
ments each processor had to work on. Th dimensions of the domains differ depending
on the number of MPI tasks used as each must have entire rows of contiguous memory.

BlueGene/Q showing that the communication is not a large overhead on the calculation
on this system.

In light of this, in order to further improve the performance of the FFT solver, it would
be worth considering reducing the communications. For example, it is possible that the
decomposition switching routine could be further optimised.

4.2.5 Decomposition Initialisation & Switching

It was also of interest to determine if the decomposition switching routines were per-
forming well. Plots of the various measured quantities when considering decomposition
initialisation are presented in figure 4.12.

This initialisation routine shows unusual behaviour for a parallel program. On HECToR
the times for this routine depend only on the grid size. Above 32 cores, for a given grid
the time taken is roughly the same. In this routine only the first element of each subarray
that needs to be sent is analysed. This saves on the actual number of elements to be
processed. The number of messages being sent does not vary a largely with changes in
processor count. Combined, these properties mean that changing the number of cores
does not impact on the amount of work that each processor needs to do, so the time
taken stays similar. Note that the messages being sent are the same size regardless of
the grid size and the number of processors. This routine also makes calls to the P3DFFT
library and it is likely that the timings on BlueGene/Q for large problem sizes and small
core counts are due to these external routines. These involve the initial set up of the
data and are dependent on the size of the problem and number of processors.

Comparing the times on HECToR and BlueGene/Q suggest that communication is the
limiting factor in this routine. It would be expected that on low core counts HECToR’s

41

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 4 16 64 256 1024 4096 16384

S
p

e
e
d
u
p

MPI Tasks

Ideal speedup
643

1283

2563

(a) HECToR speedup for decomp init.

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 4 16 64 256 1024 4096 16384

S
p

e
e
d
u
p

MPI Tasks

Ideal speedup
643

1283

2563

(b) BlueGene/Q speedup for decomp init.

 0.01

 0.1

 1

 10

 1 4 16 64 256 1024 4096 16384

Ti
m

e
 (

s)

MPI Tasks

643

1283

2563

5123

(c) HECToR: decomp init times.

 0.001

 0.01

 0.1

 1 4 16 64 256 1024 4096 16384

Ti
m

e
 (

s)

MPI Tasks

643

1283

2563

5123

(d) BlueGene/Q: decomp init times.

 1

 4

 16

 64

 256

 1024

 4096

 1 4 16 64 256 1024 4096

S
p

e
e
d
u
p

MPI Tasks

Ideal scaling
32768
65536

131072

(e) HECToR weak scaling.

 1

 4

 16

 64

 256

 1024

 4096

 1 4 16 64 256 1024 4096

S
p

e
e
d
u
p

MPI Tasks

Ideal scaling
32768
65536

131072

(f) BlueGene/Q weak scaling.

Figure 4.12: Plots showing performance of the decomposition initialisation part of the
code. In the first four plots numbers are the problem sizes. In the last two, the numbers
are the number of lattice sites that each processor had in its local domain. Speedup is
referenced to the size of a node.

faster processors would result in faster times than on BlueGene/Q. This is not the case
and it would appear that BlueGene/Q’s superior communications network is much more
suited to this problem. It would be possible to conduct this routine without sending any
messages. The result of this would be more computation, which could increase the time

42

taken on BlueGene/Q while reducing the time on HECToR. Since Ludwig is a code that
will be deployed on many different architectures, the best overall performance should be
selected. For this reason this routine could be modified to remove all communications.

This is not a particularly time critical piece of code, being called only once. We shall
look at the 5123 problem on 4096 processors on HECToR since this number of proces-
sors has the fastest time to solve Poisson’s equation for this grid size. The time taken for
one call to psi_fft_poisson is 0.06 s. The decomposition initialisation takes 1.11
s. After 20 updates of the potential, Ψ, more time has been spent on the update rou-
tine. This update routine will be called many thousands of times in an actual physical
simulation, thus it is much more important that the update routine is fast.

Next, the actual switching time was measured. It was necessary to conduct these timings
separately from the overall FFT routine timings to ensure the FFTs were timed correctly.

 0.001

 0.01

 0.1

 1

 10

 1 4 16 64 256 1024

Ti
m

e
 (

s)

MPI Tasks

decomp switch
FFT routine

Figure 4.13: HECToR decomposition switching time. This plot compares the time for
the total FFT solving routine with the amount of time switching between decomposi-
tions.

Figure 4.13 shows the time taken for the entire FFT routine to update Ψ and the actual
switching of decompositions. Comparing these times it is clear that the decomposition
switching is not the main time consuming part of the code. We know that the k2 mul-
tiplication is O(N), while the FFT computation is O(NlogN). Thus, in order to make
further improvements in the overall speed of the computation, the actual FFTs would
need to be modified.

43

Processors Time (s) - stride1 Time (s) - No stride1
32 0.205 0.194
64 0.113 0.106

128 0.056 0.052
256 0.028 0.027
512 0.017 0.019

1024 0.015 0.015

Table 4.1: Table of the times taken per solve for the FFT solver on the 2563 liquid
junction problem with and without the stride1 flag specified. These timings were
conducted on HECToR.

4.3 Other Results

Further to the results found, some possible improvements to the code and implementa-
tions were proposed. There was a small amount of time left at the end of the project. It
was decided to use this to test the performance of the stride1 flag.

4.3.1 P3DFFT stride1 flag

The effect of the stride1 flag was also investigated for the Gouy Chapman and junc-
tion potential problems on HECToR. This flag is recommended by the author of the
P3DFFT library and the code was thus built using this as there was not time provisioned
for testing this at the start of the project.

For the Gouy Chapman problem it was found that not specifying the stride1 flag
had the effect of further improving the performance of the code. With the flag, the
time per solve was 1.7 · 10−4 s on 8 cores but without it, the time reduced to 1.4 · 10−4

s. For the liquid junction problem there was also an improvement seen when this flag
was not specified. As an example the 2563 problem on 128 cores, the time reduced
from 0.055 s to 0.052 s. A more comprehensive set of results can be seen in table 4.1.
These improvements are small on a per solve basis, but, as obtaining physical results
takes thousands of solves, it could be worthwhile availing of them. For example in
the Gouy Chapman problem, where Poisson’s equation is solved 40, 000 times to reach
equilibrium, the overall time reduction in time spent solving Poisson’s equation is 1 s,
from 6.8 s to 5.8 s. In reality theses time savings are inconsequential considering the
time taken to rebuild the library if the user would like to change the option. P3DFFT
provides other options with the intention of improving performance. There was not
time available to test any of these but it should be noted for future users.

44

Chapter 5

Discussion

In this chapter an analysis of the original risk assessment and work analysis will be
undertaken along with a critical evaluation of the work done. Overall this project was
seen as a success. The work plan and risk assessment proved useful in completing the
project, though some adjustments were necessary.

5.1 Work plan

The importance of design was noted throughout the course of this project. The original
work plan was created on the basis of an incomplete design, which led to it being hard to
follow. This original plan can be seen in the appendix, section D.1. No time had been
allowed for the creation of the decomposition switching routine as this had not been
identified as necessary when preparing the project. This routine took time to write and
to ensure correct functionality, as it was of vital importance. As a result the project time
scale was set back immediately and time was not available for tuning the performance of
the code on the two architectures used. The possibility of the FFT routine being hard to
integrate with Ludwig was identified in the original risk assessment and the mitigation
was applied successfully by shifting the work schedule and removing the performance
tuning that had been planned for the end of the project.

Also of note is the fact that the boundary differences between the FFT and SOR solvers
was not identified earlier in the project. Testing had been conducted but this was not
rigorous enough, leading to delays later on. In this case these delays were not signif-
icant and provided more discussion of the method and algorithm used. It could have
been the case that these errors led to significantly more incorrect results, with the im-
pact of invalidating the results obtained. Much has been learned about design and the
formulation of the work plan and this will be applied in future projects.

45

5.2 Risk Analysis

In terms of the original risk assessment, available in the appendix in section D.2, only
one of the risks that were identified occurred as outlined above. One risk that was
not predicted did occur towards the end of the project - the budget for CPU time on
HECToR ran out. Another account with more budget had been set up earlier in the
project and later timings could be conducted using this account. As a result no time
was lost and more results could be found. However, this should have been identified as
a risk with a large number of students using the same budget for an extended period of
time.

46

Chapter 6

Conclusions

As a result of this project, Ludwig has a functional FFT solver for Poisson’s equation in
the electrokinetics module. This was the main goal of the project and has been achieved
successfully.

In addition to this, timings were conducted that showed this FFT solver to be far su-
perior to the original SOR solver in terms of time taken for each solve. However, The
FFT solver was found to be inaccurate on small grids. This can lead to unpredictable
behaviour in small or long, thin systems. For this reason the FFT solver in its cur-
rent state could not completely replace the SOR solver. However, the FFT solver does
have the advantage of, in theory, solving systems that are not electroneutral, which is a
requirement of the SOR solver. This could lead to new problems being simulated.

Overall, the code necessary for the FFT solver is more complicated than that of the
original SOR solver. Along with this, the program is also harder to use. There are more
options in the input file that the user must check. The use of two libraries in order to
conduct the FFTs makes the initial set-up of the program more difficult than previously
necessary. Considering these overheads, the FFT solver is still seen as being superior
to the SOR solver, though there are some improvements that could be made.

The library chosen, P3DFFT, was found to perform well but was not as user friendly
as would be desired. The problems with installation on BlueGene/Q were the major
drawback of this library. It cannot be guaranteed that it will work as packaged on any
architecture. For the general user of Ludwig, it will be a large overhead in starting to
use the code. Also, the fact that it is a Fortran library has an impact on the readability
of the code in Ludwig. Arrays must be addressed using Fortran ordering, increasing the
complexity of the code. A library written in C would be a significant improvement.

47

6.1 Further Work

With the current method, new physical systems can be modelled in a shorter time than
before. In the future, a number of steps could be taken to improve on what has been
done in this project. The decomposition initialisation could be done without commu-
nication to reduce the time it takes. It was also noted that the first Cartesian to pencil
decomposition switch could be avoided by constructing the electric charge in the pen-
cil decomposition. Writing a non-library Fast Fourier transform routine would also be
of benefit to the users of Ludwig, allowing for the entire code to be available in one
package and easily installable.

Alternatively, more advanced methods, such as Multigrid, which are O(N) could be
implemented to further improve the speed and accuracy of solving Poisson’s equation.
While this would be difficult to implement it is likely that the performance gains would
make it worthwhile.

48

Appendix A

Information on Ludwig

A.1 SVN Revision details

Ludwig is a project on CCPForge. This project was conducted on the branch fft-
testcharge. This was branched from the testcharge branch at the start of the project.
The last svn revision that is relevant to main body of this project is 2098. This is the
revision that timings were conducted on. The code submitted is from revision 2141.
This version is better formatted but there is little to no difference in the times.

A.2 File Changes

The following are the files that were modified in the branch:
Makefile: added flags necessary to compile executable with P3DFFT on both Blue-
Gene/Q and HECToR.

ludwig.c:
included psi_s.h
changed psi_sor_poisson to ludwig->psi->psi_poisson_func
added call to decomp_finish if using psi_poisson_fft

psi_s.h:
added psi_poisson_func to psi_s

psi.h:
added new function psi_solver_set

psi.c:

49

added new function psi_solver_set

psi_rt.c:
added call to psi_solver_set
added call to info to print whether or not FFT solver will be used

timer.h:
added new timer id, TIMER_PSI_UPDATE

timer.c:
added a new timer name, psi_update.

input.ref:
added pencil_grid option and electrokinetics_fft option

The Makefile in tests was also edited to contain the necessary flags and new files.

A.3 File Additions

The following files were added to the src/ directory in the fft-testcharge branch:
psi_fft.h
psi_fft.c
decomp.c
decomp.h

The following files were added to the tests/ directory in the fft-testcharge branch:
test_psi_fft.c
test_decomp.c

50

Appendix B

Compiler flags

B.1 BlueGene/Q compiler flags

A list of the flags, and directories for finding those flags, necessary to compile C code
invilving calls to the P3DFFT library on Bluegene/Q follows:

-L/bgsys/drivers/V1R1M2/ppc64/comm/xl/lib
-L/bgsys/drivers/V1R1M2/ppc64/comm/sys/lib
-L/bgsys/drivers/V1R1M2/ppc64/spi/lib
-L/opt/ibmcmp/xlsmp/bg/3.1/bglib64
-L/opt/ibmcmp/xlmass/bg/7.3/bglib64
-L/opt/ibmcmp/xlf/bg/14.1/bglib64
-R/opt/ibmcmp/lib64/bg/bglib64
-L/bgsys/drivers/toolchain/V1R1M2/gnu-linux/lib/gcc/
powerpc64-bgq-linux/4.4.6
-L/bgsys/drivers/toolchain/V1R1M2/gnu-linux/lib/gcc
-L/bgsys/drivers/toolchain/V1R1M2/gnu-linux/lib/gcc/
powerpc64-bgq-linux/4.4.6/../../../../powerpc64-bgq-linux/lib
-lmpich -lopa -lmpl -lpami -lSPI -lSPI_cnk
-lpthread -lrt -lstdc++ -lmpichf90 -lxlf90_r
-lxlopt -lxlomp_ser -lxl -lxlfmath -ldl
-lnss_files -lnss_dns -lresolv -lm

It is also worth noting, the ESSL library used is located at:
/opt/ibmmath/lib64/libesslbg.a

51

Appendix C

Results & Tables

C.1 Extra Plots

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 20 40 60 80 100 120

Fr
a
ct

io
n
a
l
e
rr

o
r

in
 Ψ

z

Lz=128
Lz=64
Lz=32
Lz=16

Lz=8

Figure C.1: Plot of the fractional difference between the SOR solver and the FFT solver
for problem sizes from Lz = 16 to Lz = 128. The z positions have been scaled so all
data sets will fit onto the same plot. This shows how the error becomes more prevalent
with smaller sizes. The points of large error near z = 20 are where the potential is near
zero, so computing the fractional error requires dividing by a very small number. A plot
with these points removed can be seen in the results section in figure 4.2.

52

1e-07

1e-06

1e-05

1e-04

 0 5 10 15 20 25 30

lo
g

 Ψ

x

FFT simulation
SOR simulation
Guoy Chapman

Figure C.2: Results for the Guoy Chapman problem on HECToR. The plot compares
the simulation results when using the FFT solver and the SOR with the analytical solu-
tion for ρ0,± = 1 · 10−3.

C.2 Experimental Parameters

Here we present lists of the simulation parameters that were used in the experiments in
order to aid repeatability. All values are given in simulation units.

C.2.1 Gouy Chapman problem

Unit charge e = 1
Temperature kBT = β−1 = 3.333 · 10−5

Valency z± = ±1
Dielectric permittivitty ε = 3.3 · 103

Diffusivities of the species D± = 1 · 10−2

Initial charge densities ρ0,± = 1 · 10−2

Bjerrum length lB = 0.723
Initial surface charge σ = 3.125 · 10−2

The system was overall electroneutral.

53

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 4 16 64 256 1024 4096 16384

S
p

e
e
d
u
p

MPI Tasks

Ideal speedup
FFT

SOR

(a) HECToR - 1283 speedup

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 4 16 64 256 1024 4096 16384

S
p

e
e
d
u
p

MPI Tasks

Ideal speedup
FFT

SOR

(b) BlueGene/Q - 1283 speedup

 0.001

 0.01

 0.1

 1

 10

 100

 1 4 16 64 256 1024 4096 16384

Ti
m

e
 (

s)

MPI Tasks

FFT
SOR

(c) HECToR - 1283

 0.001

 0.01

 0.1

 1

 10

 100

 1 4 16 64 256 1024 4096 16384

Ti
m

e
 (

s)

MPI Tasks

FFT
SOR

(d) BlueGene/Q - 1283

Figure C.3: Plots of the speedup and actual solve times for a liquid junction problem
size of 1283 on HECToR and BlueGene/Q. Speedup is referenced to the number of
cores on a node.

 0.01

 0.1

 1

 10

 100

 1000

 1 4 16 64 256 1024 4096 16384

Ti
m

e
 (

s)

MPI Tasks

FFT
SOR

(a) HECToR 5123

 0.01

 0.1

 1

 10

 100

 1000

 1 4 16 64 256 1024 4096 16384

Ti
m

e
 (

s)

MPI Tasks

FFT
SOR

(b) BlueGene/Q 5123

Figure C.4: Times for FFT and SOR solvers on the 5123 liquid junction problem.

54

C.2.2 Liquid Junction Potential Problem

Unit charge e = 1
Temperature kBT = β−1 = 3.333 · 10−5

Valency z± = ±1
Dielectric permittivitty ε = 3.3 · 103

Diffusivities of the species D+ = 0.0125, D− = 0.0075

55

Appendix D

Workplan and Riskanalysis

D.1 Workplan

1. Extracted FFT solver
The SOR solver part of LUDWIG will be extracted and an original implementa-
tion of the FFT solver built using this extracted version. This allows for easier
development, with debugging and functionality tests being done on the actual
solver instead of the entire LUDWIG code.

2. FFT solver in LUDWIG
At this stage the FFT solver can be merged into the original code base using the
knowledge gained from the extracted implementation.

3. Tests of Functionality
While tests will be running throughout to ensure the implementation is correct,
LUDWIG includes some specific tests. This stage will involve ensuring these
tests pass and the answer obtained by the new implementation is correct.

4. FFT & SOR Benchmarks
In order to judge the the level of success of the project it will be necessary to test
the performance of the new FFT implementation against the old SOR one. Of
importance to test will be the relative performance in terms of compute time and
scalability of the solution.

5. Analyse Results
Now it will be possible to look at the data from the tests of the SOR solver against
the FFT solver and conclude whether there has been a performance increase, and
if there is the value of this.

6. Performance Tuning HECTOR
Since HECToR is one of the target architectures for LUDWIG, it will be worth-
while taking time to ensure performance is maximised for the architecture. There
are a number of factors that could impact on the performance of the code, such as

56

how P3DFFT is built, and these will need to be investigated.

7. Performance Tuning BG/Q
The BlueGene/Q machine will also be available for this project and it will be
interesting to compare performance on this against HECToR. This is obviously
time permitting and will depend on whether the work goes to plan up to this stage.

8. Analyse results
Once again, after the performance has been tuned

9. Write Dissertation
The intention here is that this will be an ongoing process throughout the period.
This should serve to reduce pressure at the end of the work period and allow for
more time to be spent reviewing the writing.

10. Prepare Presentation
Most of the material for this will already have been generated during the writing
of the dissertation. However, it will be necessary to ensure there is time avail-
able to practice the presentation so that the requirements, such as length, are met
satisfactorily.

57

June July August

1 2 3 4 5 6 7 8 9 10 11 12

Extracted FFT solver

FFT solver in Ludwig

Tests of Functionality

Working Ludwig FFT solver

FFT & SOR Benchmarks

Analyse Results

Performance Tuning HECTOR

Performance Tuning BGQ

Analyse results

Write Dissertation

Review Dissertation

Prepare Presentation

58

D.2 Risk Analysis

Risk FFT method not faster than SOR
Likelihood Low
Mitigation Have other methods that can be investigated. Conduct timings as soon

as possible to allow maximum time for this
Impact High (change to project outcomes)
Risk Difficulty in getting a working solver of Poisson’s Equation with FFTs
Likelihood Medium
Mitigation It may be difficult to have an FFT solver work correctly in conjunction

with LUDWIG. Performance tuning can be neglected if this takes more
time than expected.

Impact Medium (2-3 weeks)
Risk Selected for World Orienteering Champioships (week 6 of schedule)
Likelihood Medium
Mitigation Will budget extra time, and plan to have work that does not need internet

access to do that week.
Impact Low (1 week)
Risk Technical difficulties such as P3DFFT installation on BG/Q problems
Likelihood Low
Mitigation Try to ensure all necessary libraries are installed on the systems to be

used before the work on the project actually begins. Already installed
on HECToR.

Impact Low (1 week)
Risk Lack of access to machines (HECToR and BG/Q)
Likelihood Low
Mitigation Ensure all work is in revision control and can use the Morar system for

smaller scale tests. How much of a problem this is, is very dependent
on the time during the project which it occurs.

Impact Low (1 week)

59

Bibliography

[1] Arfken, G. Mathematical Methods for Physicists, 3, Academic Press, pp. 485-486,
905, and 912, (1985)

[2] Gerhard Besold, Derivation of the Poisson-Boltzmann equation, (2006)

[3] Bluegene/Q Website http://www.epcc.ed.ac.uk/facilities/dirac (5th Aug 2013)

[4] IBM ESSL documentation (Online), http:/
/publib.boulder.ibm.com/infocenter/clresctr/vxrx/
index.jsp?topic=i%2Fcom.ibm.cluster.pessl.v4r2.pssl100.doc%2Fam6gr_bbibli.htm
(6th Aug 2013)

[5] Evangelos Brachos, Parallel FFT Libraries, University Of Edinburgh, (2011).

[6] M.E. Cates, K. Stratford, R. Adhikari, P. Stansell, J.-C. Desplat, I. Pagonabar-
raga, and A.J. Wagner Simulating colloid hydrodynamics with lattice Boltzmann
methods, J. Phys.: Condens. Matter 16, S3903-S3915 (2004)

[7] Complex Fluid Lab Website, University of Huelva, http://
www.complexfluidlab.com/complex_fluid_eng.htm (26 Jul 2013)

[8] J. Cooley and J. Tukey An Algorithm for the Machine Calculation of Complex
Fourier Series, Mathematics of Computation, 19 90, pp. 297-301, (1965)

[9] P. Debye and E. Hückel The theory of electrolytes. I. Lowering of freezing point
and related phenomena Physikalische Zeitschrift 24 185-206 (1923).

[10] M. Deserno and C. Holm, How to Mesh up Ewald Sums, J. Chem. Phys., 109: 18,
(1998)

[11] J.C. Desplat, I. Pagonabarraga, P. Bladon, Ludwig: A parallel Lattice-Boltzmann
code for complex fluids, 134, 3, 273-290, (2001)

[12] Frigo, Matteo and Johnson, Steven G., The Design and Implementation of FFTW3,
Proceedings of the IEEE 3, 2, pp 216–231 (2005)

[13] FFTW documentation (Online), http://www.fftw.org/fftw3_doc/The-1d-Discrete-
Fourier-Transform-_0028DFT_0029.html#The-1d-Discrete-Fourier-Transform-
_0028DFT_0029, (24 Jul 2013)

60

[14] Alan Gray, Alaistair Hart, Oliver Henrich and Kevin Stratford, Scaling Soft Matter
Physics to Thousands of GPUs in Parallel, EASC (2013)

[15] L. Greengard and V. Rokhlin, A Fast Algorithm for Particle Simulations, Journal
of Computational Physics, 73, pp. 325-348 (1987)

[16] David J. Griffiths Introduction to Electrodynamics Reed College, 4th ed. (2013)

[17] HECToR Website http://www.hector.ac.uk/ (5th Aug 2013)

[18] David Henty Advanced Parallel Programming, Lecture 12, Parallel FFTs Univer-
sity of Edinburgh, (2013)

[19] R.W. Hockney and J.W. Eastwood Computer Simulation Using Particles, ed.3,
Taylor & Francis Group, pp. 18-24 (1988)

[20] Heike Jagode Fourier Transforms for the BlueGene/L Communication Network
University of Edinburgh (2006)

[21] M. Kazhdan, M. Bolitho and H. Hoppe Poisson Surface Reconstruction Euro-
graphics Symposium on Geometry Processing (2006)

[22] V.M. Kendon, J.-C. Desplat, P. Bladon, and M.E. Cates 3-D Spinodal Decomposi-
tion in the Inertial Regime Physical Review Letters 83 pp. 576-579 (1999).

[23] N. Li and S. Laizet, 2DECOMP&FFT - A highly scalable 2D decomposition li-
brary and FFT interface, Cray User Group 2010 conference, Edinburgh, (2010)

[24] Ludwig Documentation (2013)

[25] J. Lyklema Fundamentals of Interface and Colloid Science Academic Press
(1995).

[26] S. Mafé, J.A. Manzanares and J. Pellicer, The Charge Separation Process in Non-
Homogeneous Electrolyte Solutions J. Electroanal. Chem. 241, 5 7-77 (1988).

[27] MareNostrum supercomputer website http://www.bsc.es/marenostrum-support-
services

[28] I. Pagonabarraga, B. Rotenberg and D. Frenkel Recent advances in the modelling
and simulation of electrokinetic effects: bridging the gap between atomistic and
macroscopic descriptions Physical Chemistry Chemical Physics 12 pp.9566-9580
(2010).

[29] Dmitry Pekurovsky P3DFFT: A Framework for parallel computations of Fourier
Transformations in Three Dimensions, SIAM J. Sci. Comput. 34, 4, pp.C192-
C209, (2012)

[30] William H. Press, Saul A. Teukolsky, William T. Vetterling and Brian P. Flannery
Numerical Recipes in C §12 Cambridge, 2, 1999

[31] William H. Press, Saul A. Teukolsky, William T. Vetterling and Brian P. Flannery
Numerical Recipes in C §19 Cambridge, 2, 1999

61

[32] B. Rotenberg, I. Pagonabarraga and D. Frenkel Coarse-grained simulations of
charge, current and flow in heterogeneous media, Faraday Discussions: Multiscale
Modelling of Soft Matter, 144, pp. 223-243 (2009)

[33] Titan website http://www.olcf.ornl.gov/titan/ (5th Aug 2013)

[34] Ulrich Trottenberg, C. Cornelis W. Oosterlee and Anton Schulle Multigrid Aca-
demic Press, ed. 1 (2001)

62

