

Optimising PLINK

Weronika Filinger

September 2, 2013

MSc in High Performance Computing

The University of Edinburgh

Year of Presentation: 2013

Abstract

Every year the amount of genetic data increases greatly, creating the need for

the tool capable of analysing large data sets in a fast and efficient manner. One such

software package, providing a wide range of functionality required in whole-genome

association studies is PLINK. Although, it does not limit the size of the data sets, the

time needed to process them is often a bottleneck. This master project was focused on

improving the performance of two functionality options: epistasis analysis and

haplotype blocks estimation. It has been determined that the g++ compiler and –O2

flag provide the optimal performance for both options. The epistasis analysis has been

parallelised using OpenMP. The parallel for schedule directive has been used and

dynamic schedule with the chunksize of the size 128 provided the best scaling. When

executed on 12 threads the epistasis analysis was 10.5 times faster than when executed

on 1 thread. Haplotype blocks option has been serially optimised. Introduced

optimisations improved the execution time by about 30%.

 iii

Contents

Chapter 1 Introduction .. 1

Chapter 2 Background Theory ... 2

2.1 Genome-wide association studies .. 2

2.2 PLINK ... 4

2.3 Resources and tools .. 7

Chapter 3 Profiling PLINK ... 9

3.1 Simple cases.. 9

3.1.1 Missingness rate .. 9

3.1.2 Allele frequencies ..13

3.1.3 Conclusions ...16

3.2 Epistasis and Haplotype blocks option ..16

3.2.1 Epistasis ...17

3.2.2 Haplotype blocks ...20

3.2.3 Conclusions ...23

Chapter 4 Compiler Optimisations ..25

4.1 Gnu g++ compiler and fast epistasis option ...25

4.2 Gnu g++ compiler and haplotype blocks option ..27

4.3 Intel icc compiler ..29

4.4 Conclusions...30

Chapter 5 Optimising Epistasis ..31

5.1 Code structure ...31

5.2 InSilico Research Group Parallelisation ..34

5.3 Parallelisation ...35

5.4 Testing for correctness ...36

5.5 Scalability ...39

 iv

5.6 Serial Optimisation ...42

5.7 Conclusions...42

Chapter 6 Optimising Haplotype blocks ...43

6.1 Code structure ...43

6.2 Optimising dominant functions ..44

6.2.1 EnumerateGenogroups function ...44

6.2.2 IncludeIndividuals function ..48

6.2.3 PhaseAllHaplotypes function ...49

6.2.4 Two_locus_table function ...50

6.2.5 PrunePhase and performAlternEM functions ..51

6.3 Serial Optimisation results ...51

6.4 Parallelisation ...52

6.5 Conclusions...54

Chapter 7 Conclusions ...55

Appendix A Example job script ...57

References ..58

 v

 List of Tables

Table 1 Number of calls to the most dominant functions of the haplotype

blocks option. ..23

Table 2 List of g++ compiler flags under the labels used in figure 7.27

 vi

List of Figures

Figure 1 Profile generated for missingness analysis performed on hapmap1 sample and

with default PLINK settings. ..12

Figure 2 Profile generated for missingness analysis performed on Genoplink_20130205

sample and with default PLINK settings. ..12

Figure 3 Profile generated for allele frequencies analysis performed on the hapmap1

sample and with default PLINK settings. ..15

Figure 4 Profile generated for allele frequencies analysis performed on

Genoplink_20130502 and with default PLINK settings. ..15

Figure 5 Profile for the fast epistasis option performed on hapmap1 sample, with

default PLINK settings and all x all mode. ..19

Figure 6 The profile obtained for haplotype blocks option performed on

Genoplink_20130502 sample and with default PLINK settings.22

Figure 7 The execution time in seconds for fast epistasis analysis done on hapmap1

sample when compiled with different optimisation flags.. ..26

Figure 8 Effect of different compiler flags on execution of haplotype blocks analysis..

 ...28

Figure 9 The effect of different icc compiler flags on the execution of fast epistasis

option on hapmap1 sample. ..29

Figure 10 Effect of different schedules and chunk sizes on the execution time of fast

epistasis analysis (hapmap1 sample) when executed on 6 and 12 threads.40

Figure 11 Speedup obtained for fast epistasis (hapmap1) and epistasis (first 5000x5000

SNPs from hapmap1 sample) options. ...41

Figure 12 Execution times measured after each major optimisation stage.52

Figure 13 The speedup obtained for the haplotype blocks option.54

 vii

List of Extracts

Extract 1 First few lines of stat_miss.imiss file obtained as a result of missingness

analysis on hapmap1 sample ..10

Extract 2 First few lines of the stat_miss.imiss file obtained as a result of missingness

analysis on hapmap1 sample. ...11

Extract 3 First few lines of the output file freq_stat.frq produced for hapmap1 sample

and with default PLINK settings. ...14

Extract 4 The first few lines of the plink.epi.cc file obtained from fast epistasis analysis

on hapmap1 sample. ...18

Extract 5 First few lines of plink.epi.cc.summary file obtained for fast epistasis analysis

on hapmap1 sample. ...18

Extract 6 First few lines of the blocks_original.blocks file containing the haplotype

blocks of the Genoplink_20130205 sample. ..21

Extract 7 First few lines of the blocks_original.blocks.det file containing detailed

information on the haplotype blocks of the Genoplink_20130502 sample.21

Extract 8 The bug in the segment.cpp code file discovered by Intel compiler.30

Extract 9 Pseudo-code of section of the code in calcEpistasis function responsible for

calculating epistatic associations between the SNPs. ..32

Extract 10 The difference in the output files between the serial and parallelised (by

InSilico Research Group) code, executed on 12 treads. ..34

Extract 11 The only critical section introduced by InSilico Research Group in OpenMP

parallelisation of epistasis option. ..35

Extract 12 Few output lines of the test written to compare two plink.epi.cc.summary

files. ...37

Extract 13 The best z scores for rs6758984 and rs9606603 SNPs and their

corresponding partner SNPs obtained when the code has been executed on 12 threads.

 ...38

Extract 14 CalculateLD function, called from within the mkBlks function.43

Extract 15 Dprime function called from within the calculateLD function.44

Extract 16 Unmodified genogroup.cpp code file...45

Extract 17 Modifications made to the genogroup.cpp code file.46

Extract 18 Modification done to the enumerateGenogroups function47

 viii

Extract 19 Unmodified HaploPhase::includeIndividuals function.48

Extract 20 Part of the original code of two_table_locus function located in phase.cpp

code file. ..50

Extract 21 Part of the modified code of two_table_locus function located in the

phase.cpp code file. ..50

Extract 22 Code of the mkBlks function. The bold text shows introduced parallelisation.

 ...53

 ix

Acknowledgements

I would like to thank: my supervisor Dr Alan Gray (EPCC) for guidance and

advice, Dr Mairead Bermingham from the MRC University Unit for Human Genetics

for providing the genetic data and answering all of my genetic-related questions, and

others supporting me silently and patiently bearing my crankiness. Thank you.

 1

Chapter 1

Introduction

With the advance in the fields of genetics and genomics the amount of available

genetic data increases greatly every year. To identify the genetic regions responsible for

physical traits like diseases, it is necessary to analyse large quantities of data from large

number of individuals. Moreover, to reduce the risk of obtaining numerous associations

by chance (false positive results), it is necessary to repeat analyses multiple times. This

creates the need for an efficient and effective tool that would provide wide range of

functionality to allow comprehensive and fast way to analyse the genetic data. PLINK

[1], being one of such tools, is a software package written in C++ and providing a wide

range of functionality required in the genome-wide association studies.

In this project, two PLINK options have been optimised – Epistasis and

Haplotype blocks analyses. The Epistasis option has been chosen because it is

extremely computationally demanding and therefore, it would benefit greatly from the

optimisation. The main approach to improving the performance of this function was

parallelisation. Similar work has been attempted by the InSilico Research Group [2];

some inconsistency in the results of that parallelisation have been discovered and

investigated.

The Haplotype blocks option has been chosen as a candidate for optimisation

because it is important aspect of the research conducted by the collaborating scientist

Dr Mairead Bermingham from the Roslin Institute. Both serial optimisation and

parallelisation have been attempted but due to the code structure, serial optimisation

became the main focus.

In chapter 2, we present the biological context of the genome-wide association

studies, PLINK and its options that were focus of this project. The last part of this

chapter is dedicated to the tools and resources used throughout the project. Chapter 3 is

about profiling PLINK. We present the performance of four different options. Two of

them are simple summary statistics analyses that were investigated to provide insight in

the behaviour of different PLINK options executed on different sample sizes and under

different settings. In the second part of the chapter the performance of the Epistasis and

Haplotype blocks options are discussed, along with the proposed approach to

optimisations. All of the profiling has been done with the default PLINK settings.

Chapter 4 presents the results of the investigation of different compiler flags and

compilers on the performance of both Epistasis and Haplotype blocks options. The

focus of chapter 5 is the Epistasis option - code structure, parallelisation, correctness,

scalability, and finally serial optimisations are discussed. Chapter 6 is dedicated to the

Haplotype blocks option. First, code structure, then the serial optimisation of the most

dominant functions and finally the parallelisation are discussed. The last chapter

contains the summary of the work done, conclusions and suggestions for future work.

 2

Chapter 2

Background Theory

PLINK is a software tool used to analyse the genetic data. Hence, the first

subsection of this chapter gives a brief introduction into the modern genetic studies,

ideas and motivation behind the whole-genome association studies and some

terminology required to explain the basic PLINK functionality. In the following

section, the main domains of the program functionality are described. Then we give

few examples of genetic studies that have used PLINK software package. Finally, the

last subsection describes tools and resources used throughout the project.

2.1 Genome wide association studies

In the past two decades great effort has been put into decoding and

understanding human genome. Projects such as the Human Genome Project [3] and the

HapMap Project [4] were focused on identifying all of the genetic markers. The results

obtained through the Human Genome Project has shown that 99.9% of the 3 billion

base pairs of genetic letters are identical in every person. It means that this 0.01%

contains some crucial genetic information responsible for most common, complex

human traits and diseases. This difference in the genetic makeup is the reason behind

the physical difference between people, for example blood group, height and skin

colour etc. This genetic variation is also the reason why some people inherit rare

diseases (e.g. muscular dystrophy or cystic fibrosis) and other are more likely to

develop common illnesses (e.g. asthma, heart disease or cancer). Clearly, understanding

the structure of the DNA not only provides important information on human

evolutionary history but also is necessary to develop a new approach towards many

diseases and their treatment. Being able to identify the genetic markers that influence

individual health, would allow creating more precise and of reduced risk treatments.

 Before discussing how the associations between the genetic variation and

particular diseases are investigated, it is necessary to have basic understanding of how

genetic information is inscribed. Genetic variation occur through mutations in

deoxyribonucleic acid (DNA) which is composed from four basic building blocks

molecules (bases) A,T,C and G. The order in which they occur is incredibly important

for all life and body functions. The change of one base for another at single location is

called single nucleotide polymorphism (SNP). Usually, a SNP does not have biological

importance, sometimes however it can change the function of the gene. It is believed

that there are about 7 million SNPs in human genome. Most common SNPs have only

two alleles (alternative forms of a gene), the one at lower frequency is referred to as

minor and the other as major. The common SNPs, those with the minor-allele

frequency greater than 10%, occur approximately once every six-hundred bases [5,6].

Venter et al. [6] showed that the average human gene is 2,700 bases long which means

 3

that about 50 common polymorphisms may be present in such gene. Moreover, the

common variants tend to cluster into local neighbourhoods – haplotypes, which are

groups of statistically associated SNPs present on a single chromosome. This

characteristic allows the prohibitively expensive analysis of genetic variants to be

reduced to analysis of carefully chosen SNPs.

 Until recently, only the regions suspected of being involved in the development

of a certain trait (usually disease) were investigated in the relation to that trait. The

candidate gene proved to be unrelated more often than not and so finally new, unbiased

approach has been developed - whole genome association studies (also referred to as

genome wide association studies) [7]. In this approach, the analysis covers the whole

genome when searching for the variation in human DNA underlying particular trait. In

general, the whole genome association studies (WGAS) aim at identifying the genetic

differences between the affected (cases) and unaffected (controls) by particular trait

individuals. If a particular SNP is more common in an affected than in unaffected

individuals, it is said to be associated with the investigated trait. The power and

precision of the WGAS, and hence the ability to detect SNPs responsible for complex

traits and diseases, are determined by the strength and the frequency of the linkage

disequilibrium (LD) and trait modulating SNPs (directly affecting particular trait) [8].

 Linkage disequilibrium is a measure of the correlation between alleles at two or

more sites in the same region of the genome. In other words, when a certain

combination of the genetic markers occurs in a population more or less often than

would be expected from the frequencies of alleles forming the haplotype blocks, it is

due to the linkage disequilibrium. This dependence between the SNPs may be formed

when a novel SNP occurs in the region of fixed alleles where the other SNPs are

present. This way the new SNP becomes fully correlated with the flaking haplotypes.

Later this genomic region is transmitted through generations but as the DNA is

breaking and re-joining at the germ cell development, different copies of original allele

will end up with different LD patterns. They will also be flanked by different lengths of

DNA from the original chromosome. Therefore, LD is generated by the transmission of

these short genomic regions in unrelated individuals from the remote common ancestor.

 Usually, in whole-genome association studies an additive framework is used to

model genetic variation. In other words, it is assumed that each variant affecting the

trait acts in an independent, linear and cumulative manner [9]. However, it seems that

the genes action is more complex than that predicted by the additive model. One of the

sources of non-additive genetic variation is epistasis. It is an interaction between two or

more genes that affects phenotype (physical traits based on genetic and environmental

influences). It is possible for genes to combine to produce a new trait or to mask each

other's presence. In simple terms, epistasis occurs when an allele at one locus modifies

or masks the effects of alleles at other loci, or when two or more loci interact to create

new phenotypes. Epistasis provides important clues towards understanding many

genetic and evolutionary processes. For example, evolution of sexual reproduction,

speciation and the origin of life [10]

 Two important aspects of the WGAS are genome coverage and the sample size.

Typical WGAS covers at least hundreds of thousands of SNPs genotyped for thousands

of individuals which makes them computationally challenging. In recent years many

software packages have been written to provide the tools for genetic data analysis. Most

of them are highly specialised i.e. have been written with specific analysis in mind (e.g

 4

IMPUTE [11], Haploview [12]). One of the software packages offering a wide

functionality is PLINK (one syllable). It is being used extensively in genome-wide

association studies.

2.2 PLINK

PLINK [1] is a free, open-source C/C++ single-threaded, command line

program designed to analyse the whole-genome data in a number of ways. It has been

developed by Shuan Purcell at the Centre for Human Genetic Research (CHGR),

Massachusetts General Hospital (MGH) and the Board Institute of Harvard & MIT,

with the support of others. The PLINK has been released in September 2007 and the

latest (possibly last) version – 1.07 – has been released in October 2009. The main

purpose of PLINK is manipulating and analysing of large whole-genome data sets in

their entirety. Its initial functionality covered five main domains: data management,

summary statistic, population stratification, association analysis and identity-by-descent

estimation. Multiple other features have been added in latter releases (e.g. epistasis). In

the next few paragraphs, the main functionality domains and other 2 options will be

described briefly.

 As a part of data management functionality, it is possible to: read data in variety

of formats (normal text files, binary files and transposed files), recode and reorder files,

merge two or more files, filter genotype information (e.g. extracting subsets of SNPs or

individuals) and change the data file format. Three main file formats are supported:

text, transposed and binary. Normal, text file has a one-row-per-individual format, and

the transposed file has one-row-per-SNP format. Finally, the binary file is a more

compact way of representing SNP data. Typical PLINK function requires two or more

data files to perform desired operation – ped and map file in text format, tped and tfam

in transposed format and bed, bim and fam in binary format.

 The ped file is a white-space delimited file, containing family and individual

information in six mandatory and two optional columns. They mandatory columns

contain family ID, individual ID, paternal ID, maternal ID, sex and phenotype,

respectively. The two additional columns contain names of alleles. The map file, as the

name suggest contains the genetic map and has four columns: chromosome number,

SNP identifier, it's genetic distance (in morgans – unit for measuring the genetic

linkage) and finally base-pair position (one kilobase equals to 1000 base pairs of DNA).

The transposed file set holds the genotype information (one row per SNP) in tped files

and individual and family information (one row per individual) in tfam files. All the

information is represented in the same way as in ped/map file format, except the

information is swapped between files. The transposed format is preferable when the

data contains many more SNPs than individuals (often the case with WGAS data), this

way the tped file will be long as opposed to the ped file being wide. The binary file

format splits information into three files: the binary bed file (containing genotype

information), the text file fam (storing phenotype information) and text file bim, which

is an extended map file (contains two extra columns with allele names).

 5

 PLINK allows manipulation of the way those files are read in e.g. some of the

variables can be read in in different units, some columns/rows may be skipped and so

on. There are also other file formats available which are either mixed forms of above

formats (e.g. long-format file) or contain more specific information required by some of

the PLINK options (e.g. alternate phenotype files). To specify the file format and make

use of extra options, additional command line flag needs to be added to the execution

command.

 The summary statistics is mostly used for quality control of analysed sample.

Multiple summary measures are available and can be used to obtain general

information about the data sets. In this report we will discuss briefly two functions

belonging to the summary statistics domain: missing genotype rates and allele

frequencies. Both are part of the PLINK tutorial available online [13], and as such were

profiled to give better insight into the structure of the program.

 PLINK provides a wide range of options to perform the association analysis,

some of the test can be conducted in multiple ways (e.g. on different genetic models,

with permutation etc.). There are case/control tests, family-based association tests,

quantitative traits tests, tests for stratified samples and others. The most basic

association test is based on comparing the allele frequencies between cases (affected

individuals) and controls (unaffected individuals) to identify the regions responsible for

a particular trait.

 The next domain allows performing identity-by-descent and identity-by-state

estimation. Identity-by-descent (IBD) refers to the case where two or more alleles are

identical copies of the same ancestral allele. In other words, the two alleles are inferred

as IBD if enough of their SNPs are the same. The IBD analysis allows discovering the

unknown familial relationships, as well as detecting sample contaminations, pedigree

errors, swaps and duplications. It is also possible to find specific segments shared

between distant relatives. Two alleles are referred to as identical by state (IBS) if they

have the enough SNPs that are the same even though they do not share common origin.

In other words, they have the same DNA sequence but not because they were inherited

from common source.

 The population stratification is a difference in the allele frequencies between

groups in a population. In other words, members of a given population are grouped

together based on their allele frequencies. PLINK uses the pairwise IBS distance with

other restrictions (like cluster size, phenotype criterion and so on) to perform

agglomerative clustering and investigate the population's substructure. The obtained

results can reduce and refine the size of the sample for the subsequent association test

(by cluster specification).

 There are also other features supported by PLINK like for example epistasis. In

fact, PLINK provides two ways of performing epistasis analysis. The first one is

invoked by the --fast-epistasis and the other by --epistasis command. The main

difference between them is the method used for calculating the pairwise interactions

between SNPs. As the name suggests, the fast epistasis option is significantly faster

than the normal one. More details are provided in chapter 5.

 Some of the other PLINK options include multi-marker tests, meta-analysis

and imputation. They have been added to later releases of the program to provide

comprehensive functionality for whole-genome association studies. Thanks to that,

PLINK is being used in wide range of genomic and genetic studies such as identifying

 6

loci responsible for traits like body mass index [14], negative symptoms in

Schizophrenia [15] or for cannabis dependence [16].

 The use of PLINK in research is usually accompanied by other tools and

techniques and at the same time many PLINK options are used. For example, the

research using WGAS to identify the genomic region responsible for the size of spine

bone in humans [17] used both quantitative trait association tests and population

stratification. Ge at al. [18] when studying influence of genetic variation on hepatitis C

treatment used the following PLINK options: calculation of relatedness (IBD

estimation), Hardy-Weinberg equilibrium analysis (one of the summary statistics tests),

logistic regression and population stratification.

 Two of investigated studies had used the epistasis analysis provided by PLINK.

One of them was focused on investigating statistical epistasis in complex disorders [19]

(both fast epistasis and epistasis methods available in PLINK have been used) and the

other on finding susceptibility loci for Crohn's disease [20] (case-only epistasis function

used).

 Sometimes PLINK is used to prepare the sample for the next tests and methods.

For example one of the investigated researches [21] required LD-clumped input to

apply further techniques and PLINK has been used to produce it. The basic idea behind

the LD-clumping is to use the empirical estimates of linkage disequilibrium between

SNPs and to group them accordingly across one or more datasets or analyses.

 The wide range of functionality, ease of use and good documentation are some

of the reasons why PLINK is commonly used in the scientific community. As

mentioned before, PLINK is capable of handling large data sets and the only factor

limiting the size of the analysed samples is the time necessary to process them. Some of

the program functions require looping over all of the SNPs and all of the individuals

and so is time consuming. Consequently, some of the researches are significantly

hindered by the slow computation process. To make PLINK even more functional, it is

necessary to improve the program performance.

 PLINK provides numerous features and optimising all of them is way beyond

the scope of this project. Also because it is so widely used and for so many different

purposes, it is hard to decided what part of the functionality would benefit the most

from the performance optimisation. Therefore, in this project we were focused on

improving the performance of two options - epistasis and haplotype blocks analysis.

The epistasis analysis has been chosen because similar work has been already

attempted by the InSilico Research Group [2] and analysing it as a part of initial

investigation was supposed to provide insight into potential optimisations of other

PLINK options. However, the parallelisation done by InSilico Group seems to be

incomplete and produce inconsistent results. The brief investigation on that

parallelisation is presented in chapter 5. The inconsistencies and the fact that the

Epistasis analysis is very time consuming convinced us to make parallelisation of the

Epistasis option part of this project. The Haplotype blocks option has been chosen

because it is relevant to the research of collaborating scientist from the Roslin Institute

[22] - Dr. Mairead Bermingham. More details on the both options and in what kind of

scientific research they can be used will be provided in further chapters. Meantime, in

the next section, tools and resources used throughout the project are described briefly.

 7

2.3 Resources and tools

Most of the development work has been conducted on the compute component

of Edinburgh Compute and Data Facility (ECDF) – cluster Eddie. It consists of 156

IBM dx260M3 iDataPlex servers and each of them has two Intel Xeon E5645 six-core

processors. To provide better insight into the program behaviour on different

architectures, EPCC training machine Morar has also been used (Intel(R) Xeon(R)

CPU E5-2407 0 @ 2.20GHz). It consists of 128 cores, divided into two shared-memory

boxes of 64 cores.

 All of the work has been done on development version of PLINK v 1.07. The

PLINK source code has 132 files. Two of them are text documents – COPYING

(containing GNU general public license v2) and README containing basic

information about the program. There are also executable jar file (gPLINK providing

GUI for PLINK) and two files of the format required by PLINK test.ped and test.map.

The actual program consists of 32 header files, 94 code files and Makefile. PLINK is

capable of running on the following platforms: Unix/Linux, Windows, Mac and

Solaris. The platform used should be specified in the Makefile. There are also additional

compilation options available: R plug-ins, web-based version check, ensure 32-bit

binary, link to zlib (compression library), link to LAPACK and force dynamic linking.

Thanks to the R plug-ins it is possible to use R package for statistical computing.

During this project the default options were enabled: R plug-ins, web-check, zlib library

and forced dynamic linking. PLINK does not require installation. However, on different

systems the location of libraries is different. Hence it was necessary to specify the

correct path for the zlib library. On the ecdf cluster Eddie it was /lib64/libz.so.1. The

default compiler specified in a Makefile is g++ and its default flags are -O3 and -I. The

compiler and flags are discussed in more detail in chapter 4.

 The data used for the PLINK tutorial [13] and development of parallelised

epistasis analysis comes from the PLINK website – downloadable as a zip file

hapmap1.zip. The data are split between three files hapmap1.ped, hapmap1.map and

hapmap1.phe (phenotype information). The sample contains 83534 SNPs from

randomly selected 89 Asian individuals from HapMap [4]. Thus the data is not in any

way representative for any study design or disease model but is good enough to

illustrate PLINK behaviour. The work on the haplotype blocks analysis was carried out

on Genoplink_20130205 transposed data (Genoplink_20130205.tfam and

Genoplink_20130205.tped) provided by the collaborating scientist Dr Mairead

Bermingham. The data come from three different population-representative cohorts

from the Croatian population. The sample consists of 2357 individuals from which 960

have been recruited from villages of Vis and Komiza on the island of Vis (between

2003 and 2004), 897 from Korcula island (2007) and 500 from city of Split (between

2008 and 2009). The individuals and SNPs not meeting certain criteria were excluded

from the analysis. The final sample contains 267912 markers that 2186 individuals (871

males and 1315 females) had in common.

 To profile the performance of the tutorial cases, epistasis and haplotype blocks

options, gprof has been used. During the course of the project some minor bugs in the

code have been identified and fixed (discussed in chapter 4). To test the correctness of

the optimisations and parallelisation, first Linux diff command has been used. In cases

 8

when this command was not sufficient to decide whether two output files contain

consistent data or not, specially written test have been used (in C and python). Those

tests compare the contents of two files and return the difference between them. The

files are recognised as being consistent even if the data are stored in different order.

 To resolve the problems with memory allocation encountered when

parallelising haplotype blocks function Valgrind's DRD [23] tool has been used. DRD

is used for detecting errors in multithreaded C and C++ programs.

 OpenMP has been chosen as a parallelisation method. The choice has been

mainly dictated by the nature of the code, the language in which PLINK has been

written and the platform on which it is being used. Using OpenMP allows

parallelisation through introducing #pragma omp pre-processor directives and so major

re-engineering of the code is not necessary. The changes in the code usually involve

ensuring the correct scope of variables and introducing critical sections where needed.

Also OpenMP does not require any special wrappers or bindings for parallelisation of

C++ programs.

 The code contains many nested loop regions (mostly over SNPs and/or

individuals) which are good candidates for parallelisation using #pragma omp parallel

for directive. Furthermore, some of the PLINK options, like haplotype blocks, have

quite complex, split among many code files structure. Those options usually make use

of functions primary belonging to other options, which makes the call tree rather

nested. In such cases orphaning provided by OpenMP seems to be a good and

straightforward approach to parallelisation.

 Finally, according to our knowledge the scientists from the Roslin Institute at

the University of Edinburgh run PLINK either on ECDF cluster Eddie or on the

internal cluster of a very similar structure. Being shared memory machine, it allows

execution OpenMP parallel jobs. To run them, it is necessary to specify in the job script

the number of OpenMP threads (via -pe OpenMP) and initialise the environment

module (./etc/profile./modules.sh). Example of the job script is shown in appendix A.

The parallel environment accepts requests for up to 12 job slots. Hence, in this project

the parallel jobs on Eddie are run on a maximum of 12 threads.

 Throughout the project, we have used the PLINK source code to run all of the

analyses. Normally, the researches using PLINK on Eddie do not use the source code

(if they are not interested in changing the compiler settings or modifying the code)

because Eddie has two version of PLINK installed (v 1.06 - default and 1.07).

Therefore, to run desired analysis, one first need to load the PLINK module and then

use the appropriate command.

 All of the measurements have been repeated three times and the one with the

shortest execution time has been taken as a representative for the investigated settings.

The reasoning behind this choice is our interest in how fast the code can be executed,

not how and to what extend other processes can hinder it.

 In next chapter we describe briefly how to run PLINK, what kind of output it

produces and discuss the profiles of two of the simple summary statistics options. Then

we will proceed to discussing the performance of epistasis and haplotype blocks

options with default PLINK settings.

 9

Chapter 3

Profiling PLINK

One of the first tasks undertaken in this project was profiling of different aspect

of PLINK functionality. Although, optimising all of the aspects of the program is

beyond the scope of the project, understanding how the program works is crucial in

optimisation process. This way, the parts of the code that would benefit the most from

optimisation can be identified. In this chapter four different PLINK options are

discussed. Two of them are part of the summary statistics domain, and the other two are

epistasis and haplotype blocks option. Firstly, we will discuss briefly what they are

doing and what they are used for, then how to perform them using PLINK and finally

we will present their profiles. All of the presented profiles were obtained for the default

PLINK settings (i.e. compiler g++, flag -O3).

3.1 Simple cases

 To understand how the program works and what it is capable of, we went

through PLINK tutorial available online [13]. All of the tutorial examples have been

profiled but only two cases, having considerably longer execution times (still very

short), are discussed here. They are missingness rate and allele frequencies statistics.

Both analyses are considered separately and in more details than required but we

believe it is a good way to illustrate how PLINK works. Both of them were executed on

both artificially small (hapmap1) and consisting of real life data (Genoplink_20130205)

samples. Profiles generated for both options and sample sizes are compared, giving

insight into general behaviour of the program. First we will discuss the missingness rate

option.

3.1.1 Missingness rate

Missingness rate analysis checks the rate of missing genotype information

(SNPs) in an analysed sample. It is particularly useful for refining the sample in

preparation for other tests. If a particular individual is missing significant number of

SNPs or if particular SNP is absent in large number of individuals, they can be

excluded in further analysis. In other words, it is good quality control tool.

As mentioned in chapter 2, PLINK is a command line tool and so specific

commands are required to perform desired analysis. To perform missingness analysis

the following command has been used:

./plink --bfile hapmap1 --missing --out miss_stat

This command runs the executable plink using the binary data files called

hapmap1.bim and hapmap1.fam as an input files. Then it performs the calculation of

 10

the missingness rate (invoked by --missing command) and outputs the results into the

miss_stat.imiss and miss_stat.lmiss files. The log file is also generated automatically

(miss_stat.log).

The log file provides the basic information on the examined sample. At the

top of the file there is a banner containing the copyright information and PLINK

version. Then information about the web-check for the newer version, the time the

analysis is started at, options in effect, and the name and location of the input files are

specified. The next few lines contain the information about the analysed sample –

number of SNPs and individuals, as well as how many of them are missing

phenotype, whether they are affected (case) or unaffected (control) and their gender.

Then the output files are specified and total genotyping rate in individuals with non-

missing phenotype is given. Finally, how many SNPs have failed the test and the

analysis end time.

 Usually if the sample contains pre-selected markers and individuals, the

reported genotyping rate is high. In the case of data from hapmap1 sample (83534

SNPs and 89 individuals) the rate is 0.99441. Also no SNPs and individuals were

removed. The values of the thresholds (both for excluding SNPs that are missing in

many individuals and individuals with too much missing genotype data) can be

regulated via command line options (--mind and --geno, respectively).

 As mentioned before, the missingness analysis produces two output files

miss_stat.imiss and miss_stat.lmiss. The former, stores the genotyping missingness by

individual (what portion of SNPs each parson in the sample is missing) and the latter

by SNPs i.e. how many people are missing a particular SNP. For the individuals the

file contains 6 columns: family ID, individual ID, missing phenotype, number of

missing SNPs, total number of SNPs included in this analysis and finally the portion

of missing SNPs.

 Extract 1 shows first six lines of the stat_miss.imiss file. The family ID is

represented by the identifier consisting of letters and numbers. The individual ID is

simply a number ordering the individual within their family. In the hapmap1 sample

all of the individuals are founders or in other words are representing different families

and so all of them have the same individual ID – 1. If the individual is missing

phenotype, letter Y is placed in the third column. According to the log file, there are

no individual with missing phenotype in the hapmap1 sample and therefore, all of the

rows have N in the third column. The number of missing SNPs is different for each

individual and clearly can vary significantly. Because the no SNPs have been

excluded from the analysis, the N_GENO column (total number of included SNPs) is

the same for all of the individuals and equals number of SNPs in the sample. The last

columns, the portion of missing SNPs is simply N_MISS/N_GENO.

 F_ID I_ID MISS_PHENO N_MISS N_GENO F_MISS
HCB181 1 N 671 83534 0.008033
HCB182 1 N 1156 83534 0.01384
HCB183 1 N 498 83534 0.005962
HCB184 1 N 412 83534 0.004932
HCB185 1 N 329 83534 0.003939
HCB186 1 N 1233 83534 0.01476
…

Extract 1 First few lines of stat_miss.imiss file obtained as a result of missingness analysis on

hapmap1 sample.

 11

The other file has 5 columns: SNP identifier, chromosome number, number of

individuals missing this SNP, total number of individuals included and the proportion

of sample missing for this SNP. The first few lines of this file are presented in extract

2. All of the first column entries have chromosome 1 because the analysis proceeds

chromosome by chromosome. Looking at the third column, it is clear that some SNPs

are present in all of the individuals (N_MISS = 0). Again, because no individuals

have been excluded from the analysis, the value of N_GENO in all rows is the same

and equal to the number of individuals in hapmap1 sample. The proportion of

individuals missing particular SNP is calculated as N_MISS/N_GENO.

CHR SNP N_MISS N_GENO F_MISS
1 rs9729550 0 89 0
1 rs3813196 0 89 0
1 rs6704013 2 89 0.02247
1 rs307347 12 89 0.1348
1 rs9439440 2 89 0.02247
1 rs3128342 1 89 0.01124

…

Extract 2 First few lines of the stat_miss.imiss file obtained as a result of missingness analysis

on hapmap1 sample.

The missingness analysis has been performed on two samples of different

sizes and represented in different formats – hapmap1 (83534 SNPs, binary) and

Genoplink_20130205 (267912 SNPs, transposed). Both samples have been profiled

using gprof.

Figure 1 shows the distribution of the total execution time for the hapmap1

sample. Only the functions taking more than the 1% of total time are present in the

figure; the contribution of the rest is under the other functions label. The execution

time was 0.59 seconds. The most dominant is the routine responsible for filtering the

SNPs, it accounts for almost 60% of the execution time. The second most time

consuming function (CheckDupes) checks sample for duplicated individuals and

markers, and takes almost 12%. The third is function Plink::readBinData, responsible

for reading binary data into the program consumes 10% of the total time. The vector

class is taking almost 7% of the total execution time. Locus class is also taking almost

7%. The last noticeable contribution, taking about 5%, comes from the calls to the std

library. Other functions combined together take only 0.02% and thus are not

examined closely.

The execution time of the bigger sample (Genoplink_20130205) was 124.41

seconds and its profile looks slightly different (Fig.2) than that of the smaller sample.

The most dominant routine, responsible for reading the transposed data in, takes over

65% of the total time. The second most time consuming routine is the

Plink::filterSNPs function with contribution of over 34%. On the third position is the

std class taking 0.1%. Both of them were present in the profile of the smaller sample

as well. The other named functions, taking less than 0.01% each, are checkDupes, the

vector class and Locus class. Clearly, there are only two significant contributions to

the total execution time.

 12

59.32%

11.86%

10.17%

6.78%

6.77%

5.08%

0.02%

Plink::filterSNPs

CheckDupes

Plink::readBinData

vector class

Locus class

void std

other funcions

Figure 1 Profile generated for missingness analysis performed on hapmap1 sample and

with default PLINK settings.

65.41%

34.27%

0.10% 0.08%0.06% 0.03% 0.05%

Plink::readTransposedData

Plink::filterSNPs

void std

checkDupes

vector class

Locus class

other functions

Figure 2 Profile generated for missingness analysis performed on

Genoplink_20130205 sample and with default PLINK settings.

 13

Comparing both profiles, it is clear that with increasing size of the sample

some of the functions become more and other less time consuming. Putting aside the

time taken to read the data in (which will probably become less significant for more

computationally expensive PLINK options) the contribution from the function

responsible for performing the actual work, i.e. filtering SNPs, increased. Therefore,

if bigger samples are considered (justified by WGAS characteristics) and if the

computation is concentrated in small number of functions (characteristic of main

PLINK options) the number of functions being the candidates for optimisation will be

smaller. The contribution from the vector class has also become less noticeable in the

profile of the bigger sample. The reason behind that may be that the vector class is

actually not used that much in the computational part of the analysis. It is hard to tell

how its contribution will look like if more complex PLINK option are performed.

Also it seems, that reading data in the transposed format (one row per SNP)

takes longer time than the binary format. To investigate the effect of file formats on

the execution time, the missingness analysis has been performed on the hapmap1

sample represented in different ways. When the binary (--bfile) data file has been

used (discussed above) the analysis took 0.59 seconds. Using the transposed file (--

tfile) and normal text file (--file) resulted in analysis taking 2.16 and 3.91 seconds,

respectively. Clearly, different file formats affect the performance of smaller samples.

It is expected that this difference will become smaller when the analysis will be more

computationally challenging. Although, the binary format is the fastest, the

transposed seems to be more convenient when the size of the sample becomes large

(which is typically the case in WGAS). Also the binary file cannot be read through

simple viewing programs.

3.1.2 Allele frequencies

The second function, coming from PLINK tutorial, is responsible for

calculating the frequencies of the alleles present in the sample. For each SNP present

in a sample, it generates the list of major and minor allele frequencies. Again as a

function from the summary statistic domain, it is used mainly for the quality control

of the analysed sample. To perform the allele frequencies analysis the following

command has been used:

./plink --bfile hapmap1 --freq --out freq_stat

PLINK first reads the hapmap1 sample in binary format, then performs the

allele frequencies analysis and finally writes the results to the freq_stat.frq file. The

log file for this PLINK option contains essentially the same information as for

missingness rate. The only exception is there is no information about removed SNPs

as the analysis itself is not removing any SNPs but only producing the file with the

allele frequencies.

 14

The output file (freq_stat.frq) contains six columns. The first one stores the

chromosome number and the second one the SNP identifier. The following two

contain the allele code for minor and major alleles, respectively. The next one holds

the minor allele frequency and the last one contains the non-missing allele count. The

first six lines of the file are presented in extract 3. All of the entries in the first column

are 1 because the analysis proceeds chromosome by chromosome. The allele codes

are coded as 1 and 2 (0 if the allele is not present). The non-missing allele count is

calculated as the difference between the number of individuals and the number of

missing genotype records at the SNP.

 CHR SNP A1 A2 MAF NCHROBS

1 rs6681049 1 2 0.2135 178

1 rs4074137 1 2 0.07865 178

1 rs7540009 0 2 0 178

1 rs1891905 1 2 0.4045 178

1 rs9729550 1 2 0.1292 178

1 rs3813196 1 2 0.02809 178

 …

Extract 3 First few lines of the output file freq_stat.frq produced for hapmap1 sample and

with default PLINK settings.

Again, both the hapmap1 and Genoplink_20130205 data sets have been used,

the total execution times were 0.32 and 97.49 seconds, respectively. Figures 3 and 4

show that both profiles show many similarities to the respective profiles obtained for

missingness rates option. For the small, binary sample (hapmap1) the most dominant

routines are again Plink::filterSNPs (41.18%), Plink::readBinData (20.59%) and

checkDupes (14.71%). The order changed slightly (second and third functions are

swapped) compared to missingness profile. On the fourth most time consuming

position is Locus class (8.82%) followed by vector class (5.88%). The total

contribution coming from the std class is also noticeable as it takes almost 9% of

execution time. The same as in the case of missingness function the number of

contributing functions is quite large. The other functions do not take enough time to

be present in the profile.

 15

41.18%

20.59%

14.71%

8.82%

5.88%

8.82% Plink::filterSNPs

Plink::readBinData

checkDupes

class Locus

class vector

void std

Figure 3 Profile generated for allele frequencies analysis performed on the hapmap1

sample and with default PLINK settings.

82.70%

16.66%

0.25% 0.11% 0.15% 0.13%

Plink::readTransposedData

Plink::filterSNPs

checkDupes

vector class

void std

other functions

Figure 4 Profile generated for allele frequencies analysis performed on

Genoplink_20130502 and with default PLINK settings.

 16

The tendencies for the bigger sample are also similar to those observed for

missingness rates. The profile shown in figure 4 has the same dominant function as

the one in figure 2. The most dominant is the function responsible for reading the

transposed data in (82.7%), then the second is the function filtering SNPs (16.66%).

Both of them account for almost entire execution time. The other functions named in

the labels are again checkDupes, vector class and std class. Their contribution is

smaller than for the missingness profile. The reason for that is most likely because the

missingness rate analysis required sorting genotyping rates with respect to both SNPs

and individuals, whereas the allele frequencies option sorts them only with respect to

SNPs. In both cases, the time needed to read the data in is roughly the same for both

PLINK options (~81s). The time spent on filtering SNPs is significantly shorter (done

only with respect to SNPs) in the allele frequencies option.

3.1.3 Conclusions

Only two options form the PLINK tutorial have been discussed. Nevertheless,

all of the analysed options exhibit similar behaviour for both datasets, irrespective of

sample size. Although, for the bigger dataset the execution time was dominated by

the time spent on reading the transposed data into the program, this behaviour is most

likely typical for relatively small samples and computationally inexpensive options.

Although, it is not part of this project, we believe that it may be advantageous if the

future work was to improve the efficiency of the reading the data in, as the program is

often used just for changing the format of the data. The contribution from the vector

class differed for different sample sizes and PLINK options but it was present in all of

them (not only those presented above). That is because PLINK stores most of the

genetic data in dynamically allocated vectors. That is also the reason why other std

class members are also present in the profiles – manipulating the data requires

allocating, inserting, sorting, pushing back, resizing etc. Thus the vector class is used

extensively across all of the program options.

3.2 Epistasis and Haplotype blocks option

In this part of the chapter we present the profiles of the fast epistasis and

haplotype blocks option. Optimising them is the main focus of this project and

therefore, they are discussed separately and in more detail than the tutorial cases.

First, we will discuss briefly what are they doing and what they used for and then the

profiles will be discussed. The fast epistasis option has been performed on slowest

format of the hapmap1 sample (normal text file) and for the haplotype blocks option

Genoplink_20130502 sample has been used.

 17

3.2.1 Epistasis

As mentioned in chapter 2 and discussed in more details in chapter 5, some

inconsistencies have been discovered in analysis results produced by the code

parallelised by the InSilico Research Group [2]. Moreover, the epistasis analysis

proved to be computationally expensive even for relatively small datasets, because it

requires analysing of the billions of SNP combinations. It is a good candidate for the

OpenMP parallelisation because it is calculating the pairwise interaction between SNPs

inside the nested loop region (two loops going over all of the SNPs in the dataset, code

structure is discussed in more detail in chapter 5). Additionally, the collaborating

scientist (Dr. Mairead Bermingham) was also interested in incorporating this analysis in

her research. Identifying the SNP by SNP interactions and accounting for them in the

model would improve the model's predictive performance.

 As explained in the background section epistasis is the measure of how

polymorphism at one site on the genome interacts with polymorphisms at other sites.

The polymorphic sites have been shown to contribute to the variation in complex traits

(e.g. diseases). To date, many studies identifying the genetic basis underlying them did

not account for those interactions [24]. The primary reason for that is the high

computational cost associated with incorporating epistasis in GWAS [25].

 This section describes the basic usage of the option, its performance on the

PLINK default settings and potential use in the scientific research. The structure of the

code and the parallelisation method are discussed in detail in chapter 5.

The epistasis test can be done pairwise between all of the SNPs, between the

set of SNPs and all other SNPs or between two chosen sets of SNPs. In all cases the

output files will only contain the results that are above a certain thresholds regulated

through the additional commands. Throughout the project default PLINK threshold

values have been used. To display the epistatic result, the interaction needs to be

larger than or equal to 0.0001 and to count it as a significant result it needs to be

larger than or equal to 0.01.

Epistasis analysis is computational expensive and so the hapmap1 sample

(83534 SNPs) and fast epistasis option have been used. The PLINK has been run with

the command:

./plink --file hapmap1 --fast-epistasis

The analysis has been performed in “All x All” mode (all SNPs x all SNPs) and

the total number of valid tests was 1846969599. The results were saved into two output

files. The first one plink.epi.cc has six columns: chromosome of first SNP (CHR1),

identifier for first SNP (SNP1), chromosome of second SNP (CHR2), identifier for

second SNP (SNP2), chi-square statistics (STAT) and asymptotic p-value (P). The first

four columns are self-explanatory – pair of analysed SNPs and what chromosome they

are located on. The chi-square statistic is calculated as a squared standard deviation

from the case that the SNPs are not affecting each other. The last column contains

corresponding p-value. Extract 4 shows first six lines of this output file. The

chromosome and first SNP identifier is the same for all presented entries which is

 18

consistent with the idea of first checking all of the partners of one SNP and then

proceed to the next. Because hapmap1 sample has been picked at random, the

calculated statistical measures are not representative to any population and hence we

are not going to discuss them.

 CHR1 SNP1 CHR2 SNP2 STAT P

1 rs6681049 2 rs2961958 15.7 7.418e-05
1 rs6681049 6 rs4715714 19.31 1.114e-05
1 rs6681049 6 rs3805802 18.66 1.567e-05
1 rs6681049 6 rs9358001 18.66 1.567e-05
1 rs6681049 11 rs1948069 16.46 4.97e-05
1 rs6681049 11 rs361302 20.01 7.717e-06
…

Extract 4 The first few lines of the plink.epi.cc file obtained from fast epistasis analysis on

hapmap1 sample.

The second output file (plink.epi.cc.summary) has eight columns: the

chromosome of the first SNP (CHR), then SNP identifier (SNP), number of significant

epistatic tests (N_SIG), number of valid tests (N_TOT), proportion of valid tests

(PROP), highest statistic for this SNP (BEST_CHISQ), chromosome of best SNP

(BEST_CHR) and finally the identifier of the best SNP. The proportion of valid test is

simply quotient of number of significant test and number of valid tests. The best chi-

square value is the highest obtained chi-square value for this SNP (the strongest

interaction of this SNP). The last two columns are the chromosome on which the

partner of this strongest interaction is located and its identifier. Extract 5 shows first six

lines of this output file. As the file contains the summary of the epistasis analysis the

strongest interaction for each SNP is recorded. If the strength of the association does

not meet the requirements of the thresholds some of the columns have zeros or not a

number (-nan) label in them.

CHR SNP N_SIG N_TOT PROP BEST_CHISQ BEST_CHR BEST_SNP
1 rs6681049 847 59174 0.01431 20.01 11 rs361302
1 rs4074137 196 51513 0.003805 12.09 3 rs11716250
1 rs7540009 0 0 -nan 0 1 rs6681049
1 rs1891905 853 62736 0.0136 19.51 7 rs9638439
1 rs9729550 424 55359 0.007659 16.48 9 rs7872472
1 rs3813196 0 31865 0 4.885 3 rs13099884
…

Extract 5 First few lines of plink.epi.cc.summary file obtained for fast epistasis analysis on

hapmap1 sample.

 19

The total time taken by the fast epistasis option executed on the hapmap1

sample with the default PLINK settings was 91 minutes and 39 seconds. There are only

four contributors present in the profile shown in figure 5. Clearly, the function

responsible for epistasis calculation, Plink::calcEpistasis, accounts for nearly all of the

execution time (99.78%). As we predicted the function responsible for reading the data

in takes only 0.03% (less than 2 seconds) and filtering SNPs takes only 0.01% of total

time. The other functions combined together do not even take 0.2 % of the execution

time.

The fact that the calcEpistasis function has been called only twice during the

execution of the program and its overwhelming dominance suggest that parallelising

this function may be very beneficial.

99.78%

0.03%
0.01% 0.18%

Plink::calcEpistasis

Plink::readData

Plink::filterSNPs

other functions

Figure 5 Profile for the fast epistasis option performed on hapmap1 sample, with default

PLINK settings and all x all mode.

We have also attempted to measure the execution time for the epistasis option

for the same sample size. However, the job has been terminated after 48 hours with

only about 15% portion of the sample being analysed (about 12000 out of over 83000

SNPs). Clearly, the epistasis option is much more computationally expensive than the

fast epistasis, which makes it even more suitable candidate for parallelisation. The main

reason behind the high computational cost is the use of linear or logistic regression,

depending on whether a continuous or binary phenotype was being analysed, to

calculate each pairwise association between SNPs.

 20

 PLINK’s authors justify the use of fast epistasis option for computationally

demanding problems because both approaches give similar results [1]. Depending on

the objective of a study one may combine both approaches i.e. do the general test using

the fast epistasis option and run the epistasis (using the logistic regression) on a smaller

subset of SNP pairs. The two options would therefore benefit from optimisation and

parallelisation, discussed in chapter 5.

3.2.2 Haplotype blocks

Due to the large number of SNPs it is more feasible and often informative to

analyse simultaneously all of the markers in the region of interest. As mentioned in

chapter 2, haplotype is a combination of alleles at adjacent sites on a chromosome

that are inherited together. It is the strength of LD between adjacent SNPs that

determine whether the two SNPs belong to the same haplotype blocks. The haplotype

blocks estimation in PLINK is classified under the LD calculation options. Linkage

disequilibrium is a phenomenon in which the markers display the statistical

dependence. The studies suggest [26] that each chromosome can be divided into

many blocks and each such block has limited number of haplotypes. Moreover, it is

seems that LD is locus and population specific.

Dr Bermingham plans to use the haplotype information to reduce the

redundancy in the genotype data by determining whether removing the SNPs in High

LD improves the predictive performance of adopted models.

To run the haplotype blocks estimation the following command has been used:

./plink --tfile Genoplink_20130205 --blocks --out blocks_original

The same command and data sample (Genoplink_20130205) has been used by

the collaborating scientist in her research. Due to the nature of the computation, only

individuals with non-missing phenotype are taken into account. The default settings

allow calculation of pairwise LD only between the SNPs within 200kb. This distance

can be changed by addition of another command line flag.

The results of the analysis were written into two output files:

blocks_original.blocks and blocks_original.blocks.det. The first one contains the list

of blocks containing 2 or more SNPs. Extract 6 shows the list of SNPs making the

first six blocks. Three of them consist of two SNPs only, two of them have three

SNPs and one has 5 SNPs.

The second output file contains more information, stored in six columns (Extr.

7). The first one holds the chromosome identifier (CHR), the next two contain the start

and end position (in base-pair units) of this block. The fourth column has the distance

spanned by this block given in kilobases. The last two entries are number of SNPs in

this block and their list.

 21

* rs6687776 rs4970405 rs12726255

* rs11260549 rs9729550

* rs3813199 rs3766186

* rs3766178 rs3128342 rs2296716

* rs7531583 rs6681938 rs4648592 rs7525092 rs2474460

* rs12755035 rs884080

…

Extract 6 First few lines of the blocks_original.blocks file containing the haplotype blocks of

the Genoplink_20130205 sample.

CHR BP1 BP2 KB NSNPS SNPS

 1 1030565 1049950 19.386 3 rs6687776|rs4970405|rs12726255

 1 1121794 1135242 13.449 2 rs11260549|rs9729550

 1 1158277 1162435 4.159 2 rs3813199|rs3766186

 1 1478180 1497824 19.645 3 rs3766178|rs3128342|rs2296716

 1 1706160 1844046 137.887 5 rs7531583|rs6681938|rs4648592|rs7525092|rs2474460

 1 2026361 2026749 0.389 2 rs12755035|rs884080

 …

Extract 7 First few lines of the blocks_original.blocks.det file containing detailed information

on the haplotype blocks of the Genoplink_20130502 sample.

The first column for all six entries indicates that the blocks are located on

chromosome 1. The starting position indicates where exactly on the genetic map they

lie. The end position naturally indicates where the block ends and thus how long it is.

The size of the blocks may vary significantly. Among the blocks shown in the extract 7

the shortest has 0.389 and the longest has 137.887 kilobases. They contain 2 and 5

SNPs, respectively.

 The haplotype blocks analysis took 5 hours 3 minutes and 17 seconds. The log

file indicates that all of the SNPs and individuals present in the sample were used in the

analysis. The analysis divided 267912 SNPs into 60434 blocks.

Figure 6 shows the profile of the execution time for haplotype blocks analysis.

The most dominant is HaploWindow::enumerateGenogroups function – it takes more

than 31% of the execution time. This function is responsible for dividing the

individuals present in the sample into groups of the same genotype. The second most

time consuming function, taking almost 21%, is the vector class. The third and the

fourth are HaploPhase::includeIndividuals and HaploPhase:: phaseAllHaplotypes

 22

functions, respectively. The former checks whether each individual has enough non-

missing genetic data to be included in the analysis and the latter performs the

haplotype tests. The two_locus_table function (4.4%) constructs the table of

independent alleles observed at two loci in all of the individuals. Next function

prunePhase (~3%) removes unlikely regional phases from the further analysis, and

performAlternEM function (2.22%) is used to calculate haplotype frequencies. The

other functions label groups all of the other functions with execution time smaller

than 2% of the total time. All those functions together take almost 15%. The structure

of the code of above the mentioned functions is described in more details in chapter 5.

31.20%

20.82%14.03%

9.69%

4.40%

3.02%

2.22%

14.62%

HaploWindow::enumerateGenogro
ups

vector class

HaploPhase::includeIndividuals

HaploPhase::phaseAllHaplotypes

two_locus_table

HaploPhase::prunePhase

HaploPhase::performAlternEM

other functions

Figure 6 The profile obtained for haplotype blocks option performed on Genoplink_20130502

sample and with default PLINK settings.

Compared with other analysed PLINK options, haplotype blocks option has

clearly different structure. The main computation is not inside one function only.

Moreover, there is large number of functions taking much less than 1% of the

execution time. Also the contribution coming from the vector class is very noticeable.

Moreover, all of the most dominant functions are called multiple times (table 1). Most

of the functions were called over 6 million times and IncludeIndividuals and

PrunePhase function were called almost a billion times! Consequently, the time spent

in the single call for all of those functions is extremely small.

 23

Function name Number of calls

HaploWindow::enumerateGenogroups 6351159

HaploPhase::IncludeIndividuals 998731686

HaploPhase::phaseAllHaplotypes 6351159

two_locus_table 6351159

HaploPhase::prunePhase 998731686

HaploPhase::performAlternEM 6351159

Table 1 Number of calls to the most dominant functions of the haplotype blocks option.

Taking into account the number of functions contributing to the profile hence

containing a significant part of computation, and the number of times those functions

were called, it seems that the parallelisation may prove challenging. Therefore,

depending on the structure of the code it may be more beneficial to concentrate on

serial optimisation rather than parallelisation.

3.2.3 Conclusions

In this chapter we have presented the behaviour of four different options. The

missingness rate and allele frequencies options have been executed on both artificial

(hapmap1) and real life (Genoplink_20130205) data samples. The execution time of

both options on small samples is dominated by the function performing the main

computation of the analysis (Plink::filterSNPs). The contribution of other functions is

also clearly noticeable (fig. 1 and 3). On the other hand, the execution times on bigger

data sample are dominated by the functions reading the data into the program (fig. 2

and 4). This behaviour is believed to be typical only for the computationally

inexpensive options and so the improvement of the rate of reading the data in has not

become part of this project. The effect of different file formats on the execution time

has also been investigated. The missingness rate analysis took the shortest time when

the binary file format has been used; the transposed data format was clearly slower and

normal text file was even slower. We have decided to work with the slowest file format

(text format) when working on both epistasis options, fast epistasis and epistasis, and

transposed format when working on the haplotype blocks option. The reason, we can

use text file format for epistasis options is because of relatively small size of the

hapmap1 sample (89 individuals and 83534 SNPs). On the other hand, the size of the

Genoplink_20130205 sample is much larger (2186 individuals and 267912 SNPs) and

therefore, the more efficient transposed file format has been used.

 The fast epistasis and haplotype blocks options showed significantly different

profiles (fig. 5 and 6) related to the different code structure. The execution time of the

fast epistasis option is dominated by the Plink::calcEpistasis function, called twice and

 24

taking 99.78% of the total time. This behaviour and the nature of the epistasis analysis,

calculating the pairwise interactions between SNPs, suggest that parallelisation is the

best approach to improving the performance. On the other hand, the haplotype blocks

option seems to have the computation scattered between many different functions,

which take really short time but are called enormous number of times. Depending on

the code structure, the serial optimisation of the dominant functions may be the most

efficient and effective way of improving the performance.

 All of the initial investigations presented in this chapter has been performed

with the default PLINK settings (g++ compiler and –O3 flag). In the next chapter the

effect of different compilers and optimisation flags on the execution of epistasis and

haplotype blocks options is presented.

 25

Chapter 4

Compiler Optimisations

Before attempting any serial optimisation or parallelisation, the compiler

optimisation flags have been investigated. The investigation has been conducted on

hapmap1 data sample and fast epistasis option and then the results were verified using

the haplotype blocks option on Genoplink_20130502 data sample. The first part of this

chapter presents the effect of different optimising flags of gnu compiler (g++) on fast

epistasis and haplotype blocks options. The second part discusses briefly the

performance of the Intel compiler (icc).

4.1 Gnu g++ compiler and fast epistasis option

As mentioned before, the default compiler specified in the Makefile is g++

and the default flags are -O3 and -I. The -O3 flag has the highest optimisation level

available in gnu compilers. However, depending on the structure of the code it not

always results in the best performance. The first step of the investigation was to check

how the execution time changes for the following basic optimisation flags: -O, -O1, -

O2 and -O3. The execution time of the fast epistasis option on hapmap1 sample with

those was respectively: 6746 s, 6400 s, 5232 s and 5499 s.

In general, -O1 flag tries to reduce both the size of the code and the execution

time. Hence none of the over 30 flags turned on by this flag take a great deal of

compilation time. The -O2 flag turns almost all of the remaining optimisation flags

that do not involve a space-speed trade-off. The -O3 flag introduces some higher level

optimisations increasing both the size of the code and the compilation time. The

effect of the first optimisation level is noticeable but -O2 and -O3 are clearly more

effective. In fact, the code executes the fastest when -O2 flag is applied. The

difference between -O3 and the -O2 flag is ~5.5 minutes.

The next step was to determine the effect of the flags included in the third

optimisation level but not in the second. These flags are: -finline-functions, -fgcse-

after-reload, -fipa-cp-clone, -ftree-vectorize, -fpredictive-commoning and -funswitch-

loops. Inline functions flag allows for the integration of simple functions into their

callers. The fgcse-after-reload option eliminates the redundant load every time the

reload operation is performed. This way the redundant spilling is cleaned. The fipa-

cp-clone flag clones the function to allow stronger inter-procedural constant

propagation. The ftree-vectorize flag performs loop vectorization on trees. Next flag,

fpredictive-commoning, allows for the re-use of computations in previous iterations of

the loops. The last flag from the third optimisation level, funswitch-loops, moves

branches with loop invariant conditions out of the loop by creating the duplicates of

the loop on both branches. PLINK has been compiled using the combination of -O2

and those flags. Also another flag -funroll-loops has been investigated, it is not part of

the third level optimisation but the loopy nature of the code suggests it may produce

good results. This flag, as its name suggests, unrolls the loops i.e. duplicates the

interior of the loop to reduce number of iterations.

 26

Figure 7 shows execution times for all of the investigated flags and

combinations of flags. Table 2 provides the description of the legend used in figure 7,

as well as execution times obtained when each combination was in effect.

Considering the combination of -O2 with single flags, the best results have been

observed for -fpredictive-commoning (5148s), -funswitch-loops (5145s) and -funroll-

loops (5175s). The fastest run obtained for -finline-functions flag was 5312 s, the

other flags took over 5400s. Therefore, only the combinations of four most effective

flags and -O2 flag have been considered in the further investigation.

The first three combination (c1,c2 and c3) consisted of -O2, -finline-functions

and one of the three loop flags. Only the option with the predictive commoning (c1)

produced good execution time – 5167 seconds. The combinations with unswitching

(c2) and unrolling loops (c3) took 5223 and 5474, respectively. The flags -O2, -

fpredictive-commoning and -funswitch-loops (c4) produced the code executing in

5140 seconds. The next combination, taking 5195 second, involved -O2, -fpredictive-

commoning and -funroll-loops flags (c5). The sixth combination i.e. -O2, -funswitch-

loops and -funroll-loops flags (c6) was slower and took 5541 seconds. The execution

time for the next three combinations (c7, c8 and c9) was slower taking: 5454s, 5549s

and 5415s respectively. Combining -O2 and three flags: -fpredivtive-commoning, -

funroll-loops, -funswitch-loops (c10) gave the execution time of 5116 seconds. The

last combination, of all five flags, produces the code executing in 5180 seconds.

Clearly, the best performance is obtained when -O2 and three loop flags are applied.

The difference in the execution time obtained for the default flag -O3 (5499s) and for

the most effective combination (5116) is over 6 minutes.

-O

-O1

-O2

-O3

f1

f2

f3

f4

f5

f6

f7

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

0

1000

2000

3000

4000

5000

6000

7000

8000

E
xe

c
u

ti
o

n
 t
im

e

Figure 7 The execution time in seconds for fast epistasis analysis done on hapmap1 sample

when compiled with different optimisation flags. The legend is provided in table 2.

 27

Label Flags Execution
time (in
seconds)

f1 -O2, -finline-functions 5312

f2 -O2, -fgcse-after-reload 5531

f3 -O2, -fipa-cp-clone 5517

f4 -O2, -ftree-vectorise 5409

f5 -O2, -fpredictive-commoning 5148

f6 -O2, -funswitch-loops 5145

f7 -O2, -funroll-loops 5175

c1 -O2, -finline-functions, -fpredictive-commoning, 5167

c2 -O2, -finline-functions, -funswitch-loops 5223

c3 -O2, -finline-functions, -funroll-loops 5474

c4 -O2, -fpredictive-commoning, -funswitch-loops 5140

c5 -O2, -fpredictive-commoning, -funroll-loops 5195

c6 -O2, -funswitch-loops, -funroll-loops 5541

c7 -O2, -finline-functions, -fpredictive-commoning, -funswitch-loops 5454

c8 -O2, -finline-functions, -fpredictive-commoning, -funroll-loops 5549

c9 -O2, -finline-functions, -funswitch-loops, -funroll-loops 5415

c10 -O2, -fpredictive-commoning, -funswitch-loops, -funroll-loops 5116

c11 -O2, -finline-functions, -fpredictive-commoning, -funswitch-loops, -
funroll-loops

5180

Table 2 List of g++ compiler flags under the labels used in figure 7.

The fastest execution times are included.

From table 2 it can be seen that some of the flags included in the –O3 flag

have negative effect on the performance. The reason for that is the specific code

structure. The flags that provide the most effective optimisations for the fast epistasis

function are loop optimisations. Taking into account the structure of the function

dominating the epistasis analysis, Plink::calcEpistasis, it makes perfect sense.

However, it also implies that the haplotype blocks analysis, having completely

different code structure, computation split among many small functions, may behave

differently under the same set of flags and other flags might give better performance.

4.2 Gnu g++ compiler and haplotype blocks option

So far the effect of the flags has been checked only for the fast epistasis

function and it is possible that the obtained results are characteristic for that function

only. Therefore, the haplotype blocks analysis has been conducted when the

 28

following flags were in effect: -O, -O1, -O2, -O3 and combination of the flags that

were identified as the most effective for the fast epistasis option: -O2, -fpredictive-

commoning, -funroll-loops and -funswitch-loops. We have also decided to investigate

the performance of the following combination: -O2, -finline-functions, -fpredictive-

commoning, -funroll-loops and -funswitch-loops. Although, this combination proved

to produce slightly slower code for the epistasis option, it might perform better for

haplotype blocks option. The -finline-functions might be a good way to deal with

small functions called enormous number of times.

-O -O1 -O2 -O3 comb1 comb2

13000

14000

15000

16000

17000

18000

19000

E
xe

c
u

ti
o

n
 t

im
e

Figure 8 Effect of different compiler flags on execution of haplotype blocks analysis. The

flags contained in the comb1 combinations are : -O2, -fpredictive-commoning, -funroll-loops

and -funswitch-loops. Comb2 label includes: -O2, -finline-functions, -fpredictive-commoning, -

funroll-loops and -funswitch-loops.

Figure 8 shows the execution times of haplotype blocks estimation with

different compiler flags in effect. Each optimisation level produces coded with clearly

different execution times. From figure 8, it is evident that -O2 flag produces faster

code (16234s) than the default –O3 flag (17575s). The fastest combination for the fast

epistasis option (comb1), gives the execution of 16502 seconds time, which is slower

than –O2 but faster –O3 flags. The execution time for the second combination (with

function inlining flag) produces clearly the fastest code - 15838 seconds. The reason

why the first combination of flags is slower than –O2 flag is because they are focused

on the loop optimisations which are not as effective for the haplotype blocks function

as they were for epistasis option. The second combination of flags is faster than –O2

flag because it allows compiler efficient inlining of small functions. Although, –O2

flag does not produce the fastest code for neither function, it is only slightly slower

than the best combinations. Therefore, it seems to provide the optimal performance

for options with different code structure. Hence, we have not investigated any other

optimisation flags and decided to use –O2 flag throughout the project.

 29

4.3 Intel icc compiler

Lastly, the behaviour of the Intel compiler icc have been investigated. Again,

fast epistasis option and the hapmap1 data sample have been used. The effect of the

following flags has been checked: -O0, -O1, -O2, -O3,-Os and -fast. The compilation of

the program failed when the -fast flag has been applied (error with ipo) in the light of

the performance of other flags, the reason has not been investigated. Figure 9 shows the

execution times obtained for the mentioned flags.

 The first level optimisation produce the code that is 3 times faster than the code

generated without optimisations (-O0). The performance of -O2 and -O3 is similar and

clearly better than that of -O1. Although, the -Os flag is supposed to optimise the code

for speed, its effect is less beneficial than for other level optimisations. In general, Intel

compiler proved to be extremely slow. The fastest run with -O2 flag in effect took 7568

seconds, while the same g++ flag took 5232 seconds. Therefore, further investigation

has not been attempted.

-O0 -O1 -O2 -O3 -Os -O2 gnu compiler

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

E
xe

c
u

ti
o

n
 t
im

e
 i
n

 s
e

c
o

n
d

s

Figure 9 The effect of different icc compiler flags on the execution of fast epistasis option on

hapmap1 sample.

Although, the Intel compiler has been identified as less suitable for

compilation of PLINK than gnu compiler, testing it still had positive consequences.

Intel compiler detected several bugs in the code; all of them were of the same type

and inside the same code file. One of the icc compiler warnings is shown in extract 8.

Instead of the comparison sign '==', assign '=' has been used in the code. This

misspelling occurred 12 times in the segment.cpp code file. Although, this file is not

used by any of the PLINK options investigated during this project, the bugs have

been fixed for the sake of future users and developers. Intel compiler produced

several other warnings but none of them had bearings on the program execution.

 30

segment.cpp(2378): warning #187: use of "=" where "==" may have been intended

else if (par::cnv_col = 1)
^

Extract 8 The bug in the segment.cpp code file discovered by Intel compiler.

4.4 Conclusions

The flag –O2 has been chosen as an optimal compiler configuration, even

though it does not produce the fastest code for both of the investigated options.

However, the code produced for both options is only slightly slower than given by their

best flag configuration and still clearly faster than the default -O3 flag. Both options

have different best configurations, which is the result of significantly different code

structure. Therefore, we have determined –O2 flag to be the most beneficial in terms of

performance improvement of the analysed PLINK options. As mentioned before, the

program provides a wide range of the WGAS analyses and analysing all of them is

beyond the scope of this project. Therefore, it is hard to say what optimisation flags

would provide the best combination for the majority of PLINK options. However, we

believe the –O2 flag is the most optimal because the usefulness of the flags it contains

is not as dependent on the code structure as for higher level optimisation flags. The

specific combination of flags may provide significantly better performance for a

specific PLINK option, however PLINK has been designed with providing all

necessary functionality required for genome-wide association studies in mind. And so it

is more important to provide the optimal performance for all of its options rather than

significantly better for some of them and worse for the others. Hence, -O2 flag has

been used during the course of the project.

 31

Chapter 5

Optimising Epistasis

The structure of the calcEpistasis function seems to be very suitable for

OpenMP parallelisation. All of the computation is taking place inside the nested loop

region, which might ensure good scaling. In the first subsection we present the

structure of the code and OpenMP parallelisation of both epistasis and fast epistasis

options. Then the correctness of both options is discussed and finally the code

scalability is presented.

5.1 Code structure

As mentioned in chapter 2, PLINK provides two ways of performing epistasis

analysis. The fast epistasis option, can be applied only when the phenotype is

represented as a binary trait, i.e. either affected or unaffected, and to perform it --fast-

epistasis command needs to be used. It is an approximate test, based on a difference

in association between two SNPs between cases and controls (or cases only,

depending on the mode). The odds ratio measure is used to describe the strength of

association between two SNPs and the value of 1.0 indicates no effect. The default

analysis --epistasis uses either linear or logistic regression, depending on the

phenotype representation (quantitative or binary). The model is based on the allele

dosage for each pair of SNPs (allelic by allelic interaction). The model fits the

following form: Y ~ b0 + b1.A + b2.B + b3.AB + e and the strength of the interaction

is based on the coefficient b3.

 In this project, fast epistasis option has been used mainly during the

parallelisation process. However, both options differ only in the way the pairwise

interactions between SNPs are calculated, which as we will see, is done locally hence

does not affect the parallelisation process. In fact, both options are called from within

the nested loop region over pairs of SNPs, through the if statements (extract 9).

Therefore, while describing the code structure we use fast epistasis option which profile

has been discussed in chapter 3.

 For both, epistasis and fast epistasis options, the function that dominates the

execution time is calcEpistasis. It is called directly from main function contained in the

plink.cpp code file. This function is responsible for performing the epistasis analysis

can be divided into three functional parts. The first part sets up the output files, detects

the mode of the epistatic test (AllxAll, Set1xAll, Set1xSet1 or Set1xSet2) and

initializes the necessary variables. The second part contains the nested loop regions

performing the epistasis analysis and produces the plink.epi.cc output file. The last part

prints the epistatic summary statistics to the plink.epi.cc.summary file.

 32

#pragma omp parallel for schedule(dynamic,128) private(e1, e2) reduction(+:nepi,epcc)

for (e1=0; e1<nl_all; e1++) // loop over all of SNPs
 {
 if (sA[e1]) // if SNP is in the first set
 {
 ...
 for (e2=0;e2<nl_all;e2++) // loop over all of SNPs
 {
 ...
 // Skip this test under certain conditions
 If(par::bt && par::fast_epistasis) { //if phenotype has binary form and fast epistasis option is in effect

 // Perform test of fast epistasis here for each individual
 // Calculate log(OR) and SEs – Odd Ratio and Standard Error
 ...
 // Check this is a proper result
 ...
 nepi++; // one more test performed

#pragma omp atomic
 summary_good[e1]++; //count as a good result for SNP1
 If (sA[e2])

#pragma omp atomic
 summary_good[e2]++; //count as a good result for SNP2
 ...
 // Is this result the best score yet for marker in set A?

#pragma omp critical
 {
 if (z > best_score[e1]) // if the current z is larger than the up to date best score
 {
 best_score[e1] = z; // z becomes the best score
 best_partner[e1] = e2; // corresponding marker becomes the best partner
 }
 if (sA[e2]) // the second marker might also be in set A
 {
 if (z > best_score[e2])
 {
 best_score[e2] = z;
 best_partner[e2] = e1;
 }
 }
 }

 // Is this worth recording?
 If (z >= par::epi_alpha1)
 {

#pragma omp critical
 {
 // printing to file plink.epi.cc
 ...
 }
 } // end fast epistasis

 If (! par::fast_epistasis) {

 // logistic or linear regression test for epistasis
 …
 }

 } // end of the loop over e2
} // end of the loop over e1
…

Extract 9 Pseudo-code of section of the code in calcEpistasis function responsible for

calculating epistatic associations between the SNPs. The bold text is OpenMP parallelisation.

 33

The region of interest is naturally, the second part of the function – the nested

loop region. The pseudo-code is shown in extract 9. The first loop (over e1) goes over

all of the SNPs, and then, if a SNP is included in the analysis, program loops over all

SNPs from the second set (loop over e2) to calculate pairwise associations between

them. During this project all by all mode has been used i.e. both sets are the same and

include all of the SNPs from the hapmap1 sample. Also during the development and

performance testing process unnecessary printing to the screen has been suppressed.

The epistatic test is skipped for the given pair of SNPs if the second SNP is

not in the analysed set or if the symmetric option is in effect and the loop iteration

assigned to first SNP (e1) is larger or equal than the loop iteration assigned to the

second SNP (e2). The test is also skipped when certain options are enabled i.e. SNPs

lie on chromosome X and if SNPs are too close (case-only epistasis). The second

point makes sure that each pair of SNPs is analysed only once i.e. the results for

SNP1xSNP2 are the same as for SNP2xSNP1. Naturally, the symmetric option is

only enabled when both sets are the same (AllxAll and SetxSet modes).

Then if the --fast-epistasis option is in effect for each individual, the allelic

test of a single locus is constructed. The independent alleles observed at two loci (two

analysed SNPs) are counted and then the odd ratio and standard error between them is

calculated. Essentially, the z value is given by the difference between odd ratios of

cases and controls divided by the square root of the sum of their standard errors.

Then the number of performed test is incremented and the validity of the

results is checked. If the calculated z value is larger than or equal to 0.01 it is counted

as a significant result. Also, if the current z value is larger than the best score, i.e. the

best up-to-date z value, it becomes the new best score and the corresponding SNP2

becomes best partner for SNP1. In other words, those two SNPs have the highest

calculated interaction. If the second SNP is also in the first set (which is the case in

All x All mode) the z is recorded as its best score and SNP1 as its best partner. Then,

if the z value is greater than 0.0001 the interaction is recorded in plink.epi.cc file.

Then the next pair of SNPs is considered.

On the other hand, if the --epistasis option is in effect, the logistic model is

constructed if phenotype is represented in binary format. Otherwise, the linear model

is applied. The strength of the interaction and other statistical variables are calculated

through the calls to the member functions of the model object. The validity of results,

best score and best partner for each SNP is calculated in the same way as for the fast

epistasis option. The printing to the plink.epi.cc file is done slightly different and

depends on the validity of the results and the phenotype representation. Then the next

pair of SNPs is considered.

After all of the pairs of SNPs are analysed, the summary of results is printed

to the plink.epi.cc.summary file.

 34

5.2 InSilico Research Group Parallelisation

As mentioned in the previous section, the epistasis and fast epistasis analysis

are invoked by the if statements from within the nested loop region (over two sets of

SNPs). The best way to parallelise this nested loop region is through #pragma omp

parallel for directive. That means that both options should be parallelised at the same

time. Otherwise, the parallelisation of the loop region would be incomplete and might

provide inconveniences for the users.

The InSilico Research Group [2] has only attempted the parallelisation of the

epistasis option and the fast epistasis branch has not been modified. Moreover, the

results of the analysis done using the parallelised code are inconsistent with the serial

code results. To investigate those inconsistences, we have modified the loops so that

the 5000 by 5000 SNPs are analysed, and then executed the epistasis option on both

serial and parallel versions of the code. The extract 10 shows the differences between

the serial and parallel versions of plink.epi.cc.summary. Even for this small sample,

there were 18 differing lines between both files. The difference occurred in three

different columns, recording: number of valid tests, proportion of significant tests and

identifier of the best partner SNP. Although, the first two variables may not be that

important depending on the purpose of the analysis, but the last one is crucial. The

first two differences shown in extract 10 have different last columns. In the serial

execution SNP rs7554746 has the strongest interaction with the rs7539462 SNP and

in serial execution the best partner is rs6693272. Similarly, the SNP 6684586 has

SNP rs1203650 as best partner in serial and rs1203634 is parallel versions. The last

difference shown in the extract 10 is the different number of valid tests (3813 in serial

and 3814 in parallel versions) and resulting difference in the proportion of the

significant test.

2922< 1 rs7554746 0 1729 0.000000e+00 2.729000e-06 1 rs7539462

2922> 1 rs7554746 0 1729 0.000000e+00 2.729000e-06 1 rs6693272

2922: 0 0 0 0 0.000000 0.000000 0 1

…

4803< 1 rs6684586 25 3821 6.543000e-03 9.148000e+00 1 rs1203650

4803> 1 rs6684586 25 3821 6.543000e-03 9.148000e+00 1 rs1203634

4803: 0 0 0 0 0.000000 0.000000 0 1

…

4980< 1 rs593022 26 3813 6.819000e-03 9.546000e+00 1 rs740153

4980> 1 rs593022 26 3814 6.817000e-03 9.546000e+00 1 rs740153

4980: 0 0 0 1 0.000147 0.000000 0 0

there are 18 differing lines

Extract 10 The difference in the output files between the serial and parallelised (by InSilico

Research Group) code, executed on 12 treads. Analysis has been done on 5000x5000 SNPs.

 35

The reason behind those inconsistences is lack of a necessary reduction

variables and critical sections. The modification made to the code by the InSilico

Research Group are as follow: directive #pragme omp parallel for schedule(dynamic,1)

privates(e1,e2) and one critical section have been used. The critical section is shown in

extract 11.

 vector_t b;
#ifdef _OPENMP
#pragma omp critical
 {
#endif
 b = lm->getCoefs();
#ifdef _OPENMP
 }
#endif

Extract 11 The only critical section introduced by InSilico Research Group in OpenMP

parallelisation of epistasis option.

Because both the vector_t variable and the object lm are declared within the

parallel region, they are thread private by default. Hence, there is no need for critical

section shown in extract 11. Also the #pragma omp directives are ignored by the

compiler if the –fopenmp flag is not included and so there is no need to use ifdef

conditional. The reason why the number of valid test and best partners are different

for some of the interaction is because more than one thread is doing the updating at

the same time i.e. classical race condition.

5.3 Parallelisation

All of the calculations are done on local variables and so there is no need to

modify the code in any way to allow the OpenMP parallelisation. The #pragma omp

for schedule has been used before the outer loop over first set of SNPs. The iterators

of both outer and inner loops (e1 and e2) have been declared as private variables and

two variables keeping count of performed test are declared as reduction variables.

Also two critical sections and two atomic updates have been declared. The

atomic updates are used when the numbers of the significant tests for both SNPs from

the pair are incremented. This way, only one thread at a time increases the count. The

order in which it occurs is not important as only the final, total value of the significant

interactions for each SNP is recorded in the plink.epi.cc.summary. The first critical

section is placed around the lines of the code responsible for determining the current

best z score and corresponding best partner. Both SNPs are considered and updated at

the same time to avoid the race condition which may occur when one of the analysed

 36

SNPs is at the same time considered by different thread with relation to other SNP. This

critical section makes sure that there is only one best z score and best partner for each

SNP at a time. The last critical section is around the printing statements. In fact, there

are different modes of printing available and each is within different critical section.

The critical section around the printing statements is necessary to ensure that only one

thread is writing to a file at a time. Otherwise, the output would be disordered as more

threads would try to write their results to the same place in file.

Although, the way of calculating the pairwise calculation in epistasis option is

different (logistic and linear regression is used), the code for checking the validity of

the results is exactly the same as in fast epistasis option. The printing the results to the

plink.epi.cc is done in slightly different way but still within one critical section. There

are no #pragma omp directives in the part of the code responsible for calculating the

interactions. Therefore, all of the critical sections and atomic updates are almost in the

same places in both options. In the whole Plink::calcEpistasis function four atomic

operations and six critical sections have been used.

5.4 Testing for correctness

As mentioned before, to test the correctness of the parallelisation command

diff and two simple tests have been used. This way the output files produced by the

original (serial) version of the code have been compared with the files generated by

the parallelised code. First, the diff command has been used and if two files have been

recognised as identical no further testing has been attempted. When the diff command

indicated that two files are different the other tests have been used. The diff command

was useful only in cases when the order of data in both files was the same, which was

only the case with plink.epi.cc.summary files. Those files hold the summary statistic

ordered by first SNP loop iterator i.e. they are printed from within separate loop over

e1. The order of the data in the parallel produced plink.epi.cc files is different because

the printing is done from within loops over e1 and e2 (ext. 9). Therefore, depending

on which thread analysed which loop iteration and how fast, the order of the data is

different. However, if two plink.epi.cc files have the same data but recorded in

different order, they are considered to be the same.

The code, we believed to be parallelised correctly, unexpectedly produced

differing output files. To investigate the differences in the summary files, a simple

(written in C) test has been implemented. This test reads both files in and prints the

differences between them. Extract 12 shows the fragment of the difference report

produced by this test for the fast epistasis option executed serially and in parallel on

hapmap1 sample. Only first and last, out of 15 differing lines are shown. The first line

comes from the serially produced file, the second from execution on 12 threads and

the third reports the difference in numbers. However, if the difference in the statistical

values were smaller than the threshold of 0.001 they were not reported. For non-

number entries like SNP identifiers, zero is assigned when they are identical and one

when they differ.

 37

12383< 2 rs6758984 0 14112 0.000000e+00 2.831000e+00 2 rs6714743
12383> 2 rs6758984 0 14112 0.000000e+00 2.831000e+00 2 rs10200481
12383: 0 0 0 0 0.000000 0.000000 0 1
…

82023< 22 rs9606603 284 62040 4.578000e-03 1.580000e+01 2 rs10933406
82023> 22 rs9606603 284 62040 4.578000e-03 1.580000e+01 2 rs778370
82023: 0 0 0 0 0.000000 0.000000 0 1
there are 15 differing lines

Extract 12 Few output lines of the test written to compare two plink.epi.cc.summary files. The

first line comes from serially executed code, the second from parallel execution on 12 threads,

third line reports the difference.

In all of the differing lines, only the second SNP identifier is different. This test

has been repeated to observe how the reported differences change depending on

number of threads. Every time the entries of first 6 columns were identical. However,

the identifier of the second SNP (having the strongest epistatic interaction with SNP1)

and sometimes the chromosome were different for some of the entries. As shown in

extract 9 the best partner and the best z score are closely related to each other and

determined in the same place and based on the loop iterators (e1 and e2). It is also

strange that all of the statistical values were unchanged regardless of the number of

threads the program was executed on and only the second SNP was different. The

differences have also been observed between the plink.epi.cc files. Because the order of

the data in those files is different depending on the number of threads, the python script

has been written to match the corresponding data and report the differences between

them. Interestingly, all of the data from the serial file have been matched to the data

from the parallel execution. However, some of the data from the parallel execution

were not present in serial one. In other words, the parallel execution produced more

data. The serial plink.epi.cc has 64586 lines containing data whereas the parallel

version has 64629 lines. The parallel version has 43 more lines which suggest that

when the program is executed in parallel, somehow more pair of SNPs are analysed.

To find the reason behind this behaviour, the code structure has been examined

closer and special attention has been paid to the lines that could affect the identification

of the second SNP and the number of analysed pairs. The symmetric option has been

identified as a potential reason behind the observed behaviour. The parallel version may

pick the pairs of SNPs incorrectly. To test this hypothesis, the code has been modified

slightly to disable the symmetric option. Then the program has been executed serially

to gain the point of reference. Before, executing the code in parallel we decided to

compare the output file of the two serial versions of the code. Naturally, the non-

symmetric version of the plink.epi.cc should contain twice as many lines as the

symmetric one and their order would also be different. However, the

plink.epi.cc.summary reports only the strongest interaction for each SNP and so it was

expected to be the same for both serial versions. After all, in a non-symmetric version

each pair of SNPs is analysed twice but that does not affect the final result is any way.

 38

However, the summary files of both serial versions exhibit the same behaviour

as discussed above. Again, for some of the lines the second SNP is different. Thinking

about how the code execution differs for both of the serial versions, it becomes

apparent than the different second SNP is a result of pairs of SNPs being analysed in

different order. In parallel version the order is different because the outer loop is

divided among the threads, so it is natural that for example first iteration on the eighth

thread will be executed faster than 78
th

 on first thread. In the serial non-symmetric

version order is different because of the way the symmetric option is implemented.

When the option was in effect the test has been skipped when the first loop iterator e1

has been larger or equal to the second loop iterator e2 (ext. 9). In the non-symmetric

version all of the pairs are analysed one by one without skipping (except e1 = e2 case).

It is clear that the symmetric option does not provide the explanation for the observed

behaviour. However, testing its effect gave the indication that the order of the analysis

is a crucial factor in explaining the observed behaviour. As shown in extract 9 the

second SNP (the best partner) is based on the value of the z score. Therefore, it is

possible that responsible for the strange behaviour is not the way the second SNP is

determined but how the z score is calculated. If the value of the z score could be the

same for different pair of SNPs (i.e. for SNP1xSNP2 and SNP1xSNP3) then the

program would take the one that has been analysed first. To see if SNP1 can have the

same z score for different partners, the printing statement has been introduced into the

code. Now, all of the values of z that are equal to the best score are printed together

with the corresponding second SNP.

...
SNP rs6758984 has z value of 1.68258081 and its best partner is rs10200481
SNP rs6758984 has z value of 1.68258081 and its best partner is rs6714743

...

SNP rs9606603 has z value of 3.97546195 and its best partner is rs778370
SNP rs9606603 has z value of 3.97546195 and its best partner is rs10933406

Extract 13 The best z scores for rs6758984 and rs9606603 SNPs and their corresponding

partner SNPs obtained when the code has been executed on 12 threads.

Because the z values change many times during the execution of the program,

the list of the z scores is rather long. Therefore, grep command has been used to find

the relevant values. Extract 13 shows the highest z values for the two SNPs that have

been shown in extract 12, rs6758984 and rs9606603. Clearly, the same z values have

been recorded for two SNPs and the one that has been analysed first has been stored as

the best partner. In original, serial version rs6758984 has rs6714743 and rs9606603 has

rs10933406 as the best partners. In the parallel execution on 12 threads those pairs are

analysed after the rs6758984-rs10200481 and rs9606603-rs778370 pairs and hence the

observed difference.

 39

It is unclear why the parallel version of the plink.epi.cc has more lines than the

one produced by the serial execution of the code. We have determined it is not related

to the symmetric option in effect and the way the z score is calculated. It is highly

possible that it is an effect of the rounding error. The condition for printing a given

interaction is for its z score to be bigger or equal to 0.0001, therefore depending on the

order of calculation z might or might not qualify. Due to the time constraint of the

project, we have not attempted to prove this statement.

The epistasis option has also been parallelised and tested. Because the epistasis

option is so time consuming, the code has been modified slightly so that only

5000x5000 SNPs have been analysed. The parallelised regions are exactly the same as

in the fast epistasis option, the parts of the code responsible for determining the best z

score and the best partner and printing of the plink.epi.cc file are duplicated from fast

epistasis option. Therefore we are not going to discuss them separately. The way all of

the statistical values are calculated is different and so it is not possible that two pairs

have the same interaction strength (i.e. z values are unique). The inconsistencies present

in the parallelisation done by the InSilico Research Group have been not observed.

5.5 Scalability

Before measuring the speed gain coming from parallel execution of the code,

different schedule options have been investigated on 6 and 12 threads. Running on six

threads means using whole processor (six core Intel Xeon) and 12 threads is making

use of whole iDataPlex server (two processors). Fast epistasis analysis on hapmap1

sample has been executed with the following schedules in effect: static, dynamic,

guided and auto. Also the effect of different chunk sizes has been investigated for all

of them, except auto.

The schedule option allows specifying which loops iterations are executed by

which thread. This way all of the threads can be utilised to the fullest even if the loop

has imbalanced load. The static schedule with specified chunksize, divides the

iteration space into chunks (each with chunksize iterations) which are then assigned

cyclically to each thread in order. On the other hand, dynamic schedule assigns the

chunks of size chunksize on a first-come-first-serve basis. When one thread finishes

processing a chunk, it receives another chunk, first on the list of unprocessed chunks.

In the guided schedule chunks are also assigned to threads dynamically (like in

dynamic) but they start off large and get smaller exponentially. The size of each

chunk is proportional to the number of unprocessed iterations divided by the number

of threads and the size of the smallest chunk is specified by the chunksize. The auto

schedule leaves the assignment of iterations to threads to the runtime. If the loop is

executed many times, it is possible for runtime to develop good schedule with good

load balance and low overhead.

Figure 10 shows the plot of execution time against the size of the chunksize.

The auto schedule has not been shown; however its performance is similar to that of

guided schedule. On 12 threads auto schedule takes 801 seconds and on 6 threads it

takes 1493 seconds. From the figure 10, it is clear that both the static and dynamic

schedule have a similar performance which is not greatly affected by the size of the

 40

chunks. There are really small differences in the execution times but the fastest

execution on both 12 and 6 threads was observed for dynamic schedule with the

chunksize of 128 – taking 455 s and 879 s respectively. Therefore, the #pragma omp

parallel for schedule(dynamic, 128) directive have been used in the final version of

the code (extract 9).

0 20 40 60 80 100 120 140

0

200

400

600

800

1000

1200

1400

1600

1800

Static

OMP6

Dynamic

OMP6

Guided

OMP6

Static

OMP12

Dynamic

OMP12

Guided

OMP12

The chunk size

E
xe

c
u

ti
o

n
 t
im

e

Figure 10 Effect of different schedules and chunk sizes on the execution time of fast epistasis

analysis (hapmap1 sample) when executed on 6 and 12 threads.

The guided and auto schedules have clearly worse performance than dynamic

and static with specified chunksize. The reason why the size of the chunksize has no

great effect on the performance and the guided schedule performs so poorly is the

specific structure of the code. Because the symmetric option is in effect, if the SNP1

iterator is larger or equal to the SNP2 iterator, the pair is not analysed (i.e. e1>=e2 for

iterator loops shown in extract 9). This way the iteration at the beginning of the outer

loop are more expensive than the iterations towards the end where there are less SNPs

to consider. Therefore, the guided schedule trying to lessen the burden of the last

iterations performs poorly. Also, the reduction of the load of each iteration is uniform –

each following iteration has one less interaction to analyse. Hence, because the number

of SNPs is quite large, as long as the size of the chunk is not huge, the computation will

be distributed fairly between the threads. The truly uniform distribution is only possible

with the dynamic schedule where the chunk distribution is done dynamically. If we

only take into account specific load balance, it seems that the dynamic schedule should

perform better than static. The similar performance of static and dynamic schedules can

be explained by the time spent on assigning the work to threads. The gain of the

uniform load distribution is most likely nullified by the thread management overhead.

Hence, both schedules have almost identical performance.

 41

Figure 11 shows the speedup observed for both fast epistasis and epistasis

(5000x5000) options. There is a great difference between the performance when the

schedule is not specified and the best schedule. When schedule dynamic 128 is applied,

both fast epistasis and epistasis options executed on 12 threads perform over 10 times

faster than on 1 thread. That means that the original time of about 80 minutes (when

flag -O2 is applied) has been reduced to about 8 minutes. Similar results are observed

for the epistasis option.

0 2 4 6 8 10 12

0

2

4

6

8

10

12

14
No schedule

Ideal

Dynamic

128

Dynamic

128

epistasis

5000x5000

Number of threads

S
p

e
e

d
u

p

Figure 11 Speedup obtained for fast epistasis (hapmap1) and epistasis (first 5000x5000 SNPs

from hapmap1 sample) options.

The reason that both epistasis and fast epistasis options scale so well is because

the most computationally demanding part of the calculation is inside the parallelised

region. Although, there are multiple critical sections and atomic updates, they are

relatively insignificant when it comes to the consumed time because they do not

involve any complicated arithmetic operations. Moreover, they are not performed for

all of the SNP pairs but only for those that have epistatic interaction above certain level.

To check how the code scale on different machines EPCC training machine

Morar has been used. However, regardless of the number of threads the analysis has

not been completed within the job time of 20 minutes. We have tried to execute the fast

epistasis option on hapmap1 sample on 6,8,12,16, 32 and 64 threads and all of them

were aborted far from being completed (the fastest execution, on 8 threads analysed

only 5 out of 22 chromosomes). It is uncertain why the fast epistasis option takes this

much longer on Morar than on Eddie. Due to the time constraints of the project, further

investigation in this matter has not been attempted.

 42

5.6 Serial Optimisation

The serial optimisation of the fast epistasis option has also been attempted.

Simple optimisations, like moving declaration of some of the variable outside of the

nested loop region, have been tested and proved to be not very effective. The most

time consuming is the part of the code responsible for building the allele dependence

between two SNPs. It contains multiply nested conditional else_if statements with

simple arithmetic operations. Re-engineering the code to remove some of the

branches would be time consuming. Similarly, some of the vectors could be replaced

with arrays but that would require significant modification to the code structure thus

increased development time. Also because the parallelisation was so effective, any

performance improvement coming from the serial optimisations would be barely

noticeable. We have not investigated in details the implementation of the logistic and

linear regression models and thus their optimisation have not been attempted. Due to

the time constraints, they were deemed to be beyond the scope of this project.

Improving the performance of those models would be very beneficial to the

performance of the epistasis option.

5.7 Conclusions

Although, simple serial optimisations have been attempted, they did not

provide any significant performance improvement. On the other hand, parallelisation

proved to be very effective. The correctness of the parallelisation has been confirmed

through extensive testing. The consistencies observed in the results for the InSilico

Research Group have not been observed in our parallelisation. The fast epistasis

option produces slightly different results when executed on different number of

threads. These inconsistences have been proved to be the results of the algorithm

responsible for calculating the strength of the interaction. In the implemented

calculation it is possible for a given SNP to have the same strength of interaction with

more than one SNP, and the best partner becomes the one that have been analysed

first.

The serial version of the fast epistasis code executes in about 90 minutes

while the parallelised code on 1 thread executes in about 80 minutes. The parallelised

code executed on a single thread has a significantly shorter execution time. This

implies that the –fopenmp flag introduces some changes in the code that allows

compiler to optimise the code more effectively. On 12 threads, the code is executed in

less than 8 minutes, which is over 10 times faster than when executed on 1 thread.

The epistasis option scales equally well. The execution time of epistasis analysis

including 5000x5000 SNPs on 1 thread is 1800s and on 12 threads it is 171 seconds.

That means that the execution on 12 threads is 10.5 times faster than on 1 thread.

Both options have benefited greatly from the OpenMP parallelisation –

running them on 12 threads reduces the execution time over 10 times. Because the

parallelisation has been so effective and simple while serial optimisations proved to

be ineffective, further optimisations have not been attempted.

 43

Chapter 6

Optimising Haplotype blocks

In this chapter we will first describe the structure of the code and the functions

call tree. Due to the structure of the code, OpenMP parallelisation is not as beneficial

in the epistasis option case. Therefore, the main focus is on serial optimisations. The

modifications to the most time consuming functions are presented in separate

subsections. Due to the large number of optimisations tested, only the most

significant ones are discussed. Secondly, the parallelisation attempt is described

briefly and then the overall improvement in performance is presented.

6.1 Code structure

As mentioned in chapter 3, the structure of the code of the haplotype blocks

option is very different from the epistasis option. The main function calls

Plink::mkBlks function which contains the loops over the chromosomes and regions

of DNA considered in kilobases. This function uses LDPair class and

PairwiseLinkage to calculate LD and confidence interval (CI) between the SNP pairs

and then makes a list of strong LD pairs within the analysed region. Next, the

haplotype blocks are constructed.. The blocks cannot overlap, need to have at least 2

SNPs, cannot be too long in bases compared to their size in markers (if they are long

in bases they need to have many markers) and 95% of informative markers need to

have strong LD. If the block meets these criteria, it is added to the block list in order

by first marker number. Finally, the blocks and their information are printed into

output files (*.blocks and *.blocks.det)

The most time consuming part of mkBlks function is LD calculation invoked

by calculateLD function which contains a single call to another function – dprime

shown in the extract 14.

void PairwiseLinkage::calculateLD()
{
 dp = PP->haplo->dprime(a,b);
}

Extract 14 CalculateLD function, called from within the mkBlks function.

 44

double HaploPhase::dprime(int l1, int l2)
{
 calculateDp = true;
 double dp = rsq(l1, l2);
 calculateDp = false;
 return fabs(dp)
}

Extract 15 Dprime function called from within the calculateLD function.

The function HaploPhase::dprime, shown in extract 15, calls HaploPhase::

rsq function which then calls HaploPhase::phaseAllHaplotypes. The last function is

present in the haplotype blocks profile shown in figure 6. All the other functions

having considerable contribution to the total execution time are called from within the

phaseAllHaplotypes function.

6.2 Optimising dominant functions

There are six functions named in the haplotype blocks execution profile shown

in figure 6. They are: HaploWindow::enumerateGenogroups (31.2%), HaploPhase::

includeIndividuals (14.03%), HaploPhase::phaseAllHaplotypes (9.69%),

two_locus_table (4.4%), HaploPhase::prunePhase (3.02%) and HaploPhase::

performAlternEM (2.22%). The optimisation of all of them has been attempted, with

the most time spent on the most dominant functions. In the following subsections code

structure and attempted optimisations are discussed.

6.2.1 EnumerateGenogroups function

This function is located in a separate code file called genogroup.cpp. It is

responsible for collapsing all genotypes into unique groups - genoGroups. This way

the subsequent analysis is performed on these entities rather than on individuals.

Extract 16 shows the original code. It loops over all of the individuals and groups

them with respect to their genotype. Only the representative individuals (founders)

with non-missing genetic information are considered. Then the genotype set is built

using MultiLocusGenotype class. It consists of bool vectors g and skip, and integers

count and reference. Vector g holds the allele codes, the count holds the number of

individuals with the given genotype, and reference stores the identifier for each

group. Vector skip is not used in this function.

 45

void HaploWindow::enumerateGenogroups()
{

 for (int i=0; i < P->n ; i++) //consider each individual
 {
 if (! (P->sample[i]->founder && haplo->include[i])) //only phase non-missing founders
 continue;

 MultiLocusGenotype * m = new MultiLocusGenotype; // build new multilocus genotype set

 if (haplo->X)
 m->g.push_back(P->sample[i]->sex); // include sex if X chromosome is analysed

 for (int s = 0; s < ns; s++) // analyse genotypes
 {
 bool s1 = par::SNP_major ?
 P->SNP[S[s]]->one[i] :
 P->sample[i]->one[S[s]];

 bool s2 = par::SNP_major ?
 P->SNP[S[s]]->two[i] :
 P->sample[i]->two[S[s]];

 m->g.push_back(s1);
 m->g.push_back(s2);
 }

 m->count = 1;
 m->reference = i;

 // But have we already seen a similar genoGroup?
 set<MultiLocusGenotype*>::iterator im = genotypes.find(m);
 if (im == genotypes.end())
 {
 genoGroup[i] = m;
 genotypes.insert(m);
 }
 else
 {
 delete m;
 (*im)->count++;
 genoGroup[i] = *im;
 }

 } // Next individual
}

Extract 16 Unmodified genogroup.cpp code file.

If the chromosome X is taken into consideration, then vector g holds additional

element. The SNPs are coded depending on their allele frequency and pushed back onto

the vector g. The object intvec_t S holds the list of SNP numbers and the

vector<individual*> sample stores the genotype information for each individual.

Next, the count is set to 1 and reference to i (number assigned to the current

individual). In other words, at this point it is assumed that this individual is the first one

belonging to this group. Then all of the previously analysed groups are searched to

determine whether the current group is unique or has been recorded before. If the group

is unique then the current m is assigned to the genoGroup i and this new group is

 46

inserted into genotypes set. The genoGroup is a vector of type MultiLocusGenotype*

and clearly holds the information which genoGroup each individual belongs to. The

set<MultiLocusGenotype*> genotypes stores information about each unique group (i.e.

its reference number, number of individuals belonging to it and genotype data). If the

similar genoGroup already exists then the currently processed individual is assigned to

it and the current m is destroyed. Then the next person is analysed.

The first modifications are shown in extract 17. First the bool variables s1 and

s2 were declared outside the loop over s. Then the ternary conditional operators were

replaced with if...else statements. Now both Boolean variables are declared only once

for each individual and the conditional statement is calculated only once for each s.

These changes did not improve the performance greatly because in the used data set

(Genoplink_20130205) the variable ns (number of SNPs in haplotype) is equal to 2.

The samples with larger values of ns would benefit more from this modification.

Also, to avoid referencing global P->n (number of individuals in the sample)

with each iteration of the loop over individuals, it has been stored in the local variable

size (extract 17).

…
int size = P->n;
bool s1,s2;
for (int I = 0; i < size; i++)
 {
 ...
 for(int s=0; s<ns; s++){

 if (par::SNP_major){

 s1=P->SNP[S[s]]->one[i];
 s2=P->SNP[S[s]]->two[i];
 m->g.push_back(s1);
 m->g.push_back(s2);
 }
 else{
 s1= P->sample[i]->one[S[s]];
 s2= P->sample[i]->two[S[s]];
 m->g.push_back(s1);
 m->g.push_back(s2);
 }
 }
 ...
}
...

Extract 17 Modifications made to the genogroup.cpp code file.

Push backs are more expensive than direct access to the memory locations.

Therefore, we have attempted to replace the push backs with direct writes. Vector g has

been resized to have 2*ns (or 2*ns + 1 if haplo->X is true i.e. X chromosome is also

being analysed) elements. Then both s1 and s2 were written directly into the

corresponding elements of g. However, this modification significantly increased the

execution time. This is because resizing of the vector was much more time consuming

than the push backs. The time spent in each part of the function has been measured and

printed to screen. The resizing of the vector g took 0.00000852 seconds and the time

 47

spend in the loop over s was 0.00000036 seconds. The time spend inside the loop over s

in the original code was 0.00000048 seconds. Clearly, the time gained by replacing the

push backs with the direct memory accesses does not compensate the time spend on

resizing the vector.

The reason for that is relatively small number of push backs (ns = 2 only). Also

because the vector can be resized only after it has been declared, the resizing has been

done for all of the individuals i.e. inside the loop over i. Therefore to reduce the

resizing time, the resizing would have to be done only once for all of the individuals i.e.

outside the loop over i. Consequently, the declaration of m should be placed before the

loop as well. The problem is m is dynamically allocated and so all of the memory

accesses to it are done through pointers. Moreover, genoGroup is a vector of pointers to

m and it is used not only by enumerateGenogroups function but by other unrelated

functions as well. Thus all of the relevant m’s need to exist at the same time. It is not

possible to declare only one m and reuse it for all individuals without significant re-

engineering of the code in several different functions. Due to the time constraints

further investigation into this optimisation has not been conducted.

The last modification attempted was moving the condition haplo->X outside the

loop over individuals (over i). It is possible because the condition is not dependent on

any variable inside the loop. This modification requires duplication of the code but

results in the condition being calculated only once. However, this modification slowed

down the execution considerably.

…
if (haplo->X) //if chromosome X is being considered
 {
 for (int i=0; i < P->n ; i++) //consider each individual
 {
 ...
 m->g.push_back(P->sample[i]->sex); // add sex
 …
 }
else {
 for (int i=0; i < P->n ; i++) { // consider each individual, do not analyse chromosome X
 ...
 }

Extract 18 Modification done to the enumerateGenogroups function – loop independent

condition has been moved outside of the loop.

It is possible that because the HaploPhase::includeIndividuals is rather small

function, the compiler was doing a rather good job inlining it. However, increasing the

size of the function (duplication) made it less effective. Therefore, only the

modifications shown in extract 17 have been used in further development and

performance analysis. The code with those changes has been executed in 13421

seconds which is 2813 s (46 min) faster than the unmodified code compiled with –O2

flag (16234).

 48

6.2.2 IncludeIndividuals function

The HaploPhase::includeIndividuals function takes over 14% of the total

execution time. It is responsible for checking the genotype information for a

particular individual and if certain conditions are met or the person has too much

genotype data missing they are excluded from the subsequent analysis. The most

significant part of the code is shown in extract 19. Only two changes have been made

in this function. Boolean vectors s1 and s2 have been replaced with Boolean scalars.

Then as a consequence of the first modification, two loops over s have been merged.

The first step required the second because the second loop re-uses the results of the

first loop. Replacing vectors with scalars is possible because the allele codes are used

only to calculate the amount of missing genotype data (nm). Therefore they are

needed only locally, and merging both loops ensures the required locality.

void HaploPhase::includeIndividuals(int i)
{
// Do not look at non-reference individuals in some circumstances
…
vector<bool> s1(ns);
vector<bool> s2(ns);

// Flipping allele-coding for homozygotes
for (int s=0; s<ns; s++)
 {
 if (par::SNP_major)
 {
 s1[s] = P.SNP[S[s]]->one[i];
 s2[s] = P.SNP[S[s]]->two[i];
 }
 else
 {
 s1[s] = P.sample[i]->one[S[s]];
 s2[s] = P.sample[i]->two[S[s]];
 }
 if (s1[s] == s2[s])
 {
 s1[s] = !s1[s];
 s2[s] = !s2[s];
 }
 }

 // Count amount of missing genotype data at this position
int nm = 0;
for (int s=0; s<ns; s++)
 if (s1[s] && !s2[s])
 nm++;

// if too much genotype data is missing do not include this individual
...
}

Extract 19 Unmodified HaploPhase::includeIndividuals function.

 49

The individual effects of those changes are not big however, because the

includeIndiviudals function has been called almost a billion times (table 2) they

accumulate and have a positive effect on the overall performance. The modified code

(extract 19) executes in 12831 seconds which is 3403 s (over 56 min) faster than the

unmodified code and almost 10 min faster than the previous version. Also replacing

vectors with scalars reduced contribution from the vector class.

6.2.3 PhaseAllHaplotypes function

This function took almost 10% of the execution time and is responsible for the

main part of the estimation. All the other functions of the HaploPhase type are called

from within this function. The function calculates the haplotype frequencies. The first

step is to define the regions of the analysis and the SNPs they contain, then the

haplotypes (HaploPhase::enumerateHaplotypes), genoGroups (HaploPhase::

enumerate Genogroups) and phases (HaploPhase::enumeratePhase) are enumerated.

Next the EM algorithm (Expectation-Maximisation) is used to estimate the haplotype

frequencies (HaploPhase::performAlternEM), after which the unlikely regional

phases are pruned (HaploPhase::prunePhase). The last part involves reporting

haplotype frequencies and haplotype phase probabilities, and performing the

haplotype association tests (HaploPhase::performHaplotypeTests).

Quite a large number of small modifications have been tested. However, it

was hard to determine their effect on the overall performance. Not only, the changes

were small but also most of the optimisation work has been tested on the subset of

two chromosomes which made it even harder to determine their effect. Therefore,

taking into consideration the time necessary to test all of the modification on the

whole sample (3 measurements required) and the fact that the function takes only

10% of the execution time, we have decided to test the changes that had chance to

clearly improve the performance.

In the end, after development work on the fragment of the data set (2

chromosomes only), the only adopted changes were: common sub-expression

elimination (instead of P.n – number of individuals, integer Indiv_num), moving

some of the variable declarations outside of the loops and replacing the power

function call with multiply sign. Therefore, we have reduced the number of

declarations, improved locality by using local variable instead of global and reduced

the number of small function calls. Observed for the entire sample timings were very

inconsistent and the best one was only 3 minutes faster (12659) compared to the

previous code version with unmodified phaseAllHaplotype function (12831). The

slowest was almost 15 minutes slower. Thus we have decided to leave the

phaseAllHaplotype function unmodified.

 50

6.2.4 Two_locus_table function

The two_locus_table function is not part of HaploPhase class. It is defined

inside the helper.cpp code file and it is being called from mkBlks function. This

function is used only by the haplotype blocks option. It counts the independent alleles

observed at two analysed loci for all of the individuals present in the sample. Because

two_locus_table function takes only 4.4% of the total execution time only the

optimisations that could clearly improve the performance at the small development

cost, have been considered. Three changes have been made. Extract 20 shows the

relevant part of the code before and extract 21 shows the same part of the code after

modifications. First of all, the declarations of the Boolean scalars have been placed

outside of the loop over individuals. Secondly, the four ternary conditional statements

have been replaced by one if…else conditional statement. Lastly, local integer

variable size has been declared to hold the number of individuals (PP->n).

 …
for (int i=0; i< PP->n; i++)
{
 Individual * person = PP->sample[i];
 If (person->missing || ! person->founder)
 continue;

 bool a1 = par::SNP_major ? PP->SNP[l1]->one[i] : person->one[l1];
 bool a2 = par::SNP_major ? PP->SNP[l1]->two[i] : person->two[l1];
 bool b1 = par::SNP_major ? PP->SNP[l2]->one[i] : person->one[l2];
 bool b2 = par::SNP_major ? PP->SNP[l2]->two[i] : person->two[l2];
 …

Extract 20 Part of the original code of two_table_locus function located in phase.cpp code file.

bool a1, a2;
bool b1, b2;
int size = PP->n;

for (int i=0; i<size; i++)
 {
 Individual * person = PP->sample[i];
 if (person->missing || ! person->founder)
 continue;

 if(par::SNP_major){

 a1 = PP->SNP[l1]->one[i];
 a2 = PP->SNP[l1]->two[i];
 b1 = PP->SNP[l2]->one[i];
 b2 = PP->SNP[l2]->two[i];
 }
 else{
 a1 = person->one[l1];
 a2 = person->two[l1];
 b1 = person->one[l2];
 b2 = person->two[l2];
 }
…

Extract 21 Part of the modified code of two_table_locus function located in the phase.cpp code

file.

 51

The above described modifications have improved the performance of the

haplotype blocks option. The code executed in 12367 s which is 464 seconds (almost

8 min) faster than the previous version of the code – 12831 (with modified

enumerateGenogroups and includeIndividuals functions).

6.2.5 PrunePhase and performAlternEM functions

Because both of those functions are not very time consuming (prunePhase –

3.02% and performAlternEM – 2.22%) we did not spend much time on optimising

them. The performAlternEM function contains the Expectation-Maximisation

algorithm and thus has rather complicated code structure. Taking into consideration

the time constraints of this project, only simple modifications have been tested. They

were: the common expression elimination for the number of individuals present in the

analysed sample (accessed through P.n) and moving time consuming declarations

(vectors) out of the loops and nested regions.

In prunePhase we attempted to replace push backs to multiple vectors with

direct memory accesses. However, some of the variables modified inside the loop had

an impact on the vector sizes and since the resizing of vectors before the loop and

replacing them with arrays became more complicated, no significant modifications

have been made to this function.

Those changes resulted in code executing in 12849 seconds which is slower

than the code after the last adopted modification (12367s). Therefore, both

prunePhase and performAlternEM functions have not been modified in the final code

version.

6.3 Serial Optimisation results

The overall performance improvement after each major optimisation stage is

shown in the figure 12. Changing the optimisation flag from –O3 to –O2 reduced the

execution time from 17575 to 16234 seconds and introducing the changes into the

enumerateGenogroups functions (discussed in section 6.2.1) resulted in the execution

time of 13421 seconds. The changes made to the includeIndividuals and

two_locus_table functions gave the code executing in 12831 and 12367 seconds,

respectively.

The initial execution time of 4 hours and 53 minutes has been reduced to 3

hours and 26 minutes. Thus the performance of the haplotype block options has been

improved by about 30%.

 52

-O3

-O2

enumerateGenogroups

includeIndividuals

two_locus_table

0

1

2

3

4

5

6

E
x
e
c
u
ti
o
n
 t
im

e
 i
n
 h

o
u
rs

Figure 12 Execution times measured after each major optimisation stage.

6.4 Parallelisation

Unlike in the epistasis option, the haplotype blocks option does not have any

obvious regions for parallelisation. Parallelising the functions present in the profile (fig.

6) would not improve performance because the time needed to spawn the threads is

larger than the time needed to execute those functions. Therefore, the only region

potentially suitable for OpenMP parallelisation is within the mkBlks function, shown in

extract 22. The first loop (over the chromosomes) is not the best candidate for using the

parallel for directive because there are only 23 chromosomes in human genome. Hence

the loop is not big enough to benefit significantly from parallelisation. The loops over

the analysed regions (200kb – default settings) and the intervals (depending on the

distance between the SNPs within the region) are much bigger and so may be

parallelised. Extract 22 shows the introduced parallelisation. The parallel for directive

has been used and two variables x and y (loop iterators) have been declared as private.

Three critical regions have been defined. The first one encompasses the calculation of

linkage disequilibrium and confidence interval for each analysed pair of SNPs. Both

functions calculateLD and caclulateCI contain the calls to the functions using global

variables and so they need to be executed by one thread at a time. The other two

functions involve inserting objects into map and set. The dpStore is a map of pairs and

their corresponding LD and CI coefficients and StrongPair is a set of pairs of SNPs

with strong LD and distance between them. To eliminate the possibility of two threads

trying to perform writes to the same space in the memory (conflicting stores) both

inserts have been placed within the critical sections. Figure 13 shows the resulting

speedup. On 2 threads the execution time is 11185 seconds and on 12 threads it is

 53

10901 seconds. The execution time on 2 threads is almost 20 minutes faster than on 1

but adding more threads does not reduce the execution time significantly. There is

almost no speedup.

Map<Range, vector<int> > Plink::mkBlks(int null1, int null2)

 {

 ...

 for(int chr = startChromosome; chr <= finalChromosome; chr ++) // loop over all chromosomes

 {

 …

#pragma omp parallel for private(x,y)

 for(x = fromPosition; x < toPosition; x++) // loop over all regions

 {

 …

 for(y = x+1; y <= toPosition; y++) // loop over smaller segments within each region

 {

 …

#pragma omp critical

 {

 PairwiseLinkage thisPair(x,y);

 thisPair.calculateLD(); // calculate linkage disequilibrium coefficient for pair x,y

 thisPair.calculateCI(); // calculate the confidence interval for pair x,y

 }

 …

#pragma omp critical

 {

 dpStore.insert(make_pair(t,d)); // t is x,y pair and d consists of corresponding coefficients

 }

 …

#pragma omp critical

 {

 strongPairs.insert(p); // p stores pair x,y and the distance they span

 }

 …

Extract 22 Code of the mkBlks function. The bold text shows introduced

parallelisation.

The lack of time prevented us from investigating the effect of different

schedules. However, the code structure suggests that even the most suitable schedule

would not improve the performance significantly. The only way to improve the

performance of the parallelised code is to reduce the size of the critical section

encompassing the LD calculation. That would require moving the critical section

deeper into the functions call tree. As discussed at the beginning of this chapter,

calculateLD function calls dprime function, which calls rsq function, which calls

HaploPhase:: phaseAllHaplotypes function. The last function calls all the other

functions present in the profile (fig. 6). To locate all the regions that could cause the

race condition when not executed inside the critical section, the Valgrind’s DRD tool

(thread error detector) [23] has been used. After reporting 10000000 detected

potentially conflicting load and stores, the program stopped reporting. Because of the

time constraints of the project we were unable to investigate detected errors. Therefore,

reducing the size of the critical section is deferred to the future development works.

 54

0 2 4 6 8 10 12

0

2

4

6

8

10

12

14

Ideal Speedup

Observed Speedup

Number of threads

S
p

e
e

d
u

p

Figure 13 The speedup obtained for the haplotype blocks option.

6.5 Conclusions

During the optimisation process, only the modifications clearly improving the

performance have been adopted. Three functions have been optimised:

enumerateGenogroups, includeIndividuals and two_locus_table. Although the

optimisation of other functions has been attempted, it did not result in performance

improvement. The final version of the code has been executed in 12367 seconds which

is almost 1.5 hour faster than the original code (17575s).

The parallelisation of the haplotype blocks option proved to be challenging. The

only region suitable for parallelisation is inside the mkBlks function. The parallelised

code scales very poorly because the most computationally expensive calculations are

performed within the critical section. Due to the time constraints, the investigation into

the effect of different OpenMP schedules and possibility of reducing the size of the

critical section by moving it deeper into the function call tree has not been attempted.

 55

Chapter 7

Conclusions

In this project we have worked on improving performance of two PLINK

options – epistasis and haplotype blocks. First, to understand how the PLINK works

and what functionality it provides, PLINK tutorial has been analysed. Some of the

tutorial cases have been executed on artificially small data sets and profiled. Then both

epistasis and haplotype blocks options have been profiled as well. The haplotype blocks

option has been always performed using the real life data set consisting of 267912

SNPs from 2186 individuals (Genoplink_20130205) and the epistasis has been always

performed using the artificially smaller data set (83534 SNPs from 89 individuals –

hapmap1).

The first step of the optimisation was investigation of different compilers and

optimising compiler flags. The behaviour of the default Gnu g++ and Intel icc

compilers and their different flags have been studied. It has been determined that the

most optimal performance for both analyses has been given by the g++ compiler and –

O2 optimisation flag. Although both options had the combinations of flags that

produced slightly faster code than –O2 flag, they were different for each option.

Therefore, in order to provide good performance for all of the PLINK options the

second optimisation level has been adopted.

The profiles of epistasis and haplotype blocks options differ significantly. Those

differences are the result of different code structure. To gain the best improvement in

the performance different approaches have been adopted for both options.

The epistasis option has been successfully parallelised and proved to scale very

well. Both methods of performing the epistasis analysis showed the speedup of about

10.5 when executed on 12 threads and using schedule dynamic with the chunksize of

128. The correctness of parallelisation has been tested and the explanation for all of the

inconsistences has been given. The simple serial optimisation of the fast epistasis

analysis did not produce clear improvement in the performance, and thus further

investigation has not been attempted. The performance of the normal epistasis (using

the linear or logistic regression) could be improved by optimising the implementation

of the regression models.

Due to the specific code structure of the haplotype block option, the focus has

been put on serial optimisation. The modifications that proved to be the most beneficial

were: replacing the ternary conditions with the if…else statements, replacing the

Boolean vectors with Boolean scalars and removing some of the declarations from

inside the loops. The initial time of about 5 hours has been reduced to about 3.5 hours,

which means the performance has been improved by 30%.

There was no obvious region for parallelisation inside the code of haplotype

blocks options. It has been parallelised but because of the specific code structure it did

not scale well. Even though the functions present in the profile have many loops and

nested loop regions, parallelising them would not be beneficial because the time spent

within those functions is comparable to the time required to spawn the threads. The

 56

#pragma omp parallel for directive has been used inside the mkBlks function but

because the most computationally expensive part of the calculation has to be inside the

critical region, the performance improvement is hardly noticeable regardless of the

number of threads used.

Any future attempts on the parallelisation of the haplotype blocks options

should focus on reducing the size of the critical section by moving it deeper inside the

function calls. The performance of this analysis would also benefit greatly from

reducing the number of vectors and vector operations used in the code.

 57

Appendix A

Example job script

The contents of the example job script haplo.sh:

#!/bin/sh

#$ -l h_rt=06:00:00

#$ -cwd

#$ -M mantraani@yahoo.pl

#$ -m abe

#$ -N haplo_OMP1

#$ -pe OpenMP 1

. /etc/profile.d/modules.sh

export OMP_NUM_THREADS=$NSLOTS

echo OMP_NUM_THREADS = $NSLOTS

make clean

make

./plink --tfile /exports/work/physics_epcc_msc/s0789793/Genoplink_20130205 --blocks --out blocks_mod1

 58

References

[1] S. Purcell at al. 2007. PLINK: A tool set for whole-genome association and

population-based linkage analysis Am. J. Hum. Genet. 81, 559-575.

Online at: http://pngu.mgh.harvard.edu/~purcell/plink/

[2] InSilico Research Group. Online at: http://insilico.utulsa.edu/ and

https://github.com/insilico/plink (referenced on 29/03/2013).

[3] Human genome project. Human Genome Project Information Archive. Online

at: http://web.ornl.gov/sci/techresources/Human_Genome/index.shtml

(referenced 20/08/2013).

[4] International Hapmap project. Online at: http://hapmap.ncbi.nlm.nih.gov/

(referenced 21/08/2013).

[5] L. Kryglyak, D.A. Nickerson, 2001. Variation is the spice of life. Nat. Genet.

27, 234-235.

[6] J.C. Venter et al. 2001. The sequence of the human genome. Sci. Sign. 291,

1304.

[7] Whole-genome association studies. National Human Genome Research

Institute. Online at: http://www.genome.gov/17516714 (referenced

17/07/2013).

[8] A. Galvan et al. 2010. Beyond genome-wide association studies: genetic

heterogeneity and individual predisposition to cancer. TRENDS in Genetics 26,

132-141.

[9] G. Hemani at al. 2013. An evolutionary perspective on epistasis and the missing

heritability. PLoS genetics, e1003295.

[10] L. Xu et al. 2012. Dynamic epistasis for different alleles of the same gene.

Proceedings of the National Academy of Sciences of the United States of

America 109, 10420-10425.

[11] IMPUTE Online at: https://mathgen.stats.ox.ac.uk/impute/impute.html

(referenced 25/07/2013).

[12] Haploview Online at: http://www.broadinstitute.org/scientific-

community/science/programs/medical-and-population-

genetics/haploview/haploview (referenced 25/07/2013).

[13] PLINK tutorial. Online at: http://pngu.mgh.harvard.edu/

~purcell/plink/tutorial.shtml (referenced 06/06/2013).

[14] K. Wang et al. 2012, A novel locus for body mass index on 5p15.2: A meta-

analysis of two genome-wide association studies, Gene 500, 80-84.

[15] C.Hu et al. 2013, BCL9 and C9orf5 are associated with Negative Symptoms in

Schizophrenia: Meta-Analysis of Two Genome-Wide Association Studies, Plos

One 8.

http://pngu.mgh.harvard.edu/~purcell/plink/
http://insilico.utulsa.edu/
https://github.com/insilico/plink
http://web.ornl.gov/sci/techresources/Human_Genome/index.shtml
http://hapmap.ncbi.nlm.nih.gov/
http://www.genome.gov/17516714
https://mathgen.stats.ox.ac.uk/impute/impute.html
http://www.broadinstitute.org/scientific-community/science/programs/medical-and-population-genetics/haploview/haploview
http://www.broadinstitute.org/scientific-community/science/programs/medical-and-population-genetics/haploview/haploview
http://www.broadinstitute.org/scientific-community/science/programs/medical-and-population-genetics/haploview/haploview
http://pngu.mgh.harvard.edu/%20~purcell/plink/tutorial.shtml
http://pngu.mgh.harvard.edu/%20~purcell/plink/tutorial.shtml

 59

[16] A. Agrawal et al. 2010, A genome-wide association study of DSM-IV cannabis

dependence, Addict. Biol. 16, 514-518.

[17] F. Deng et al. 2013, Genome-wide association study identified UQCC locus

for spine bone size in humans, Bone 53, 129-133.

[18] D. Ge et al. 2009, Genetic variation in IL28B hepatitis C treatment-induced

viral clearance, Nature 461, 399-401.

[19] J.C. Turton et al. 2011, Investigating Statistical Epistasis in Complex

Disorders, Journal of Alzheimer's Disease 25, 635-644.

[20] J.C. Barrett et al. 2008, Genome-wide association defines more than 30

distinct susceptibility loci for Crohn’s disease. Nat. Genet. 40, 955-962.

[21] H. Shi et al. 2011, Using Fisher's method with PLINK 'LD clumped' output to

compare SNP effects across Genome-wide Association Study (WGAS)15

datasets, Int. J. Molec. Epistem. Genet. 2, 30-35.

[22] Roslin Institute. Online at: http://www.roslin.ed.ac.uk/ (referenced

17/08/2013).

[23] Valgrind’s DRD tool. Online at: http://valgrind.org/ (referenced 02/08/2013).

[24] O. Carlborg, C.S. Haley. 2004 Epistasis: too often neglected in complex trait

studies? Nat. Rev. Genet. 5, 618-625.

[25] O. Zuk et al. 2012. The mystery of missing heritability: genetic interactions

create phantom heritability. Proceedings of the National Academy of Sciences

109, 1193-1198.

[26] H. Zhao et al. 2003. Haplotype analysis in population genetics and association

studies. Pharmacogenomics 4, 171-178.

http://www.roslin.ed.ac.uk/
http://valgrind.org/

	Optimising PLINK
	Abstract

	Contents
	List of Tables
	List of Figures
	List of Extracts
	Acknowledgements
	Chapter 1 Introduction
	Chapter 2 Background Theory
	2.1 Genome wide association studies
	2.2 PLINK
	2.3 Resources and tools

	Chapter 3 Profiling PLINK
	3.1 Simple cases
	3.1.1 Missingness rate
	3.1.2 Allele frequencies
	3.1.3 Conclusions

	3.2 Epistasis and Haplotype blocks option
	3.2.1 Epistasis
	3.2.2 Haplotype blocks
	3.2.3 Conclusions
	In this chapter we have presented the behaviour of four different options. The missingness rate and allele frequencies options have been executed on both artificial (hapmap1) and real life (Genoplink_20130205) data samples. The execution time of both ...

	Chapter 4 Compiler Optimisations
	4.1 Gnu g++ compiler and fast epistasis option
	4.2 Gnu g++ compiler and haplotype blocks option
	4.3 Intel icc compiler
	4.4 Conclusions

	Chapter 5 Optimising Epistasis
	5.1 Code structure
	5.2 InSilico Research Group Parallelisation
	5.3 Parallelisation
	5.4 Testing for correctness
	5.5 Scalability
	5.6 Serial Optimisation
	5.7 Conclusions

	Chapter 6 Optimising Haplotype blocks
	6.1 Code structure
	6.2 Optimising dominant functions
	6.2.1 EnumerateGenogroups function
	6.2.2 IncludeIndividuals function
	6.2.3 PhaseAllHaplotypes function
	6.2.4 Two_locus_table function
	6.2.5 PrunePhase and performAlternEM functions

	6.3 Serial Optimisation results
	6.4 Parallelisation
	6.5 Conclusions

	Chapter 7 Conclusions
	References

