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Abstract

The aim of this MSc project was to implement the image-based point cloud visualisation algorithm 
as  proposed  by  Paul  Rosenthal  and  Lars  Linsen.  This  particular  algorithm  performs  all  its 
computation on image space and therefore, its performance does not depend on the input data set. 
Furthermore, an optimisation was applied to this implementation by decomposing the image among 
the multiple SMs on the GPU. Every SM had a decomposed part of the image stored on the shared 
memory  and  thus,  the  threads  inside  the  SMs  communicate  through  the  shared  memory.  The 
performance  improvement  achieved  was  two  or  three  times  faster  depending  on  the  memory 
accesses  required  in  the  original  implementation.  Finally,  a  WebGL implementation  has  been 
implemented. The architecture of the WebGL implementation is very similar to the OpenGL one but 
with some significant differences due to the absence of some OpenGL features. The performance of 
the WebGL and OpenGL implementations  is  very similar  because the core computation is  still 
executed on the GPU.
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1 Introduction

There is a need in many fields to visualise real objects. One way to accomplish this is to create  
those objects using many triangles. However, when accurate detail of objects is needed, utilisation 
of triangles is not a feasible solution. The last few decades a lot of research has been done in the 
area of visualisation and interpretation of data coming mostly from 3D scanners. 3D scanners are 
devices that can produce information about objects such as appearance and colour. They can scan 
objects either by physical touch or by emitting some kind of radiation or light and determine the  
shape of the object as well as other properties[1]. After acquiring such information about an object, 
they have to be visualised or interpreted. Many algorithms exist for visualising such information. 
Furthermore, as the size of the data produced by the 3D scanner increases, ways for efficient storing 
and visualisation of this data has to be investigated and thus a lot of research has been done in this  
area as well. The applications of point cloud visualisation vary. It can be used in movies or video 
games to visualise real objects or in other areas where high fidelity is needed.

1.1 Motivation

The goal of this dissertation is to investigate point cloud visualisation techniques and implement an 
image-based algorithm using the Open Graphics Library (OpenGL) as proposed by Paul Rosenthal 
and Lars Linsen[2]. Point cloud visualisation involves a lot of processing and thus sometimes it is  
impractical to use it because of the low performance. The reason for choosing the image-based 
algorithm is because it performs all its computation on image space and that makes it unique and 
interesting  to  investigate  it.  Therefore,  after  implementing  the  image-based  algorithm,  an 
investigation on its performance is carried out, the bottlenecks are spotted and finally optimisation 
is applied.

Furthermore, there has been a trend over the last few years in running graphics applications through 
web browsers using the Web Graphics Library (WebGL). Thus, an implementation in WebGL has 
been made and a detailed analysis as well as a comparison with the OpenGL implementation is 
provided.

1.2 Report structure

Initially, background information about point cloud visualisation and applications is presented as 
well as a brief summary of OpenGL because the image-based algorithm is implemented with this 
library. In the next chapter, the image-based algorithm is explained in depth and the structure of the 
implementation is given. Output images to verify the correct behavior of the application are given 
in addition advantages and disadvantages of the image-based algorithm.

In chapter 4, the performance of the image-based algorithm is analysed using different data sets, 
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each with different  point  magnitude.  Because both the Central  Processing Unit  (CPU) and the 
Graphics Processing Unit (GPU) are used in graphics applications, both the CPU and the GPU code 
were  profiled  and  the  bottlenecks  were  identified.  After  having  the  bottlenecks  spotted,  an 
optimisation was proposed and applied. Then, the output of the optimised implementation is shown 
as well as the performance improvement for different data sets.

The WebGL implementation is  discussed in chapter  5,  how it  was implemented,  differences  in 
performance  with  the  OpenGL implementation  and  possible  improvements  that  can  be  made 
regarding the performance in the future.

Finally, In chapter 6, possible future work is proposed for the OpenGL implementation as well as  
the WebGL one. For the OpenGL is proposed a system with multiple GPUs which could benefit the 
performance by distributing the points among the GPUs. Furthermore, the utilisation of Octrees as a 
data structure for storing the points is proposed. For the WebGL implementation, the possibility of 
using WebCL is explained. Also, a comparison with an implementation made with the Point Cloud 
Library (PCL) library is proposed.
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2 Background

2.1 Point Cloud Visualisation

Many point cloud visualisation algorithms exist. They all have different properties or they might 
depend on the input data. They can be classified according to the input data. The algorithm might 
not have any proof of the shape of the object and the only information that they hold is the spatial  
position  through  the  input  data.  Alternatively,  some  algorithms  can  take  into  account  other 
information about the object such as breaklines, open and closed surfaces etc. The most common 
steps in point cloud visualisation algorithms include pre-processing, mesh generation and finally 
post processing. The pre-processing steps usually apply noise reduction, data sampling and holes 
filling. The core part of these algorithms is the mesh generation. This step converts the input points 
to triangles and these points might be exactly the same points as the input or additional points for 
optimal mesh generation. Finally the post-processing steps correct the generated mesh by splitting 
or inserting triangles or even reducing them.[3]

All these algorithms perform their computation in object space. They generate a mesh and then they 
modify it.  Paul  Rosenthal  and Lars Linsen have proposed another  algorithm. This  algorithm is 
completely different from the others because it performs all its computation in image space. The 
image space point cloud visualisation algorithm is the subject of this dissertation and is explained in 
detail in the next chapters.

The ability of 3D scanners to sample objects with high frequency, produces millions of points and is 
not feasible for the applications to visualise. This is because of either limited memory or that they 
visualise them with very low performance. A lot of research has been done on efficient ways of 
storing those points.

One  data  structure  that  is  commonly  used  is  the  Octree.  Octree  is  a  regular  hierarchical  data 
structure. The first node is the root. Each node has eight children, which forms a 2x2x2 regular 
division of the parent node but there is no limit to the number of children. In general it could have 
N3 children (in previous case N = 2). With Octrees, not all the points have to be rendered but 
depending on the view of the object, whole sub-trees can be discarded. However, Octrees seem to 
occupy more memory because of the pointers to other nodes that have to be stored. [4]

3D scanners can produce various information types, depending on what the application needs. The 
kind of information needed in point cloud visualisation and computer graphics usually contains the 
vertex  coordinates  that  represent  the  position  of  a  point,  surface  normals  and colours.  Surface 
normals  are  vectors  perpendicular  to  a  point  or  to  a  surface,  and  they  are  used  in  lighting 
algorithms. In addition,  colours might be included in a file as well  as other properties like the 
material of the vertex.
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The information that  is  produced by the 3D scanners is  stored in files.  These files contain the 
coordinates of the points and usually other properties of the points such as surface normals and 
colours. There are many file formats for storing this information. The most famous formats are the 
Polygon File Format (PLY) and the OBJ. However, other file formats exist like X3D which uses 
Extensible Markup Language (XML) to represent 3D geometry. These file formats are used for a  
wide variety of graphics application from video games to Computer-Aided Design (CAD) programs 
and not only merely in point cloud visualisation.[5]

The PLY format was developed by the Stanford University. It consists of a header that includes 
information about how many vertices the file contains, what properties each vertex has (if any) and 
finally the number of the faces. Faces are lists of vertices expressing which vertices to connect to 
create polygons. [6]

2.2 Applications

In this section, applications of point cloud visualisation are presented. There is a large range of 
applications and every application that needs detailed representation of objects can utilise point 
cloud visualisation techniques.

2.2.1 Medicine

Point cloud visualisation can be extensively used in the field of medicine because there is a demand 
for  visualising different body parts and internal human organs. A 3D visualisation system has been 
proposed  for  the  case  of  location  and navigation  for  atrial  fibrillation  ablation  operation.  This 
system mainly consists of an electrode catheter which produces data about the position of the heart 
and outputs this data to an algorithm. The first step of this algorithm is to reconstruct the surface 
using  the  Poisson  surface  reconstruction  algorithm.  Then  some  noise  points  produced  by  the 
operation and breathing are discarding. After this step a model with enough details is produced and 
by applying additional processing, further information can be collected and parts of the heart can be 
picked up.[7]

2.2.2 Geology

In many cases when geologists want to investigate the surface of the earth, point cloud visualisation 
systems have been used. In particular, light detection and ranging (LiDAR) has been employed to 
collect information about the surface of the Earth. This process involves flying an airplane over the 
land and LiDAR, which is a scanner, directs laser pulses towards the land and produces topological 
information. In many cases, geologists want to investigate the land for scarps and examine areas for 
earthquake risks and thus they use point clouds.[8][9]
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2.3 OpenGL

OpenGL is an application programming interface (API) which can access the graphics hardware. It 
includes more than 500 functions for manipulating the GPU and sending data to it.  OpenGL is 
portable and can run even entirely on software if a GPU is absent. However, it does not include 
support for reading images from files or describing three dimensional objects. Instead, objects are 
constructed from primitive geometric types like points and lines.

The  latest  version  of  OpenGL (version  4.3),  has  changed  dramatically  and  has  become  more 
flexible giving more control to the programmers. The common way that OpenGL works is:

• Send the data for constructing the objects to the GPU.

• Write shader programs, which are executed on the GPU, to manipulate this data.

• Finally, render the points using the shader programs mentioned above.

2.3.1 The OpenGL pipeline

Every time we render data passed by our program to the GPU, a number of stages are executed 
known as the OpenGL pipeline. Figure 1 shows the stages that are executed. The orange boxes can 
be programmed but the green ones cannot. The vertex and fragment shaders are mandatory whereas 
the tesselation and geometry shaders are optional.

• The  vertex  shader  is  issued  for  any  vertex  that  is  specified  in  the  drawing  command. 
Therefore, it includes code for manipulating a vertex, usually to transform it but it might be 
very simple and just pass the vertex to the next stage of the pipeline.

• The  tesselation  shader,  if  it  is  activated,  is  used  for  describing  geometric  objects  by 
processing the vertices passed by the vertex shader. For better-looking results, it might also 
add more geometric primitives.

• The geometry shader includes processing of individual geometric primitives or it can create 
new ones.

• The rasterizer cannot be accessed by the programmer and receives the geometric primitives 
by the previous  stage (note that  some of  them might  be rejected if  they are out of  the 
viewport) and produces fragments. Fragments are candidate pixels, which mean that they 
might be rejected later on.

• The final stage of the pipeline is the fragment shader. It is used to process fragments (or 
individual  pixels).  The  most  common operation  in  fragment  shader  is  to  determine  the 
colour of a pixel.[10]
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2.3.2 GLSL

As we have seen in the previous sections, OpenGL uses shader programs to render primitives on the 
screen. Shaders are small programs written in a specialised programming language called OpenGL 
Shading  Language  (GLSL).  GLSL  is  very  similar  to  the  C  language  with  some  C++  also 
incorporated. For every shader (vertex shader, fragment shader etc), a different program has to be 
written.

These programs include a main() function, receive some variables as inputs from previous stages 
in the pipeline which are declared as global and output some variables to the next stage. These 
shader programs have to be compiled and linked using a compiler on the GPU. The compiler does 
not read the programs from files but instead the programs have to be passed to special functions as 
C strings. Furthermore, GLSL provides many functions for manipulating vectors, matrices as well 
as many mathematical functions. Moreover, GLSL provides variable types for matrices and vectors.
[10]

2.3.3 Points, colours and transformations

We have seen that OpenGL can only render primitives such as points or triangles that consist of 
points.  The  points  are  represented  with  four  coordinates:  the  x,  y,  z  and  w.  The  first  three 
coordinates are the position of the point in the three dimensions while the last  one is  used for  
normalisation and its value is 1.0. Also, four coordinates indicate position whereas three coordinates 
(x, y, z) indicate a direction. Surface normals consist of three coordinates because they need to 
indicate a direction.

OpenGL can only work with Red, Green, Blue, Alpha (RGBA) colour space and if the colour data 
is in a different colour space then it has to be converted to RGBA. Inside the shaders, the colour 
values are floating points numbers in the range [0 – 1.0] and they are converted to integers when 
they are flushed on the screen. Similarly to physical world, in computer graphics objects cannot be 
seen unless they are illuminated by lighting. Many models for lighting exist and usually they take 
into account the properties of the material of the object, the surface normal as well as the light 
direction.

The primary use of OpenGL is the creation of animations and the purpose of this dissertation is to 
be able  to  produce animations  or to  move objects interactively.  The object  transformations  are 
achieved by issuing matrix multiplications. In every application there are matrices that represent the 
projection, the view and the object. These matrices are multiplied together and then the final matrix, 
the  Model-View-Projection  (MVP)  matrix,  is  multiplied  with  every  point  of  the  object.  The 
dimensions of each of these matrices are four by four. OpenGL does not provide functions for 
manipulating the matrices, although it formerly did, and an external library must be used. Therefore, 
the matrices are multiplied on the CPU and the result is passed to the shaders as uniform variable.
[10]
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2.3.4 Textures

Because in this dissertation, textures are used heavily, a brief description is provided. Textures are 
images that are produced either by a camera or an artist, or they are created procedurally. Many 
types are  supported like 1D, 2D, 3D or even cube-map textures.  They are composed by texels 
(texture elements). Textures are usually processed inside the fragment shader. They are normally 
used for giving high fidelity to objects by gluing textures on them. However, OpenGL can be used 
for image processing by processing textures just as we did in this dissertation. GLSL provides a  
variable type called sampler and textures must be bound to a sampler variable.

When textures are accessed inside a shader, their values are sampled. There are many parameters 
that set up textures. Some concern the edges of the textures and some how the texture will  be 
sampled inside a shader. Two options can be specified for sampling, linear and nearest. In the linear 
sampling, the texel is read using a weighted average of the four neighbours and thus a smooth 
representation of the texture is given. In the nearest sampling, the nearest texel of the requested 
coordinates is returned and this is the parameter used in this dissertation. [10]

2.3.5 Images

The drawback of textures is that textures can only be read inside a shader and a shader cannot write 
to textures. In the latest OpenGL and GLSL versions (4.3), images have been introduced. Images 
are GLSL variable types and provide the functionality of writing to buffers and reading from them. 
Therefore, images can be used for general-purpose computation and both textures and buffers can 
be bound on images.[10]
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Figure 1: The OpenGL pipeline



3 The image-based point cloud visualisation algorithm

The image-based point cloud rendering algorithm consists  of a few simple steps.  Concisely,  an 
image is created by projecting the points onto it and then some simple image processing techniques 
are performed. That differentiates this algorithm from others that perform processing in object space 
and  also makes it easy enough to be implemented.

In particular, the points are lit using the Phong algorithm and projected onto an image. If the point 
data  set  is  dense  enough  and  every  point  covers  a  pixel,  the  image  does  not  need  any  post-
processing. However, this assumption is too optimistic. After the image has been created, some 
image-processing techniques  must  take  place.  The image-processing steps  are  required  because 
holes are exist on the surface. There are two different types of holes:

1. Holes that background pixels are projected on them.

2. Holes that pixels belonging to a surface from behind are projected.

Therefore,  two  processing  steps  take  place  to  eliminate  these  holes  and  both  include  the  3x3 
neighbourhood of a pixel.[2]

Filling background pixels

In order for the background pixels in the holes to be spotted, a 3x3 mask is applied. Figure 2 shows 
the masks that are applied. If pixels in any of the masks are identified to be background pixels, then 
the candidate pixel is marked as background and is not changed. This step is iterative until no pixel 
has to be changed. [2]
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Filling occluded surface pixels

This process is very similar to the previous one. In this step, pixels with a neighbourhood depth 
greater  than a  predefined depth value  dmin  are identified.  The masks are similar to figure 2, 
however, the dark pixels may have any depth value and the white ones have a depth value greater 
than d - dmin . The dmin value is set empirically and the chosen value is 0.0001. This small but 
significant change in the filter masks is because of the fact that more pixels must be taken into 
account. In particular, we want a pixel to change if the majority of the neighbours belong to a higher 
surface. Similarly to the previous step, this process is iterative until no pixels have to be changed. 
[2]

Post-processing effects

In the original paper explaining this algorithm, it is proposed that after the two most important 
processing steps (background and occluded pixels filling), the image can be smoothed. However, 
we believe that more filters can be applied, for example someone might wish to detect the edges and 
thus apply that filter for edge detection or apply an object detection algorithm.[2]

3.1 The implementation
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To begin with, a library for the implementation has to be chosen. This was not a difficult decision to 
make. The candidate library must be able to produce an animation, transform the points, apply 
lighting algorithms on the points and finally be able to process images. OpenGL provides all the 
desired functionality although in iterative image-processing algorithms it seems to have some 
weaknesses.

Firstly, buffers for storing the vertex coordinates, surface normals and colours of each coordinate on 
the GPU must be used. At the start of the program, these buffers are created and they are filled with  
data sent from the CPU. Throughout the execution of the program, although the points and the 
surface normals are transformed and the colours are modified depending on the position of the 
object and the light direction, the values of the buffers are not changed.

Furthermore, the core part of the algorithm is the image processing steps. In OpenGL, when points 
are rendered and go through the OpenGL pipeline, they appeared on the screen. However, this is not 
desired because an image has to be created in order to be processed and finally this image must be 
projected on the screen.  This functionality can be achieved by doing an off-screen render.  Off-
screen render means that a new framebuffer is created (the default is the screen), a texture is bound 
on  this  framebuffer  and  the  output  of  the  OpenGL pipeline  then  goes  to  the  bound  texture. 
Therefore, one drawing command implements the off-screen render and another drawing command 
follows to process the texture on the default framebuffer, which is the screen.

The texture created for the off-screen rendering stores RGBA colours and the numbers stored on the 
texture are of float type. In the RGBA channel the RGB components store the colour of the point 
and the alpha component stores the depth of it as proposed by the image-based algorithm.  Many 
types are supported for textures but floats are the ideal choice because a wide variety of numbers is 
covered and great precision is also supported.

Other buffers are also used in OpenGL. OpenGL needs a depth buffer to determine the depth of 
each point and when two points are projected on the same pixel, to decide which point to project 
depending on its depth. For the off-screen render, a depth buffer has to be created and bound on the 
framebuffer. Also producing smooth animations is achieved by having two buffers, the front and the 
back buffer. The front buffer is projected on the screen. In each render command, the output goes to 
the back buffer and when it finishes, the front and back buffers are swapped. OpenGL manipulates 
the front and back buffers.

Briefly, the program reads the data set from a file, creates a new framebuffer with a texture bound 
on it, and then processes the texture by applying the steps mentioned in previous section. Therefore, 
two shader programs are needed, one to project the points on the texture and one to process the 
texture. A Unified Modelling Language (UML) activity diagram on figure 3 shows an overview of 
the program.

We can see that the steps followed by the program are straightforward. First the points are read from 
a file and stored on the CPU's main memory. Then the points have to be sent to the GPU memory. 
Once they are sent to the GPU, they stay there until the endpoint of the program. Then the two 
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shader programs are compiled. As mentioned at the section 2.4.2, the shader programs are sent to 
the GPU as C strings and compiled there using a compiler on the GPU. From a programmer's  
perspective, all that has to be done is to call a few functions. Then a new framebuffer has to be 
created with a texture bound on it. In each loop in the activity diagram, we have to set either the  
default or the non-default framebuffer to active. Finally, two rendering commands are executed, one 
to render the points on the non-default framebuffer, and after that, one to process the texture created 
by the previous render.

3.1.1 The architecture

The program has been written in the C++ programming language.  Inside the C++ code,  the C 
OpenGL functions are called. The program consists of two classes as shown in sequence diagram in 
Figure 4, the PCObject and the Shader classes.

The  PCObject class provides methods for reading the data sets (.ply files) from files, using a 
library developed by Stanford University, and sending the points to the GPU. It provides a method 
for computing the surface normals of the points if they are not provided in the ply file using a 
function  provided  by  the  Stanford  University  library.  Furthermore,  it   provides  methods  for 
initialising the framebuffer and binding a texture on it. Finally, it offers methods for the off-screen 
render and for invoking the image processing render.

The  Shader class represents the shader programs. It provides methods for reading the shaders' 
source code from text files, compiling and linking them and finally methods for adding matrices to 
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the shaders as uniform parameters.

In the main file, there are functions for displaying the object, initialising objects and matrices and 
functions for capturing the user's input. Since OpenGL has changed and the fixed-pipeline has been 
removed, the matrices for transforming the points have to be created by the programmer and be 
passed as uniform variables to the shaders. For creating and transforming the matrices the GLM 
library was used[11]. It provides all the functionality needed for an OpenGL program and is very 
easy to use. Furthermore, OpenGL does not provide functions for manipulating the window system 
and capturing the user's input.  Therefore,  a window library must be used. The OpenGL Utility 
Toolkit (GLUT) library was used which is simple and  easy to use but other libraries could also be 
used[12].

We can see in figure 4 that there is  an object called GPU. It  is  not a C++ object and in fact  
represents the GPU itself. Therefore, it is shown that the shader programs are compiled on the GPU 
and an ID is returned, the points are sent to the GPU, the uniform variables are added to shader 
programs. These are then executed on the GPU and the rendering commands are performed on the 
GPU as well.
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Figure 4: The UML sequence diagram of the implementation 

3.1.2 The shader programs

In this  application,  two shader  programs exist,  one for  rendering the points  on the non-default 
framebuffer and one for doing the image processing. As mentioned in section 2.3.2, every program 
must have a vertex and a fragment shader. Thus, we have two vertex and two fragment programs 
one for each shader program. The first shader program, which renders the points on the non-default 
frambuffer, is straightforward. Every point is transformed using the Model-View-Projection matrix 
in the vertex shader and then in the fragment shader, the fragments are lit with the Phong model.

21



In the post-processing shader program, the vertex program does not do anything except to pass the 
coordinates of a rectangle where the image is going to be projected. However, the fragment shader 
is  very important  because it  performs the  image-processing steps.  Note that  as  many fragment 
shaders are executed as the total number of the pixels. Therefore, The code inside the fragment 
shader manipulates only one pixel. OpenGL parallelises the program very efficiently. The fragment 
shader is shown below in C-like pseudocode.

pixelsFilledBefore = 0 
pixelsFilledAfter = 1

while (pixelsFilledBefore < pixelsFilledAfter){ 
pixelsFilledBefore = pixelsFilledAfter 
fillBackgroundPixels()
if (pixel has been filled) 

addOneToAtomicCounter(backgroundpixe
ls)

pixelsFilledAfter = readAtomicCounter(backgroundpixels)
}

pixelsFilledBefore = 0 
pixelsFilledAfter = 1

while (pixelsFilledBefore < pixelsFilledAfter){ 
pixelsFilledBefore = pixelsFilledAfter 
fillOccludedPixels()
if (pixel has been filled) 

addOneToAtomicCounter(occludedpixel
)

pixelsFilledAfter = readAtomicCounter(Occludedpixels)
}

smooth()
flush()

Listing 1: The post-processing fragment shader pseudocode

We can see that the program consists of two loops which are the two mandatory image-processing 
steps, the smoothing function and finally a function which just outputs the pixel to the framebuffer.  
In order that the multiple shader instances know when to stop, they have to communicate each 
other. The only way that the multiple instances can communicate is through an atomic counter. The 
atomic counter is a hardware-implemented counter with limited operations. The only operations that 
can be done on it are increase by one, decrease by one and read the value that holds. Therefore, 
when a pixel changes, the atomic counter is increased. When the counter stops getting increased, 
this means that no other changes to the image are going to be made and the program exits the loop.
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It is very important to explain how the communication is achieved through the different shader 
invocations. The shader invocations are assigned to the multiple cores of the GPU and thus the 
communication is achieved through the memory. In the previous versions of OpenGL and GLSL, 
the texture pixels could only be read by the shader invocations and writing directly to textures was 
impossible. However, the application has been written in the latest OpenGL version and the image 
variable has been used.

Therefore, only one texture is used and inside the shader program, pixels are both read and stored 
on the texture. The function for reading the neighbours of a pixel as well as the pixel itself is shown 
below. The size of the  neighbours  array is  nine and is  used to store locally  the pixels.  The 
function  imageLoad takes as arguments the image variable and an integer vector of size two 
with the coordinates of the pixel to be read and returns a vector of size four with the value of the 
pixel.

void getNeighbours(){

neighbours[CURRENT] = imageLoad (image, ivec2(gl_FragCoord.xy));

neighbours[UP] = imageLoad (image, ivec2(gl_FragCoord.xy) + 
ivec2(0.0, 1.0));

neighbours[DOWN] = imageLoad (image, ivec2(gl_FragCoord.xy) 
+ ivec2(0.0, -1.0));

neighbours[LEFT] = imageLoad (image, ivec2(gl_FragCoord.xy) + 
ivec2(-1.0, 0.0));

neighbours[RIGHT] = imageLoad (image, ivec2(gl_FragCoord.xy)  + 
ivec2(1.0, 0.0));

neighbours[UP_LEFT] = imageLoad (image, ivec2(gl_FragCoord.xy) + 
ivec2(-1.0, 1.0));

neighbours[UP_RIGHT] = imageLoad (image, ivec2(gl_FragCoord.xy) + 
ivec2(1.0, 1.0));

neighbours[DOWN_LEFT] = imageLoad (image, ivec2(gl_FragCoord.xy) 
+ ivec2(-1.0, -1.0));

neighbours[DOWN_RIGHT] = imageLoad(image,ivec2(gl_FragCoord.xy) 
+ ivec2(1.0, -1.0));
}

Listing 2: The getNeighbours function used to read the pixels

Also every time when a pixel is changed, this value has to be written to the texture. Below the 
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function for writing a pixel to the texture is shown. The only difference between the  imageLoad 
and imageStore functions is that the latter takes a third argument which is the value to be written 
to the texture.

imageStore  (image,  ivec2(gl_FragCoord.xy),  result);

3.2 Results

In this section, the output of the image-based point cloud rendering algorithm is shown. The data 
sets have been taken from the Stanford University website and permission for their use in research 
projects is given. For these sections we use the hand data set which consists of 327K points. This 
data set provides the points coordinates and surface normals but no colour is provided. Therefore, 
we give a colour that we choose out of preference.
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Figure 5: The hand data set without any processing



Figure 5 shows the hand data set without any image processing. As we can observe, only points are 
rendered and they are lit with the Phong lighting model. Many holes exist and it is the responsibility 
of the post-processing steps to fill them. There are two kind of holes. Holes that background colour 
is projected on them and holes that pixels from a occluded surface is projected on them. Occluded 
surfaces are behind the surface the camera sees.

Figure 6 shows a screen-shot of the program at a stage when the holes projecting background pixels 
were filled.  The algorithm spots the background pixels that are surrounded by non-background 
pixels according to the masks explained in section 3, and fills those pixels with the colour of the 
closest to the camera neighbour pixel. However, there are still holes on the objects projecting pixels  
from occluded surfaces. Figure 7 shows the result after applying both the background pixels filling 
and the occluded surface pixels filling steps. All the holes that the object had, have been correctly 
filled,  and  it  is  ready  to  be  used  in  other  applications  or  to  apply  further  image-processing 
algorithms.
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Figure 6: The hand data set after filling holes with background pixels



However, although this algorithm seems to behave correctly and produce results with great detail, it 
suffers when the points are sparse which might occur when we look closer at an object or the data 
set is sparse itself. Figure 8 shows a screen-shot from the hand data set when the camera is close to  
the object. In particular,  the background pixels filling step cannot cope with sparse points. The 
reason is that while the points become sparser, even more masks contain background pixels. As 
explained at the beginning of chapter 3, when a mask contains background pixels, the pixel is not 
filled and keeps the value of background colour.

A way to improve the quality of the image is to make a small change in the background pixels 
filling algorithm. Instead of stipulating that for a pixel to be filled all the applied masks must not 
contain background pixels, we could say that even if one or two masks contain background pixels, 
the current pixel can be filled. That could essentially improve the output but it will probably have a 
bad impact at the edges of the object. In particular, it might extend the edges of the objects for a few 
pixels.

26

Figure 7: The hand data set after filling the holes of occluded surfaces 



 

3.3 An alternative implementation

Our implementation relies heavily to the latest OpenGL features. However, how would someone 
implement this algorithm with an older OpenGL version? The latest OpenGL features used are the 
atomic  counters  and the  GLSL image  variables.  Unfortunately,  there  is  no  way to  replace  the 
functionality of the atomic counters. Therefore, the number of iterations in the image processing 
steps has to be fixed.

The most important part of this algorithm is the image processing steps and because they gradually 
improve the image, the state of the texture in each iteration has to be kept. GLSL image variables 
solved  this  problem by  providing  the  flexibility  of  writing  to  textures.  An  alternative  way  of 
keeping the state of the texture in each iteration is two use to textures. In every iteration of the  
image processing steps, the application reads from one texture and outputs the result to the other 
texture  and vice versa.  Now the  loop goes  outside  the shader  program and actually  wraps  the 
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Figure 8: The hand data set, zooming too much so that the holes cannot be filled



drawing command.  Remember that when we create a framebuffer and attach a texture on it, the 
output of the shader program goes to that texture. 
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4 Performance and optimisation

In  this  chapter  we  are  going  to  present  information  about  the  performance  of  this  particular  
algorithm as well as the performance of the applications itself. Detailed performance evidence will 
be given for the most time consuming parts of the application. Furthermore, an in-depth explanation 
of the GPU architecture is given as well as the bottlenecks of the shader programs. Finally, the most 
important part, the optimisation of the application, follows.

The  image-based  point  cloud  visualisation  as  mentioned  previously  differs  from  the  other 
algorithms because it performs all its computation on image space. Before even implementing the 
algorithm we expected the performance to depend only on the size of the image and the properties 
of the data set (density). Therefore, if the points are dense, the image-processing steps will run 
fewer times to fill the holes.

4.1 Performance

All the experiments were run on the student's laptop which has an Intel i3 CPU and an Nvidia GT 
525M GPU with 96 shader units. The performance of the application is measured in frames per 
second (FPS) and the data was collected over period of time. As mentioned above, the performance 
is expected to depend on the image size and have a low dependency on the number of points. Figure 
9 shows the performance of three different data sets on a 512x512 viewport. The hand data set  
consists of 327K points, the dragon data set consists of 3.6M points and the statuette one contains  
5M points.  

The hand data set runs in about 50 frames/second. When the camera comes very close to the object,  
the frames/sec drop at 20 because the image-processing algorithms have to run more times to fill in  
the holes. It is particularly worthwhile to note that when the object is behind the camera and the 
image contains only background pixels, the performance reaches at 75 frames/sec. The performance 
of the rest two data sets behaves similar to the hand but with lower speed.

Furthermore, although the point magnitude difference of the hand and the statuette is enormous, the 
difference in the performance does not correspond to this magnitude. The hand runs two time faster 
than the statuette but the statuette consists of 5M points and the hand of 327K points. In addition,  
the statuette contains 1.4M more points than the dragon but the performance is very similar to it.

As expected, the performance depends on the image size or the window size. Figure 10 shows the 
difference in the performance of the hand data set between a 512x512 and a 1024x1024 window 
size. The model on the 512x512 window size runs more than two times faster than the model on a 
1024x1024 window. However, the performance was expected to be four times faster. The reason the 
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512x512 window does not run four times faster than the 1024x1024 window is that the object does 
not occupy the whole window. Therefore, the performance does not depend entirely on the window 
size but on the size that an object occupies within the window.
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Figure 9: The performance of three data sets with different point magnitude on a 512x512 
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In particular, OpenGL creates as many fragment shader instances as the size of the window. Every 
instance runs for a specific pixel. Therefore, the shader instances run as long as changes are made to 
the image. Even if a shader instance does not follow the entire image processing functions and does  
not apply all the computation steps, it causes two type of bottlenecks. Firstly, every shader instance, 
reads the neighbour pixels in every loop and thus it causes traffic on the interconnect. However, the 
GPUs are very good at scheduling threads and while a shader instance waits for data to come from 
the memory, another thread might run on this particular core. Nevertheless, some overhead exists. 
The second bottleneck occurs when a shader instance reads the atomic counter to see if a change 
has  been  made  to  the  image.  Although  the  atomic  counter  is  implemented  on  the  hardware, 
obtaining a lock and reading the value of the counter causes some overhead.

As an experiment, the program was run two times on a 512x512 window size. The first time the 
object size was normal. The second time the object was scaled down by 50% and thus the size was 
half the normal size. Figure 11 shows the difference on the performance. We can see that when the 
object is in half size, the performance increases and becomes double the performance of the normal 
size. On the 1024x1024 window size, more pixels are of the background type. Although the shaders 
executing the background pixels cause some overhead, they do not apply any computation at all and 
thus the speed is not four times slower than the 512x512 window size but faster.
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Figure 10: the performance of the hand data set (327K points) with different viewports
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All in all, the performance depends on the window size but decreasing the window size by 50%, the 
performance does not increase by 50% because of the reasons explained above.

4.2 Memory footprint

The buffers and the other aspects of the application were discussed in chapter 3. Therefore, It would 
be interesting to investigate the memory consumption of the application. The program gDEBugger 
was used to get such data as well as in the whole development of the application.

As the application runs, all the data exists on the GPU and there is no data transfer between the 
CPU and the GPU. When the application starts, it  reads the data set from a file, stores it  on a 
temporary buffer on the CPU main memory and then it sends it to the GPU. However, the GPU 
footprint does not contain only the data that the CPU sends. Figure 12 shows the GPU memory 
footprint for the hand data set. The numbers in the legend next to each component indicate the 
number of the objects of this kind that exist.

The  shaders,  two  vertex  and  two  fragment  shaders,  occupy  13KB  on  the  memory,  which  is 
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Figure 11: Normal size of the hand data set compared with the half size of it



insignificant, and their size does not depend on anything other than the number of lines of code they 
contain. The vertex buffer objects (VBOs) consume the most memory. The buffers included in the 
VBOs are three buffers for the coordinates, the surface normals and the colours and finally a buffer 
for storing the coordinates of a rectangle for the texture to be rendered on it. The latter consumes 
insignificant  memory.  In  addition,  the  texture  needs  a  rather  significant  memory  chunk.  In 
particular, because enough detail is needed, the texture stores 128 bits for every pixel and thus on a 
512x512 texture it needs 4096KB. Similarly, the render buffer which is a depth buffer requires ¼ of 
the size of the texture. This is because the texture needs 4 components for every pixels and the 
depth buffer only one. Finally, the static buffers are some buffers needed for the rendering like front 
and back buffer (used in animations) and they don't depend on the point data set but they depend on  
the window size.

A good question would be, how does the memory footprint increases with the point magnitude? 
Figure 13 compares the footprint of three different data sets, the hand containing 327K points, the  
dragon with 3.6M points and the statuette consisting of 5M points. The memory consumption of the 
hand data set is about 25 MB and as we saw in previous section the texture  as well as the static 
buffers require a huge amount of memory compared to the memory required to store the points. If  
we compare the hand data set with the dragon one, we can conclude to the fact that a lot of memory  
is  used by the application and if  the model consists  of very few points,  then more memory is 
consumed for other buffers than the buffers for the points. The dragon data set although it contains 
about 11 times more points than the hand data set, the memory footprint  of the dragon data set is  
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about 7 times greater.

4.3 Profiling

In graphics programs, there is code that runs on the GPU and code that runs on the CPU. The GPU 
runs asynchronously. The CPU issues commands and sends data to the GPU and then the CPU 
moves on to its calculations. Therefore, the first step is to investigate if our program is CPU-bound 
or GPU-bound. There are many ways of investigating this. One is to underclock the CPU speed by 
n percent and if the program speed increases by n percent then it is CPU-bound[13]. However, that 
might cause hardware problems and it was not done. Instead, the GPU-z program was used, which 
produces  information  about  the  GPU  speed,  load  etc.  Furthermore,  Intel  Vtune  was  used  for 
profiling the CPU code (note that it profiles both the C++ and OpenGL) as well as the Nvidia's 
profiler that is built-in the Nvidia Nsight program.
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4.3.1 Profiling the CPU

As mentioned above, the first step is to investigate if our program is CPU-bound before proceeding 
to GPU profiling. Figure 11 shows the GPU utilisation. As we can see, although the GPU never 
reaches 100% load, it always has work to do. Therefore, the GPU is never idle and thus there is no 
CPU bottleneck. However, we would like to spot the most time consuming pieces of code that run 
on the CPU and optimise them. That would make the CPU to send commands to the GPU for 
execution faster. Furthermore, this application is not the only running on the computer but many 
others  run like the operating system. Therefore,  this  application is  interrupted by the operating 
system and swapped with other processes. By making it run faster, we eliminate the possibility of 
our program being CPU-bound because of the process swapping.

Thus the first step is to use the Nvidia's profiler and spot the code that is time consuming. In figure 
12 the average time taken of the most time consuming OpenGL functions is shown. We can see that 
the function  glGetUniformLocation takes about 3500  μs. This function is used to query the 
shader program about the location of a uniform variable so that data can be bound on it. In fact, all  
the  Get OpenGL functions  cause  the  CPU program to  stall  until  all  the  GPU commands  are 
finished. Furthermore, this particular function is executed in every frame because it is used to query 
the location of the transformation matrices within the shader programs.

35

0
10
20
30
40
50
60
70
80
90

100

Elapsed time

G
P

U
 L

oa
d 

[%
]

Figure 14: GPU utilisation (provided by the program GPU-z)



The way to optimise the most time consuming functions spotted in previous section is to avoid the 
glGetUniformLocation  function.  This  can  be  achieved  by  setting  a  static  location  of  the 
uniform variables in the shader programs and thus, no need to query the shader for the location will 
be needed. Although the code might be not as readable as using the  glGetUniformLocation, the 
performance of the CPU code is expected to increase but not the overall performance. However, if 
the shader programs become fast enough, there will be many chances of the program to be limited 
by the CPU code.

4.3.2 Profiling the GPU

Apparently the key computations run on the GPU with the shaders. The shaders run every time a 
draw command is issued. There are two draw commands in every frame, one that renders the points 
and creates the texture (the off-screen render) and one that performs the image-processing steps on 
the texture (the post-processing). Because the shaders run asynchronously, the profiling tools cannot 
get their execution time. Therefore, after issuing a draw command we make the CPU to wait for the 
execution of the shader and the time is measured. As shown in figure 16, the off-screen rendering 

36

0

500

1000

1500

2000

2500

3000

3500

4000
glGetUniformLocation

glGetAttribLocation

SwapBuffers

A
ve

ra
ge

 t
im

e 
(μ

s)

Figure 15: Average time of the most time consuming OpenGL functions



shader which creates the textures runs in a static time. It does not depend on how close to the object  
the camera is and the execution time is much faster than that of the post-processing shader. The 
post-processing shader depends on how close the camera is to the object and therefore it could be 
interesting to investigate where the bottleneck in the shader is especially when the camera is too 
close to the object. Both diagrams where taken while the camera was zooming in.

The post-processing shader starts at 28 ms and as we zoom in the execution time peaks at 72 ms. 
Moreover, when the object disappears from the screen because it is rotated, the post-processing 
shader can run much faster, at about 17 ms, because all the pixels are background and thus the post-
processing steps do not run.

Our post-processing shader program consists of computation and some texture loads and stores. 
Basically, the computation has to be done and it is almost inevitable to make changes to get a good 
speed-up. However, the texture loads/stores need to be investigated. 

4.3.3 The Fermi's architecture
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According to Nvidia's hardware specification of Fermi architecture, the GPU consists of a number 
of Streaming multi-processors (SM), and every SM with a number of cores. Basically, the GPUs 
consist of a 2-level hierarchy, the SMs and the cores. The cores are placed within the SMs. Figure 
17 shows the Fermi's architecture.

The  Fermi  GPU  consists  of  16  SMs,  6  64-bit  Dynamic  Random-Access  Memory  (DRAM) 
partitions and an L2 cache. Every SM, as shown in figure 15, consists of 32 cores, arithmetic units 
and 64 KB configurable shared memory and L1 cache. The shared memory in fact is a piece of fast 
Static Random-Access Memory (SRAM) memory that can be used both as shared memory and L1 
cache and the sizes of these two memories can be configured.  The shared memory is used for 
communication of the threads inside an SM and L1 cache is basically used for caching local and 
global data.
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Figure 17: The Fermi's architecture 



The L2 cache memory as well as the main memory can be seen by all the SMs and thus by all 
threads. All the data that is stored on the L1 cache of every SM has to be stored to the L2 cache as  
well. Thus, the L2 cache is used to cache the main memory and the L1 cache is used to cache the L2 
cache memory.

The difference between the cache systems of the CPUs and the cache systems of the GPUs is that 
the L1 cache in GPU has to be coherent with the main memory and not with the L1 cache of every 
SM as it is in the multiple cores in CPU. Therefore, if an application wants its data to be coherent 
among the SMs, the data that is stored on the L1 cache has to be flushed to the main memory 
whenever  it  is  modified.  Furthermore,  although all  the  SMs,  share the L2 cache  and they can 
communicate  through  this  memory,  the  data  is  still  flushed  to  the  main  memory.  The  cache 
protocols state that if a cache line is evicted from the L1 cache, then it has to be evicted from the L2 
cache as well[14].
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4.3.4 Assessing the shader bottleneck

As  mentioned  in  section  4.3.2,  the  post-processing  fragment  shader  contains  computation  and 
texture  loads/stores.  The computation  cannot  be avoided but  the  texture  loads/stores  should  be 
investigated more in depth. 

Because the post-processing steps require the neighbour pixels of every pixel, the texture has to be 
stored in a coherent memory so that all the cores can see the changes. Therefore, the texture must 
exist at the main memory. At the start of the program, every shader invocation reads its current pixel 
as well as the neighbours. The texture is stored at the DRAM, it is moved to the L2 cache and then 
every pixel with its neighbours are moved to the L1 of each SM.  The shader invocations then apply 
their computation to the pixel and store the pixel back to the main memory.

 

Furthermore, if two shader invocations read consecutive pixels that map on the same block line and 
one of the shaders modifies one pixel and stores it back to the main memory, then the cache line of 
the other shader invocation is invalidated. Thus, the shader has to go back to the main memory to 
pick up the pixels again even if it has not applied its computation yet.

Consequently,  the  post-processing  fragment  shader  program suffers  from cache  misses  and  its 
performance is bandwidth-bound. In the next section a way of improving this performance penalty 
is described.

4.4 Optimising the GPU

We have seen in the previous section how texture loads/stores work. Because they have to be seen 
by all the cores, they are stored in main memory which is not as fast as the L1 cache memory. 
Moreover, we have seen that the GPU consists of multiple SMs with many cores in each, and all 
these cores in each SM have a shared memory which can be used for communication among the 
cores.

Our proposal involves a change in the program as well as a small change in the algorithm itself.  
Instead of producing the best result according to the algorithm but in a slow time, we would like our 
program to produce the results  faster even if the results are not the same as they were for the 
original version but they could be acceptable.

Therefore,  the  texture  is  decomposed  across  the  multiple  SMs  with  a  2D  regular  domain 
decomposition, and in every SM, every block of the texture is decomposed across the multiple cores 
with a 2D regular domain decomposition again. The cores in each SM communicate through the L1 
cache memory but the SMs do not communicate because otherwise,  the program will  be again 
limited by the main memory's bandwidth. Thus we expect holes in the result images at the edges of 
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the decomposition across the SMs. Ideally, we would like the edges of the decomposition to be as  
small as possible and the 2D decomposition achieves that and creates smaller edges than the 1D 
decomposition. What is more, by decomposing the image in the two dimensions, more threads can 
run. In particular, in the 1D decomposition, the number of threads that can run is limited to the size 
of the decomposed dimension whereas in the 2D decomposition, the number of threads is limited to 
the product of both dimensions.

The fragment shader does not give control on how to map the shader instances. In order to achieve 
this  functionality,  a kernel has to be written using a General-purpose Graphics Processing Unit 
library (GPGPU).  However, the latest  OpenGL version (4.3) offers a new shader,  the compute 
shader. The compute shader can perform any kind of general purpose computation on data that is 
stored on the GPU. It is written in GLSL language and the process of compiling it is the same as  
that  for  compiling  vertex  and  fragment  shaders.  Nevertheless,  Compute  Unified  Device 
Architecture (CUDA) or Open Computing Language (OpenCL) could be used instead of compute 
shader. When a compute shader is invoked, the number of blocks (or workgroups) that will run in 
the x, y, z dimension is specified. Inside the compute shader, the number of threads that will run in 
every block is configured. 

The code of the compute shader is very similar to the post-processing fragment shader but the 
texture is loaded on a shared variable and exists there until the end of the execution of the compute 
shader where it is stored back to the texture. The shared variable is shared to all the cores in each  
SM and exists on the L1 cache. Furthermore, the shared variable is a two dimensional array with 
halos. The declaration of it is shown below.

shared vec4 sharedImage[gl_WorkGroupSize.x + 2][gl_WorkGroupSize.y + 2];

The built-in variables gl_WorkGroupSize.x and gl_WorkGroupSize.y contain the number of 
threads  running  in  the  block  (or  workgroup)  in  the  x  and  y  dimensions  respectively.  The 
getNeighbours() function shown in listing 2 in section 3.1.2 that is used to read the current as 
well as the neighbour pixels has been replaced with the function cacheImage() which is called 
only once at the start of the compute shader. The thread with id zero in each block, sets the value of 
the halos to zero and then every thread using its id reads the corresponding pixel of the texture. The 
vector variable gl_LocalInvocationID contains the id of the thread running in the block position 
in the x and y dimensions and the vector variable gl_GlobalInvocationID.xy contains the id of 
the thread in the global position. 
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uint currentX = gl_LocalInvocationID.x + 1;

uint currentY = gl_LocalInvocationID.y + 1;

void cacheImage(){

if (gl_LocalInvocationID.xy == vec2(0.0)){

for (int i=0; i<gl_WorkGroupSize.x + 2; i++){

sharedImage[i][0] = vec4(1.0, 0.0, 0.0, 0.0);

sharedImage[i][gl_WorkGroupSize.y + 1] = vec4(1.0, 
0.0, 0.0, 0.0);

}

for (int j=0; j<gl_WorkGroupSize.y + 2; j++){

sharedImage[0][j] = vec4(1.0, 0.0, 0.0, 0.0);

sharedImage[gl_WorkGroupSize.x + 1][j] = vec4(1.0, 
0.0, 0.0, 0.0);

}

}

          sharedImage[currentX][currentY] = imageLoad (image, 
ivec2(gl_GlobalInvocationID.xy));

}

Listing 3: The cacheImage() function used to copy the image to the cache memory

The halos are set as background pixels. Thus, the post-processing step of filling background pixels 
has to be altered and say that even if one or two masks contain background pixels do not mark the 
pixel as background and change its value as described in section 3.2. The reason for that is that the 
pixels at the edges of a block will always have a mask containing background pixels. So, we have to 
say that even if one or two masks contain background pixels, continue with filling that pixel.

Also, in the post-processing fragment shader, the multiple threads used an atomic counter to decide 
when to stop the post-processing steps. Although this counter is implemented on the hardware and 
is fast enough, it causes the threads to run the post-processing steps more times. In particular, if a 
change was made to  a  pixel  on  the  right  bottom of  the  texture,  then  a  shader  invocation  that 
executes  a  pixel  on  the  left  upper  of  the  texture  had  to  run  again.  However,  it  is  almost 
inconceivable that the left upper pixel will have to make a change. In the compute shader, this 
mechanism was implemented with a shared variable instead of an atomic counter. Therefore, the 
threads run as long as changes are made in the same block and their execution is terminated faster.
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Another optimisation that we have done is to reduce the memory requirement of the texture. Each 
pixel of the texture consists of four components, RGBA. For each component, 32 bits are required 
and thus 16 bytes per pixel. For every drawing command, although the texture is now stored on the 
shared memory and the communication takes place on it, the texture has to be loaded from the main 
memory to the shared memory. Because of the big size of the texture, a bottleneck might be caused 
at the interconnect and in the worst-case scenario the texture will not fit on the shared memory. 
Therefore, the size of every pixel component of the texture has been reduced to 16 bits. That could 
reduce the traffic on the interconnect and also make the GPU to schedule the block execution on the 
SMs better because of the reduced size of the texture. Also the memory footprint will be reduced 
but not significantly. However, by applying that optimisation, we lose accuracy in the computation 
but we believe that 16 bits for every component in the RGBA covers a wide range of numbers and  
offers enough accuracy.

After adding the compute shader,  the post-processing fragment shader does not have to do any 
computation. Therefore, it becomes a pass-through shader that only flushes out the texture on the 
screen.

4.5 Results

The original version of the program has produced very good results of the point cloud data sets 
when the camera is not very close to the object. By optimising the program we expected holes in the 
image at the edges of the block decomposition. Figure 19 shows the output of the optimised version. 
The output is as good and accurate as the output of the original version. However, because of the 
small change in the algorithm a small impact can be noticed at the edges of the object.
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The drawback of the image-based point cloud visualisation algorithm is when the camera is very 
close to an object or in general when the points are sparse. Therefore, we expect the output of the 
optimised version in a close view of the object to be even worse than the original version.

Figures 20 and 21 show the difference in  the output  of the optimised and the original  version 
respectively when the camera is very close to the object. Both programs cannot cope in such cases 
but the output seems to be very similar. However, in the optimised program (figure 20) we can see 
some  holes  projecting  background  pixels  caused  by  the  SMs  not  communicating  each  other. 
Although we can barely see the holes, their shapes are rectangles indicating the regular domain 
decomposition. Nevertheless, the output of the optimised program is acceptable.
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Figure 19: The hand data set produced with the optimised version of the 
program on a 512x512 viewport
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Figure 20: The hand data set produced with the optimised version of the 
program on a 512x512 viewport in a close view
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Figure 21: The hand data set produced with the original version of the 
program on a 512x512 viewport in a close view



4.6 Performance Improvement

As we have seen in the previous section the output of the optimised version of the program is very 
similar to the output of the original one. However, the performance has been increased as we can 
see on figure 22. For the hand data set with 327K points, the performance achieved is three times 
faster  than  the  original  version.  What  is  more,  as  we zoom in and zoom out  the  performance 
remains stable, therefore, although the points become sparse as we zoom in, it doesn't affect the 
performance because the synchronisation occurs in each and every SM and not in all the SMs.

Figure 23 shows the performance improvement of the statuette data set  consisting of 5 million 
points.  The  optimised  version  runs  two  times  faster  than  the  original  one.  Obviously,  the 
performance improvement varies for different data sets. The performance improvement depends 
totally on the main memory accesses or more specifically on the number of iterations in the image 
processing steps. If the points are dense and the image-processing steps run for a small number of 
iterations, the performance will not benefit from the optimisation. However, if the points are sparse 
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Figure 22: Performance comparison of the original and optimised program for the hand data set 
(327K points)



enough so that the image processing steps run many times, then the performance will be sufficiently 
improved by the optimisation. Therefore, the performance of the statuette data set is not improved 
as much as the one of the hand because the points are dense and we can see that from the actual 
number of points (5 million).

4.7 Advantages and disadvantages

In  chapters  3  and  4  comprehensive  explanation  of  the  image-based  point  cloud  visualisation 
algorithm was presented as well as the performance of its implementation and the optimisation 
applied.

The image-based point cloud visualisation algorithm basically projects the points on a texture and 
then applies some image-processing steps. Implementing the algorithm seems to be easy enough 
and if it is implemented with the latest OpenGL version then the development becomes much easier. 
The most important image-processing steps are the ones that fill in the holes. After the holes are 
filled, many image filters and effects can be applied to that image and there is no constraint. For 
example the image can be blurred or smoothed as proposed by the authors of the algorithm or the 
edges of the object can be detected. Concerning the performance, this algorithm runs incredibly fast 
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statuette data set (5M points)



even when it runs with data sets containing millions of points because there is no direct dependency 
with  the  point  magnitude.  Although  the  application  was  not  actually  compared  with  others 
implementing a point cloud visualisation that perform the computation on object space, the image-
based one is expected to be much faster especially when big data sets are visualised. Also, the 
optimisation  applied was easy to  implement  and the performance improvement  was more  than 
sufficient.

On the other hand, if the data set contains sparse points or if the camera is close to the object the  
image-based algorithm does not cope very well.  Basically,  the problem is  spotted in the filling 
background pixels step. Even when this particular step is changed as proposed on section 3.2, most 
holes are filled but the edges are damaged. Moreover, because it applies all its computation on 
image space, the number of pixels constrain the details of the object. In particular, if the object is 
too small but consisting of many points or if it is narrow and expanded in the z direction which can 
happen while  rotating it,  the image-processing steps might  not produce the desired results.  For 
example two parts of the object (they could be two fingers from the hand data set) are distinguished 
by background pixels. While zooming out and the object becomes even smaller, those background 
pixels will probably map on one pixel. Therefore, the background pixels filling processing step will 
probably fill in those background pixels and the two fingers will no longer be distinguished.

All in all, the image-based algorithm performs all its computation on image space and is very fast. 
The most appropriate use of it could be in visualising dense data sets that do not place the camera  
too close to the objects. The optimisation seems to produce acceptable results and can be used in 
performance critical applications.
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5 The WebGL implementation

WebGL is a low-level 3D graphics API based on OpenGL for Embedded Systems (OpenGL ES). 
OpenGL ES is a stripped down version of OpenGL. WebGL provides similar functionality with 
OpenGL but  in  an  HyperText  Markup  Language  (HTML)  context.  It  is  exhibited  through  the 
HTML5  canvas  element  as  Document  Object  Model  interfaces.  The  HTML5  canvas  provides 
rendering in web pages with different rendering APIs.

WebGL is supported on different platforms under different GPU architectures and thus it does not 
provide all the functionality of OpenGL because portability has to be ensured. However, transition 
from OpenGL to  WebGL is  straightforward  although  some  OpenGL functionality  is  absent  in 
WebGL.[15]

5.1 OpenGL and WebGL textures

Textures are the key component of the image-based point cloud visualisation algorithm and thus a 
brief  explanation  of  the  differences  between  the  OpenGL and  WebGL textures  is  given.  As 
explained in section 2.3.4, textures are images that are glued on objects to give high fidelity to 
them.  Both  in  OpenGL and  WebGL the  glTexImage2D is  used  to  create  2D textures.  This 
function takes many arguments such as the type of the texture and what components to store for  
colours. Additionally, the type of the data to be stored is specified. OpenGL textures support many 
types including floats and this is the type used in the OpenGL implementation. However, WebGL, 
only supports unsigned bytes and unsigned shorts because portability among multiple GPUs must 
be ensured. However, when a texture is read inside a shader program, it is converted to float. Floats  
support a wide range of numbers in comparison to short integers.

In WebGL the support of non-power of two (NPOT) is limited. Both the width and the height of the 
textures has to be a power of two. There are many restrictions in NPOT textures and the most  
important one concerning this dissertation is that sampling a NPOT texture will return (0, 0, 0, 1)  
RGBA colour if the texture has not been set up properly.[16]

5.2 Similarities and differences with the OpenGL implementation

Moving  from  OpenGL  to  WebGL  is  straightforward.  The  overall  structure  of  the  WebGL 
implementation is very similar to that of OpenGL one but with many significant differences caused 
by the absence of some functionality in WebGL.

The WebGL implementation follows the same flow with the OpenGL one. First an off-screen render 
is done; creating a texture projecting the points and then another render is done which process the 
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texture created by the previous render. Also two shader programs are used as with for the OpenGL 
implementation,  one to  create  the texture and one for  post-processing.  In  WebGL, the shaders'  
source code is passed to the compilation function as a DOMString data type.

The buffers for storing the point coordinates, surface normals and colours are the same as in the 
OpenGL implementation. The point cloud files are stored on a web server. The three.js library is 
used to perform an  Asynchronous Javascript and XML (AJAX) request to the server[17].  The 
server sends the point cloud file to the client and then a function in the three.js library is used to  
interpret the data and create arrays with the points, their properties, if any, and the faces. However, 
the function for interpreting the data has to be modified for data sets that contain point properties  
such as surface normals.  The three.js library is a high-level API that abstracts all  the low-level  
features of WebGL and it is very popular[18]. After the arrays have been created, they are passed to 
the GPU and exist there until the end of the execution as in the OpenGL. The WebGL buffers are 
exactly the same as in the OpenGL. For the point coordinates, four components are used, the first  
three  are  the  coordinates  of  the  points  and the  last  one is  used for  normalisation.  The surface 
normals consist of three coordinates because they indicate a direction and the colours consist of four 
components (RGBA).

One difference exists in the first render where a texture is created with the points projected onto it. 
The image-based algorithm states that the points that are not seen by the camera respecting their 
surface normals must be discarded. In OpenGL, the  gl_ClipDistance built-in array is provided 
which is used for user clipping. However, this array is not available in WebGL. Nevertheless, the 
points that are not seen by the camera are assigned with background colour and their depth is set to 
zero. 

The most significant difference exists in the post-processing part of the implementation. WebGL 
does  not  support  image  variables.  Recap  from  section  2.3.5,  image  variables  provide  the 
functionality  of  both  reading  and  writing  to  textures  where  plain  textures  can  only  be  read. 
Therefore,  two  textures  are  used  and  a  ping-pong  trick  is  done  as  explained  in  section  3.3, 
alternative implementation, where two textures are used and each time the data is read from one 
texture and written to the other one. Furthermore, atomic counters are not supported in WebGL 
because they are implemented in hardware and WebGL must ensure portability across multiple GPU 
architectures. Thus, the number of iterations that the post-processing algorithms run is fixed.

5.3 The user interface

As in OpenGL, WebGL does not provide functions for capturing the user's input. Therefore, an 
external library has to be used to capture user's input or to run a specific function that produces an 
animation.

For the construction of the user interface of the point cloud visualisation web page, the JQuery 
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library has been used[19]. The web page contains three sliders that are used to transform the object. 
One applies  zooming in  and out  and the other  two apply the  rotation in  the x and y axes.  In 
particular the values of the sliders are utilised by a Javascript function and according to their values 
the projection matrices are transformed. Also, when the AJAX request to the server is performed, a 
progress bar is appeared on the middle of the web page showing the progress made in downloading 
the  point  cloud  file.  Finally  the  canvas  used  for  WebGL rendering  is  placed  among  the  other 
features of the web page. All those features can be included in an ordinary web page which might 
not be necessarily dedicated to point cloud visualisation.

5.4 Performance

Although the implementation has been written in Javascript and runs on an interpreter within the 
browser, the core parts run asynchronously on the GPU. Therefore, if the Javascript code runs fast 
enough, the performance is expected to be the same as in the OpenGL implementation. The parts of 
the  program  that  run  on  the  interpreter  and  are  written  in  Javascript  are  the  creation  and 
manipulation of the transformation matrices and the functions for capturing the user input through 
the sliders.

As stated before, the WebGL version has to run with a fixed number of iterations. The number that 
was chosen is 17 iterations for each of background pixels and occluded pixels filling processing 
steps. It is a sufficiently large number and ensures that the holes will be filled. If the holes are filled 
in  the  early  iterations,  the  next  iterations  will  run  but  will  be  very light  and will  not  cause  a  
performance loss. Figure 24 shows the performance of the WebGL implementation compared with 
the OpenGL one. We can see that the two implementations run in the same speed which is about 50 
frames per second. The OpenGL implementation uses the atomic counter mechanism explained in 
section 3.1.2 and thus it does not run redundant iterations and the performance remains stable as 
long as the properties of the texture are similar. On the other hand, the WebGL runs many iterations 
and depending on the properties of the textures sometimes might be redundant and sometimes not.  
In Figure 24 we can see that the performance of the WebGL implementation has many deviations. 
The deviations in the WebGL performance might not depend on the implementation but on external 
factors such as the web browser. 
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6 Future work

The primary goal was the implementation of the image-based point cloud visualisation algorithm, 
optimisation  and finally  a  WebGL implementation  of  the algorithm. All  those goals  have  been 
achieved but even more work can be done on both the OpenGL and WebGL implementations.

6.1 Octrees

The performance of the image-based point cloud visualisation algorithm depends mainly on the size 
of  the  image  or  the  object  size.  However,  the  point  magnitude  affects  the  performance of  the 
implementation because all  of the points have to be transformed and particularly be multiplied 
inside the vertex shader.  A proportion of them are discarded later  in  the OpenGL pipeline and 
therefore, the matrix-vector multiplication of those points is redundant.

Octrees are tree-based hierarchical data structure that provide the benefit of indexing the points 
based on their position. Points are not stored on the Octrees based on their coordinates but rather on 
their spatial position in respect to the other points. Therefore, points that are not seen by the camera 
can be discarded before the render and no redundant vector-matrix multiplications will be issued in 
the vertex shader.

A proposal for future work would be the utilisation of Octrees. In particular, the points will be read 
from the file and stored on an Octree. Then, depending on the transformation applied to the object, a 
particular  algorithm  can  be  used  to  determine  which  sub-trees  have  to  be  rendered.  Many 
algorithms exist for traversing trees and one could be the depth-first search algorithm. The Octree 
can be stored on the CPU main memory and in every frame particular sub-trees can be sent to the 
GPU for rendering. Alternatively, another investigation could be to store the Octree on the GPU 
main memory and eliminate the data transfer from the CPU to the GPU memory. The performance 
is expected to increase because of the elimination of the redundant vector-matrix multiplications but 
an overhead will exist in the tree-traversal algorithm.

6.2 Multiple GPUs in a cluster

For all graphics applications, the level of detail of the objects is limited to the number of pixels 
offered  by  the  monitor.  In  the  image-based  point  cloud  visualisation  algorithm  one  of  the 
disadvantages is that if the camera is far away from the object, fewer pixels are used to project it 
and thus not much detail can be given to it. Also, the number of points included in the data set can 
not only make the GPU run out of memory but slow down the performance because of the matrix-
vector multiplications that have to be done for each point.
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One proposal for future work would be to create a big monitor made up of smaller ones, a multi-tile 
monitor.  Every monitor  will  be  connected  to  a  computer  node with a  GPU. All  the nodes  are 
connected each other creating a computer cluster[20]. One approach would be to make the first 
render that creates the texture on the front-end and then distribute the texture to the cluster nodes 
where each node will  run the image-processing steps and output its one piece of texture on its  
monitor. However, the initial texture must be big enough to be distributed and projected by all the 
monitors in such a fashion and might not be possible to be done.

Another approach would be to distribute the points to the multiple nodes in the cluster and each 
node will  perform both  render  commands,  one  to  create  a  texture  and  one  to  process  it.  This 
solution seems ideal because the front-end will not run out of memory by having all the points  
stored on its memory. Furthermore, the performance is expected to increase linearly and also the 
quality of the images would be much higher. While the object is rotated, some points will have to 
move to another node. Therefore, the points on each node have to be indexed and probably stored 
on an efficient data structure which could be an Octree. Also, for sending the points between the 
cluster nodes, two different methods could be investigated. One is to transfer the points from the 
GPU memory to the CPU and send them to the other nodes, and another way is to use the CUDA 
GPUDirect function which supports Remote Direct Memory access (RDMA) transfers across an 
infiniband network between GPUs.[21]

A framework has been developed by the University of California, the CGLX framework, which 
supports high performance visualisation within a multi-tile environment. CGLX provides an API 
that gives access to the functionality for managing distributed displays as well as tools for managing 
clusters. It is closed source and it is supported on Linux and Mac OS systems and it is free for non-
commercial purposes. Therefore, this particular framework could be investigated and used for the 
image-based point cloud visualisation algorithm.[22]

6.3 WebCL

Web Computing Language (WebCL) is a Javascript binding to the Khronos OpenCL standard for 
heterogeneous parallel programming. It enables web applications to take advantage of the multicore 
CPU systems and the GPU within the web browser. Currently, there are three implementations of 
OpenCL. The first  is  provided as an extension of Mozilla Firefox web browser by Nokia.  The 
second one is implemented by Samsung and it is provided in the WebKit web browser engine and 
finally the third one is implemented by Motorola and is accessible through the NodeJS Javascript 
library. All those implementations are not stable yet and perhaps they do not support all the standard 
functionality.[23]

Therefore,  WebCL  could  give  more  control  to  the  WebGL  implementation  by  enabling  the 
optimisation done in the OpenGL one as well as more features. In particular, instead of running the 
second render command that applies the image-processing steps in a loop, the loop could moved 
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inside the shader program as is done within the OpenGL implementation. In order for this feature to 
be  accomplished,  WebCL must  provide  the  same functionality  of  both  reading  and  writing  to 
textures as the OpenGL image variables do and also a mechanism to to determine when to stop the 
processing steps.

Furthermore,  if  both  reading  and  writing  to  textures  is  supported  by  WebCL then  the  same 
optimisation applied to the OpenGL implementation can be applied to the WebGL one as well. The 
texture  could  me  decomposed  over  the  different  SMs  and  allow  the  cores  inside  each  SM to 
communicate through the L1 cache instead of the GPU main memory. 

6.4 PCL library

Another  thing  that  we had considered  was  to  compare  the  optimised  image-based point  cloud 
algorithm with a conventional implementation of the PCL library. However, we decided not to do 
this  due  to  time  constrains  and  prioritising  and  investigating  the  performance  of  the  OpenGL 
implementation.

The PCL library abstracts all the low level details of OpenGL and provides functions for visualising 
point clouds. It uses a conventional approach of visualising point clouds and therefore it would be 
interesting  for  future  work  to  make  a  comparison  between  the  image-based  and  the  PCL 
implementations.[24]
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Conclusion

Throughout this dissertation a comprehensive explanation of point cloud visualisation as well as the 
image-based algorithm was presented. Point cloud visualisation is used for visualising large data 
sets containing a large number of points coming primarily from 3D scanners and it is used in many 
fields such as medicine and geology.

The image-based point cloud visualisation algorithm performs all its computation on image space. 
In particular  it  creates an image with the points projected on it  and then applies  some image-
processing steps. Therefore, the performance of this algorithm depends mainly on the image size or 
window size but the point magnitude can also cause a performance penalty. Although the image-
based algorithm performs very well and the quality of the visualisation is high enough, it cannot 
cope with sparse data sets or when the camera is too close to the object and it becomes sparse.

Furthermore,  by  accessing  the  low  level  features  of  the  GPU,  a  significant  performance 
improvement was achieved. Because the image-processing steps are iterative the texture had to be 
stored on a  coherent  memory which is  the main memory of the GPU. For  every iteration,  the 
multiple shader instances read a pixel with its neighbours from the texture, applied some particular 
image processing an then stored the pixel on the main memory. However, the GPU consists of 
multiple SMs and each SM with multiple cores. All those cores inside an SM share an L1 cache 
which can be configured to be used as shared memory. Therefore, by using a compute shader, which 
is a new feature of OpenGL and which provides the functionality of performing general purpose 
computations,  the shared  memory  of  each  SMs  was  used  and  the  multiple  cores  in  each  SM 
communicated through this memory whereby the communication between the SMs was cut off. 
Also, although the quality of the output of the optimised implementation was not as good as the 
original one, it is acceptable.

The  OpenGL implementation  needs  to  linked  with  specific  libraries  and  run  on  a  configured 
environment. On the other hand, WebGL is a stripped down version of OpenGL, can be exposed 
through a web browser and run on many platforms without having to configure them. The WebGL 
implementation  is  similar  to  the OpenGL one but  with some major  differences  because of  the 
absence of some of the OpenGL functionality. Not surprisingly, the performance of the WebGL 
implementation is very similar to the OpenGL one because all the computations take place on the 
GPU and the only part of the program that runs on the CPU are the matrix multiplications.

Finally, future works were proposed. The utilisation of Octrees can be investigated in the OpenGL 
implementation as well as run it on a cluster. Also, the same optimisation applied to the OpenGL 
implementation could be applied to the WebGL one by using WeCL. What is more, a comparison 
with a conventional implementation using the PCL library could be investigated.
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Appendix A

In this section, screen-shots of the implementation are shown when running with different data sets. 
All  the  data  sets  were  downloaded  from  the  Stanford  University's  repository 
(http://graphics.stanford.edu/data/3Dscanrep/) and rights for using for research purposes are given.

A.1 Dragon
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Figure 25: The dragon data set consisting of 566K points without any 
processing 

http://graphics.stanford.edu/data/3Dscanrep/
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Figure 26: The dragon data set consisting of 566K points after holes were filled  



A.2 Happy Buddha
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Figure 27: The happy biddha data set consisting of 543K points without any 
processing
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Figure 28: The happy biddha data set consisting of 543K points after holes 
were filled



A.3 Asian Dragon
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Figure 29: The Asian dragon data set consisting of 3.6M points without any processing
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Figure 30: The Asian dragon data set consisting of 3.6M points after holes were filled



A.4 Thai Statue
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Figure 31: The Thai statue data set consisting of 5M points without any processing
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Figure 32: The Thai statue data set consisting of 5M points after holes were filled
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