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Abstract 

 

Every year the amount of genetic data increases greatly, creating the need for 

the tool capable of analysing large data sets in a fast and efficient manner. One such 

software package, providing a wide range of functionality required in whole-genome 

association studies is PLINK. Although, it does not limit the size of the data sets, the 

time needed to process them is often a bottleneck. This master project was focused on 

improving the performance of two functionality options: epistasis analysis and 

haplotype blocks estimation. It has been determined that the g++ compiler and –O2 

flag provide the optimal performance for both options. The epistasis analysis has been 

parallelised using OpenMP. The parallel for schedule directive has been used and 

dynamic schedule with the chunksize of the size 128 provided the best scaling. When 

executed on 12 threads the epistasis analysis was 10.5 times faster than when executed 

on 1 thread. Haplotype blocks option has been serially optimised. Introduced 

optimisations improved the execution time by about 30%. 
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Chapter 1 

 

Introduction 

With the advance in the fields of genetics and genomics the amount of available 

genetic data increases greatly every year. To identify the genetic regions responsible for 

physical traits like diseases, it is necessary to analyse large quantities of data from large 

number of individuals. Moreover, to reduce the risk of obtaining numerous associations 

by chance (false positive results), it is necessary to repeat analyses multiple times. This 

creates the need for an efficient and effective tool that would provide wide range of 

functionality to allow comprehensive and fast way to analyse the genetic data. PLINK 

[1], being one of such tools, is a software package written in C++ and providing a wide 

range of functionality required in the genome-wide association studies.   

In this project, two PLINK options have been optimised – Epistasis and 

Haplotype blocks analyses. The Epistasis option has been chosen because it is 

extremely computationally demanding and therefore, it would benefit greatly from the 

optimisation. The main approach to improving the performance of this function was 

parallelisation.  Similar work has been attempted by the InSilico Research Group [2]; 

some inconsistency in the results of that parallelisation have been discovered and 

investigated.  

The Haplotype blocks option has been chosen as a candidate for optimisation 

because it is important aspect of the research conducted by the collaborating scientist 

Dr Mairead Bermingham from the Roslin Institute. Both serial optimisation and 

parallelisation have been attempted but due to the code structure, serial optimisation 

became the main focus.    

In chapter 2, we present the biological context of the genome-wide association 

studies, PLINK and its options that were focus of this project. The last part of this 

chapter is dedicated to the tools and resources used throughout the project. Chapter 3 is 

about profiling PLINK. We present the performance of four different options. Two of 

them are simple summary statistics analyses that were investigated to provide insight in 

the behaviour of different PLINK options executed on different sample sizes and under 

different settings. In the second part of the chapter the performance of the Epistasis and 

Haplotype blocks options are discussed, along with the proposed approach to 

optimisations. All of the profiling has been done with the default PLINK settings. 

Chapter 4 presents the results of the investigation of different compiler flags and 

compilers on the performance of both Epistasis and Haplotype blocks options. The 

focus of chapter 5 is the Epistasis option - code structure, parallelisation, correctness, 

scalability, and finally serial optimisations are discussed. Chapter 6 is dedicated to the 

Haplotype blocks option. First, code structure, then the serial optimisation of the most 

dominant functions and finally the parallelisation are discussed. The last chapter 

contains the summary of the work done, conclusions and suggestions for future work.          
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Chapter 2 

 

Background Theory 

PLINK is a software tool used to analyse the genetic data. Hence, the first 

subsection of this chapter gives a brief introduction into the modern genetic studies, 

ideas and motivation behind the whole-genome association studies and some 

terminology required to explain the basic PLINK functionality. In the following 

section, the main domains of the program functionality are described. Then we give 

few examples of genetic studies that have used PLINK software package. Finally, the 

last subsection describes tools and resources used throughout the project.  

 

2.1 Genome wide association studies  

In the past two decades great effort has been put into decoding and 

understanding human genome. Projects such as the Human Genome Project [3] and the 

HapMap Project [4] were focused on identifying all of the genetic markers. The results 

obtained through the Human Genome Project has shown that 99.9% of the 3 billion 

base pairs of genetic letters are identical in every person. It means that this 0.01% 

contains some crucial genetic information responsible for most common, complex 

human traits and diseases. This difference in the genetic makeup is the reason behind 

the physical difference between people, for example blood group, height and skin 

colour etc. This genetic variation is also the reason why some people inherit rare 

diseases (e.g. muscular dystrophy or cystic fibrosis) and other are more likely to 

develop common illnesses (e.g. asthma, heart disease or cancer). Clearly, understanding 

the structure of the DNA not only provides important information on human 

evolutionary history but also is necessary to develop a new approach towards many 

diseases and their treatment. Being able to identify the genetic markers that influence 

individual health, would allow creating more precise and of reduced risk treatments.   

   Before discussing how the associations between the genetic variation and 

particular diseases are investigated, it is necessary to have basic understanding of how 

genetic information is inscribed. Genetic variation occur through mutations in 

deoxyribonucleic acid (DNA) which is composed from four basic building blocks 

molecules (bases) A,T,C and G. The order in which they occur is incredibly important 

for all life and body functions. The change of one base for another at single location is 

called single nucleotide polymorphism (SNP). Usually, a SNP does not have biological 

importance, sometimes however it can change the function of the gene. It is believed 

that there are about 7 million SNPs in human genome. Most common SNPs have only 

two alleles (alternative forms of a gene), the one at lower frequency is referred to as 

minor and the other as major. The common SNPs, those with the minor-allele 

frequency greater than 10%, occur approximately once every six-hundred bases [5,6].  

Venter et al. [6] showed that the average human gene is 2,700 bases long which means 
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that about 50 common polymorphisms may be present in such gene. Moreover, the 

common variants tend to cluster into local neighbourhoods – haplotypes, which are 

groups of statistically associated SNPs present on a single chromosome. This 

characteristic allows the prohibitively expensive analysis of genetic variants to be 

reduced to analysis of carefully chosen SNPs.    

 Until recently, only the regions suspected of being involved in the development 

of a certain trait (usually disease) were investigated in the relation to that trait. The 

candidate gene proved to be unrelated  more often than not and so finally new, unbiased 

approach has been developed - whole genome association studies (also referred to as 

genome wide association studies) [7]. In this approach, the analysis covers the whole 

genome when searching for the variation in human DNA underlying particular trait. In 

general, the whole genome association studies (WGAS) aim at identifying the genetic 

differences between the affected (cases) and unaffected (controls) by particular trait 

individuals. If a particular SNP is more common in an affected than in unaffected 

individuals, it is said to be associated with the investigated trait. The power and 

precision of the WGAS, and hence the ability to detect SNPs responsible for complex 

traits and diseases, are determined by the strength and the frequency of the linkage 

disequilibrium (LD) and trait modulating SNPs (directly affecting particular trait) [8].  

 Linkage disequilibrium is a measure of the correlation between alleles at two or 

more sites in the same region of the genome. In other words, when a certain 

combination of the genetic markers occurs in a population more or less often than 

would be expected from the frequencies of alleles forming the haplotype blocks, it is 

due to the linkage disequilibrium. This dependence between the SNPs may be formed 

when a novel SNP occurs in the region of fixed alleles where the other SNPs are 

present. This way the new SNP becomes fully correlated with the flaking haplotypes. 

Later this genomic region is transmitted through generations but as the DNA is 

breaking and re-joining at the germ cell development, different copies of original allele 

will end up with different LD patterns. They will also be flanked by different lengths of 

DNA from the original chromosome. Therefore, LD is generated by the transmission of 

these short genomic regions in unrelated individuals from the remote common ancestor.  

 Usually, in whole-genome association studies an additive framework is used to 

model genetic variation. In other words, it is assumed that each variant affecting the 

trait acts in an independent, linear and cumulative manner [9]. However, it seems that 

the genes action is more complex than that predicted by the additive model. One of the 

sources of non-additive genetic variation is epistasis. It is an interaction between two or 

more genes that affects phenotype (physical traits based on genetic and environmental 

influences). It is possible for genes to combine to produce a new trait or to mask each 

other's presence. In simple terms, epistasis occurs when an allele at one locus modifies 

or masks the effects of alleles at other loci, or when two or more loci interact to create 

new phenotypes. Epistasis provides important clues towards understanding many 

genetic and evolutionary processes. For example, evolution of sexual reproduction, 

speciation and the origin of life [10]   

 Two important aspects of the WGAS are genome coverage and the sample size. 

Typical WGAS covers at least hundreds of thousands of SNPs genotyped for thousands 

of individuals which makes them computationally challenging. In recent years many 

software packages have been written to provide the tools for genetic data analysis. Most 

of them are highly specialised i.e. have been written with specific analysis in mind (e.g 
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IMPUTE [11], Haploview [12]). One of the software packages offering a wide 

functionality is PLINK (one syllable). It is being used extensively in genome-wide 

association studies.  

 

 

2.2 PLINK 

 

PLINK [1] is a free, open-source C/C++ single-threaded, command line 

program designed to analyse the whole-genome data in a number of ways. It has been 

developed by Shuan Purcell at the Centre for Human Genetic Research (CHGR), 

Massachusetts General Hospital (MGH) and the Board Institute of Harvard & MIT, 

with the support of others. The PLINK has been released in September 2007 and the 

latest (possibly last) version – 1.07 – has been released in October 2009. The main 

purpose of PLINK is manipulating and analysing of large whole-genome data sets in 

their entirety. Its initial functionality covered five main domains: data management, 

summary statistic, population stratification, association analysis and identity-by-descent 

estimation. Multiple other features have been added in latter releases (e.g. epistasis). In 

the next few paragraphs, the main functionality domains and other 2 options will be 

described briefly.   

 As a part of data management functionality, it is possible to: read data in variety 

of formats (normal text files, binary files and transposed files), recode and reorder files, 

merge two or more files, filter genotype information (e.g. extracting subsets of SNPs or 

individuals) and change the data file format. Three main file formats are supported: 

text, transposed and binary. Normal, text file has a one-row-per-individual format, and 

the transposed file has one-row-per-SNP format. Finally, the binary file is a more 

compact way of representing SNP data. Typical PLINK function requires two or more 

data files to perform desired operation – ped and map file in text format, tped and tfam 

in transposed format and bed, bim and fam in binary format.  

 The ped file is a white-space delimited file, containing family and individual 

information in six mandatory and two optional columns. They mandatory columns 

contain family ID, individual ID, paternal ID, maternal ID, sex and phenotype, 

respectively. The two additional columns contain names of alleles. The map file, as the 

name suggest contains the genetic map and has four columns: chromosome number, 

SNP identifier, it's genetic distance (in morgans – unit for measuring the genetic 

linkage) and finally base-pair position (one kilobase equals to 1000 base pairs of DNA). 

The transposed file set holds the genotype information (one row per SNP) in tped files 

and individual and family information (one row per individual) in tfam files. All the 

information is represented in the same way as in ped/map file format, except the 

information is swapped between files. The transposed format is preferable when the 

data contains many more SNPs than individuals (often the case with WGAS data), this 

way the tped file will be long as opposed to the ped file being wide. The binary file 

format splits information into three files: the binary bed file (containing genotype 

information), the text file fam (storing phenotype information) and text file bim, which 

is an extended map file (contains two extra columns with allele names).  
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 PLINK allows manipulation of the way those files are read in e.g. some of the 

variables can be read in in different units, some columns/rows may be skipped and so 

on. There are also other file formats available which are either mixed forms of above 

formats (e.g. long-format file) or contain more specific information required by some of 

the PLINK options (e.g. alternate phenotype files). To specify the file format and make 

use of extra options, additional command line flag needs to be added to the execution 

command.   

   The summary statistics is mostly used for quality control of analysed sample. 

Multiple summary measures are available and can be used to obtain general 

information about the data sets. In this report we will discuss briefly two functions 

belonging to the summary statistics domain: missing genotype rates and allele 

frequencies. Both are part of the PLINK tutorial available online [13], and as such were 

profiled to give better insight into the structure of the program. 

 PLINK provides a wide range of options to perform the association analysis, 

some of the test can be conducted in multiple ways (e.g. on different genetic models, 

with permutation etc.). There are case/control tests, family-based association tests, 

quantitative traits tests, tests for stratified samples and others. The most basic 

association test is based on comparing the allele frequencies between cases (affected 

individuals) and controls (unaffected individuals) to identify the regions responsible for 

a particular trait.  

 The next domain allows performing identity-by-descent and identity-by-state 

estimation. Identity-by-descent (IBD) refers to the case where two or more alleles are 

identical copies of the same ancestral allele. In other words, the two alleles are inferred 

as IBD if enough of their SNPs are the same. The IBD analysis allows discovering the 

unknown familial relationships, as well as detecting sample contaminations, pedigree 

errors, swaps and duplications. It is also possible to find specific segments shared 

between distant relatives. Two alleles are referred to as identical by state (IBS) if they 

have the enough SNPs that are the same even though they do not share common origin. 

In other words, they have the same DNA sequence but not because they were inherited 

from common source.     

 The population stratification is a difference in the allele frequencies between 

groups in a population. In other words, members of a given population are grouped 

together based on their allele frequencies. PLINK uses the pairwise IBS distance with 

other restrictions (like cluster size, phenotype criterion and so on) to perform 

agglomerative clustering and investigate the population's substructure. The obtained 

results can reduce and refine the size of the sample for the subsequent association test 

(by cluster specification).  

 There are also other features supported by PLINK like for example epistasis. In 

fact, PLINK provides two ways of performing epistasis analysis. The first one is 

invoked by the --fast-epistasis and the other by --epistasis command. The main 

difference between them is the method used for calculating the pairwise interactions 

between SNPs. As the name suggests, the fast epistasis option is significantly faster 

than the normal one. More details are provided in chapter 5.  

 Some of the other PLINK options include multi-marker tests, meta-analysis 

and imputation. They have been added to later releases of the program to provide 

comprehensive functionality for whole-genome association studies.  Thanks to that, 

PLINK is being used in wide range of genomic and genetic studies such as identifying 
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loci responsible for traits like body mass index [14], negative symptoms in 

Schizophrenia [15] or for cannabis dependence [16].   

 The use of PLINK in research is usually accompanied by other tools and 

techniques and at the same time many PLINK options are used. For example, the 

research using WGAS to identify the genomic region responsible for the size of spine 

bone in humans [17] used both quantitative trait association tests and population 

stratification. Ge at al. [18] when studying influence of genetic variation on hepatitis C 

treatment used the following PLINK options: calculation of relatedness (IBD 

estimation), Hardy-Weinberg equilibrium analysis (one of the summary statistics tests), 

logistic regression and population stratification.  

 Two of investigated studies had used the epistasis analysis provided by PLINK. 

One of them was focused on investigating statistical epistasis in complex disorders [19] 

(both fast epistasis and epistasis methods available in PLINK have been used) and the 

other on finding susceptibility loci for Crohn's disease [20] (case-only epistasis function 

used). 

 Sometimes PLINK is used to prepare the sample for the next tests and methods. 

For example one of the investigated researches [21] required LD-clumped input to 

apply further techniques and PLINK has been used to produce it. The basic idea behind 

the LD-clumping is to use the empirical estimates of linkage disequilibrium between 

SNPs and to group them accordingly across one or more datasets or analyses.   

  The wide range of functionality, ease of use and good documentation are some 

of the reasons why PLINK is commonly used in the scientific community. As 

mentioned before, PLINK is capable of handling large data sets and the only factor 

limiting the size of the analysed samples is the time necessary to process them. Some of 

the program functions require looping over all of the SNPs and all of the individuals 

and so is time consuming. Consequently, some of the researches are significantly 

hindered by the slow computation process. To make PLINK even more functional, it is 

necessary to improve the program performance.   

 PLINK provides numerous features and optimising all of them is way beyond 

the scope of this project. Also because it is so widely used and for so many different 

purposes, it is hard to decided what part of the functionality would benefit the most 

from the performance optimisation. Therefore, in this project we were focused on 

improving the performance of two options - epistasis and haplotype blocks analysis. 

The epistasis analysis has been chosen because similar work has been already 

attempted by the InSilico Research Group [2] and analysing it as a part of initial 

investigation was supposed to provide insight into potential optimisations of other 

PLINK options. However, the parallelisation done by InSilico Group seems to be 

incomplete and produce inconsistent results. The brief investigation on that 

parallelisation is presented in chapter 5. The inconsistencies and the fact that the 

Epistasis analysis is very time consuming convinced us to make parallelisation of the 

Epistasis option part of this project. The Haplotype blocks option has been chosen 

because it is relevant to the research of collaborating scientist from the Roslin Institute 

[22] - Dr. Mairead Bermingham. More details on the both options and in what kind of 

scientific research they can be used will be provided in further chapters. Meantime, in 

the next section, tools and resources used throughout the project are described briefly. 
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2.3 Resources and tools 

 

Most of the development work has been conducted on the compute component 

of Edinburgh Compute and Data Facility (ECDF) – cluster Eddie. It consists of 156 

IBM dx260M3 iDataPlex servers and each of them has two Intel Xeon E5645 six-core 

processors. To provide better insight into the program behaviour on different 

architectures, EPCC training machine Morar has also been used (Intel(R) Xeon(R) 

CPU E5-2407 0 @ 2.20GHz). It consists of 128 cores, divided into two shared-memory 

boxes of 64 cores.  

 All of the work has been done on development version of PLINK v 1.07. The 

PLINK source code has 132 files. Two of them are text documents – COPYING 

(containing GNU general public license v2) and README containing basic 

information about the program.  There are also executable jar file (gPLINK providing 

GUI for PLINK) and two files of the format required by PLINK test.ped and test.map.  

The actual program consists of 32 header files, 94 code files and Makefile. PLINK is 

capable of running on the following platforms: Unix/Linux, Windows, Mac and 

Solaris. The platform used should be specified in the Makefile. There are also additional 

compilation options available: R plug-ins, web-based version check, ensure 32-bit 

binary, link to zlib (compression library), link to LAPACK and force dynamic linking. 

Thanks to the R plug-ins it is possible to use R package for statistical computing. 

During this project the default options were enabled: R plug-ins, web-check, zlib library 

and forced dynamic linking. PLINK does not require installation. However, on different 

systems the location of libraries is different. Hence it was necessary to specify the 

correct path for the zlib library. On the ecdf cluster Eddie it was /lib64/libz.so.1. The 

default compiler specified in a Makefile is g++ and its default flags are -O3 and -I.  The 

compiler and flags are discussed in more detail in chapter 4. 

 The data used for the PLINK tutorial [13] and development of parallelised 

epistasis analysis comes from the PLINK website – downloadable as a zip file 

hapmap1.zip. The data are split between three files hapmap1.ped, hapmap1.map and 

hapmap1.phe (phenotype information). The sample contains 83534 SNPs from 

randomly selected 89 Asian individuals from HapMap [4]. Thus the data is not in any 

way representative for any study design or disease model but is good enough to 

illustrate PLINK behaviour. The work on the haplotype blocks analysis was carried out 

on Genoplink_20130205 transposed data (Genoplink_20130205.tfam and 

Genoplink_20130205.tped) provided by the collaborating scientist Dr Mairead 

Bermingham. The data come from three different population-representative cohorts 

from the Croatian population. The sample consists of 2357 individuals from which 960 

have been recruited from villages of Vis and Komiza on the island of Vis (between 

2003 and 2004), 897 from Korcula island (2007) and 500 from city of Split (between 

2008 and 2009). The individuals and SNPs not meeting certain criteria were excluded 

from the analysis. The final sample contains 267912 markers that 2186 individuals (871 

males and 1315 females) had in common. 

 To profile the performance of the tutorial cases, epistasis and haplotype blocks 

options, gprof   has been used. During the course of the project some minor bugs in the 

code have been identified and fixed (discussed in chapter 4). To test the correctness of 

the optimisations and parallelisation, first Linux diff command has been used. In cases 
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when this command was not sufficient to decide whether two output files contain 

consistent data or not, specially written test have been used (in C and python). Those 

tests compare the contents of two files and return the difference between them. The 

files are recognised as being consistent even if the data are stored in different order.  

  To resolve the problems with memory allocation encountered when 

parallelising haplotype blocks function Valgrind's DRD [23] tool has been used. DRD 

is used for detecting errors in multithreaded C and C++ programs.   

 OpenMP has been chosen as a parallelisation method. The choice has been 

mainly dictated by the nature of the code, the language in which PLINK has been 

written and the platform on which it is being used. Using OpenMP allows 

parallelisation through introducing #pragma omp pre-processor directives and so major 

re-engineering of the code is not necessary. The changes in the code usually involve 

ensuring the correct scope of variables and introducing critical sections where needed. 

Also OpenMP does not require any special wrappers or bindings for parallelisation of 

C++ programs.  

 The code contains many nested loop regions (mostly over SNPs and/or 

individuals) which are good candidates for parallelisation using #pragma omp parallel 

for directive. Furthermore, some of the PLINK options, like haplotype blocks, have 

quite complex, split among many code files structure.  Those options usually make use 

of functions primary belonging to other options, which makes the call tree rather 

nested. In such cases orphaning provided by OpenMP seems to be a good and 

straightforward approach to parallelisation.     

 Finally, according to our knowledge the scientists from the Roslin Institute at 

the University of Edinburgh run PLINK either on ECDF cluster Eddie or on the 

internal cluster of a very similar structure. Being shared memory machine, it allows 

execution OpenMP parallel jobs. To run them, it is necessary to specify in the job script 

the number of OpenMP threads (via -pe OpenMP) and initialise the environment 

module (./etc/profile./modules.sh). Example of the job script is shown in appendix A. 

The parallel environment accepts requests for up to 12 job slots. Hence, in this project 

the parallel jobs on Eddie are run on a maximum of 12 threads.  

 Throughout the project, we have used the PLINK source code to run all of the 

analyses. Normally, the researches using PLINK on Eddie do not use the source code 

(if they are not interested in changing the compiler settings or modifying the code) 

because Eddie has two version of PLINK installed (v 1.06 - default and 1.07). 

Therefore, to run desired analysis, one first need to load the PLINK module and then 

use the appropriate command.     

 All of the measurements have been repeated three times and the one with the 

shortest execution time has been taken as a representative for the investigated settings. 

The reasoning behind this choice is our interest in how fast the code can be executed, 

not how and to what extend other processes can hinder it.  

 In next chapter we describe briefly how to run PLINK, what kind of output it 

produces and discuss the profiles of two of the simple summary statistics options. Then 

we will proceed to discussing the performance of epistasis and haplotype blocks 

options with default PLINK settings.  
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Chapter 3 

 

Profiling PLINK 
 

One of the first tasks undertaken in this project was profiling of different aspect 

of PLINK functionality. Although, optimising all of the aspects of the program is 

beyond the scope of the project, understanding how the program works is crucial in 

optimisation process. This way, the parts of the code that would benefit the most from 

optimisation can be identified. In this chapter four different PLINK options are 

discussed. Two of them are part of the summary statistics domain, and the other two are 

epistasis and haplotype blocks option. Firstly, we will discuss briefly what they are 

doing and what they are used for, then how to perform them using PLINK and finally 

we will present their profiles. All of the presented profiles were obtained for the default 

PLINK settings (i.e. compiler g++, flag -O3).  

 

3.1 Simple cases   

 

 To understand how the program works and what it is capable of, we went 

through PLINK tutorial available online [13]. All of the tutorial examples have been 

profiled but only two cases, having considerably longer execution times (still very 

short), are discussed here. They are missingness rate and allele frequencies statistics. 

Both analyses are considered separately and in more details than required but we 

believe it is a good way to illustrate how PLINK works. Both of them were executed on 

both artificially small (hapmap1) and consisting of real life data (Genoplink_20130205) 

samples. Profiles generated for both options and sample sizes are compared, giving 

insight into general behaviour of the program. First we will discuss the missingness rate 

option.  

 

 

3.1.1 Missingness rate 

 

Missingness rate analysis checks the rate of missing genotype information 

(SNPs) in an analysed sample. It is particularly useful for refining the sample in 

preparation for other tests. If a particular individual is missing significant number of 

SNPs or if particular SNP is absent in large number of individuals, they can be 

excluded in further analysis. In other words, it is good quality control tool.  

As mentioned in chapter 2, PLINK is a command line tool and so specific 

commands are required to perform desired analysis. To perform missingness analysis 

the following command has been used: 

  

./plink --bfile hapmap1 --missing --out miss_stat 

 

This command runs the executable plink using the binary data files called 

hapmap1.bim and hapmap1.fam as an input files. Then it performs the calculation of 
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the missingness rate (invoked by --missing command) and outputs the results into the 

miss_stat.imiss and miss_stat.lmiss files. The log file is also generated automatically 

(miss_stat.log).  

The log file provides the basic information on the examined sample. At the 

top of the file there is a banner containing the copyright information and PLINK 

version. Then information about the web-check for the newer version, the time the 

analysis is started at, options in effect, and the name and location of the input files are 

specified. The next few lines contain the information about the analysed sample – 

number of SNPs and individuals, as well as how many of them are missing 

phenotype, whether they are affected (case) or unaffected (control) and their gender. 

Then the output files are specified and total genotyping rate in individuals with non-

missing phenotype is given. Finally, how many SNPs have failed the test and the 

analysis end time.     

 Usually if the sample contains pre-selected markers and individuals, the 

reported genotyping rate is high. In the case of data from hapmap1 sample (83534 

SNPs and 89 individuals) the rate is 0.99441. Also no SNPs and individuals were 

removed. The values of the thresholds (both for excluding SNPs that are missing in 

many individuals and individuals with too much missing genotype data) can be 

regulated via command line options (--mind and --geno, respectively). 

 As mentioned before, the missingness analysis produces two output files 

miss_stat.imiss and miss_stat.lmiss. The former, stores the genotyping missingness by 

individual (what portion of SNPs each parson in the sample is missing) and the latter 

by SNPs i.e. how many people are missing a particular SNP. For the individuals the 

file contains 6 columns: family ID, individual ID, missing phenotype, number of 

missing SNPs, total number of SNPs included in this analysis and finally the portion 

of missing SNPs. 

 Extract 1 shows first six lines of the stat_miss.imiss file. The family ID is 

represented by the identifier consisting of letters and numbers. The individual ID is 

simply a number ordering the individual within their family. In the hapmap1 sample 

all of the individuals are founders or in other words are representing different families 

and so all of them have the same individual ID – 1. If the individual is missing 

phenotype, letter Y is placed in the third column. According to the log file, there are 

no individual with missing phenotype in the hapmap1 sample and therefore, all of the 

rows have N in the third column. The number of missing SNPs is different for each 

individual and clearly can vary significantly. Because the no SNPs have been 

excluded from the analysis, the N_GENO column (total number of included SNPs) is 

the same for all of the individuals and equals number of SNPs in the sample. The last 

columns, the portion of missing SNPs is simply N_MISS/N_GENO.   

 

 

 
  F_ID      I_ID    MISS_PHENO     N_MISS    N_GENO    F_MISS 
HCB181   1                N                     671       83534       0.008033 
HCB182   1                N                    1156      83534       0.01384 
HCB183   1                N                     498       83534       0.005962 
HCB184   1                N                     412       83534       0.004932 
HCB185   1                N                     329       83534       0.003939 
HCB186   1                N                    1233     83534        0.01476 
…  

 

Extract 1 First few lines of stat_miss.imiss file obtained as a result of missingness analysis on 

hapmap1 sample. 
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The other file has 5 columns: SNP identifier, chromosome number, number of 

individuals missing this SNP, total number of individuals included and the proportion 

of sample missing for this SNP.  The first few lines of this file are presented in extract 

2.  All of the first column entries have chromosome 1 because the analysis proceeds 

chromosome by chromosome. Looking at the third column, it is clear that some SNPs 

are present in all of the individuals (N_MISS = 0). Again, because no individuals 

have been excluded from the analysis, the value of N_GENO in all rows is the same 

and equal to the number of individuals in hapmap1 sample. The proportion of 

individuals missing particular SNP is calculated as N_MISS/N_GENO.    

 

 
CHR    SNP        N_MISS    N_GENO   F_MISS 
1    rs9729550      0               89               0 
1    rs3813196      0               89               0 
1    rs6704013      2               89          0.02247 
1    rs307347       12              89          0.1348 
1    rs9439440      2               89          0.02247 
1    rs3128342      1               89          0.01124  

… 

Extract 2 First few lines of the stat_miss.imiss file obtained as a result of missingness analysis 

on hapmap1 sample.  

 

 

The missingness analysis has been performed on two samples of different 

sizes and represented in different formats – hapmap1 (83534 SNPs, binary) and 

Genoplink_20130205 (267912 SNPs, transposed). Both samples have been profiled 

using gprof.  

Figure 1 shows the distribution of the total execution time for the hapmap1 

sample. Only the functions taking more than the 1% of total time are present in the 

figure; the contribution of the rest is under the other functions label. The execution 

time was 0.59 seconds. The most dominant is the routine responsible for filtering the 

SNPs, it accounts for almost 60% of the execution time. The second most time 

consuming function (CheckDupes) checks sample for duplicated individuals and 

markers, and takes almost 12%. The third is function Plink::readBinData, responsible 

for reading binary data into the program consumes 10% of the total time. The vector 

class is taking almost 7% of the total execution time. Locus class is also taking almost 

7%. The last noticeable contribution, taking about 5%, comes from the calls to the std 

library. Other functions combined together take only 0.02% and thus are not 

examined closely.  

The execution time of the bigger sample (Genoplink_20130205) was 124.41 

seconds and its profile looks slightly different (Fig.2) than that of the smaller sample. 

The most dominant routine, responsible for reading the transposed data in, takes over 

65% of the total time. The second most time consuming routine is the 

Plink::filterSNPs function with contribution of over 34%. On the third position is the 

std class taking 0.1%. Both of them were present in the profile of the smaller sample 

as well. The other named functions, taking less than 0.01% each, are checkDupes, the 

vector class and Locus class. Clearly, there are only two significant contributions to 

the total execution time.  
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Figure 1 Profile generated for missingness analysis performed on hapmap1 sample and 

with default PLINK settings. 
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Figure 2 Profile generated for missingness analysis performed on 

Genoplink_20130205 sample and with default PLINK settings.  
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Comparing both profiles, it is clear that with increasing size of the sample 

some of the functions become more and other less time consuming. Putting aside the 

time taken to read the data in (which will probably become less significant for more 

computationally expensive PLINK options) the contribution from the function 

responsible for performing the actual work, i.e. filtering SNPs, increased. Therefore, 

if bigger samples are considered (justified by WGAS characteristics) and if the 

computation is concentrated in small number of functions (characteristic of main 

PLINK options) the number of functions being the candidates for optimisation will be 

smaller. The contribution from the vector class has also become less noticeable in the 

profile of the bigger sample. The reason behind that may be that the vector class is 

actually not used that much in the computational part of the analysis. It is hard to tell 

how its contribution will look like if more complex PLINK option are performed.  

Also it seems, that reading data in the transposed format (one row per SNP) 

takes longer time than the binary format. To investigate the effect of file formats on 

the execution time, the missingness analysis has been performed on the hapmap1 

sample represented in different ways. When the binary (--bfile) data file has been 

used (discussed above) the analysis took 0.59 seconds. Using the transposed file (--

tfile) and normal text file (--file) resulted in analysis taking 2.16 and 3.91 seconds, 

respectively. Clearly, different file formats affect the performance of smaller samples. 

It is expected that this difference will become smaller when the analysis will be more 

computationally challenging. Although, the binary format is the fastest, the 

transposed seems to be more convenient when the size of the sample becomes large 

(which is typically the case in WGAS). Also the binary file cannot be read through 

simple viewing programs.  

 

 

3.1.2 Allele frequencies 

 

The second function, coming from PLINK tutorial, is responsible for 

calculating the frequencies of the alleles present in the sample. For each SNP present 

in a sample, it generates the list of major and minor allele frequencies. Again as a 

function from the summary statistic domain, it is used mainly for the quality control 

of the analysed sample. To perform the allele frequencies analysis the following 

command has been used: 

 

./plink --bfile hapmap1 --freq --out freq_stat 

 

 

PLINK first reads the hapmap1 sample in binary format, then performs the 

allele frequencies analysis and finally writes the results to the freq_stat.frq file. The 

log file for this PLINK option contains essentially the same information as for 

missingness rate. The only exception is there is no information about removed SNPs 

as the analysis itself is not removing any SNPs but only producing the file with the 

allele frequencies.  
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The output file (freq_stat.frq) contains six columns. The first one stores the 

chromosome number and the second one the SNP identifier. The following two 

contain the allele code for minor and major alleles, respectively. The next one holds 

the minor allele frequency and the last one contains the non-missing allele count. The 

first six lines of the file are presented in extract 3. All of the entries in the first column 

are 1 because the analysis proceeds chromosome by chromosome. The allele codes 

are coded as 1 and 2 (0 if the allele is not present). The non-missing allele count is 

calculated as the difference between the number of individuals and the number of 

missing genotype records at the SNP.     

 

 

                                                                         CHR     SNP           A1     A2     MAF    NCHROBS 

1    rs6681049     1       2       0.2135      178 

1    rs4074137     1      2        0.07865    178 

1    rs7540009     0      2           0             178 

1   rs1891905      1      2        0.4045      178 

1   rs9729550      1      2        0.1292      178 

1   rs3813196      1      2        0.02809    178 

                                           …  

Extract 3 First few lines of the output file freq_stat.frq produced for hapmap1 sample and 

with default PLINK settings.  

 

 

Again, both the hapmap1 and Genoplink_20130205 data sets have been used, 

the total execution times were 0.32 and 97.49 seconds, respectively. Figures 3 and 4 

show that both profiles show many similarities to the respective profiles obtained for 

missingness rates option.  For the small, binary sample (hapmap1) the most dominant 

routines are again Plink::filterSNPs (41.18%), Plink::readBinData (20.59%) and 

checkDupes (14.71%). The order changed slightly (second and third functions are 

swapped) compared to missingness profile. On the fourth most time consuming 

position is Locus class (8.82%) followed by vector class (5.88%). The total 

contribution coming from the std class is also noticeable as it takes almost 9% of 

execution time. The same as in the case of missingness function the number of 

contributing functions is quite large. The other functions do not take enough time to 

be present in the profile.    
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Figure 3 Profile generated for allele frequencies analysis performed on the hapmap1 

sample and with default PLINK settings.  
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Figure 4 Profile generated for allele frequencies analysis performed on 

Genoplink_20130502 and with default PLINK settings.  
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The tendencies for the bigger sample are also similar to those observed for 

missingness rates. The profile shown in figure 4 has the same dominant function as 

the one in figure 2. The most dominant is the function responsible for reading the 

transposed data in (82.7%), then the second is the function filtering SNPs (16.66%). 

Both of them account for almost entire execution time. The other functions named in 

the labels are again checkDupes, vector class and std class. Their contribution is 

smaller than for the missingness profile. The reason for that is most likely because the 

missingness rate analysis required sorting genotyping rates with respect to both SNPs 

and individuals, whereas the allele frequencies option sorts them only with respect to 

SNPs. In both cases, the time needed to read the data in is roughly the same for both 

PLINK options (~81s). The time spent on filtering SNPs is significantly shorter (done 

only with respect to SNPs) in the allele frequencies option. 

 

 

3.1.3 Conclusions  

 

Only two options form the PLINK tutorial have been discussed. Nevertheless, 

all of the analysed options exhibit similar behaviour for both datasets, irrespective of 

sample size. Although, for the bigger dataset the execution time was dominated by 

the time spent on reading the transposed data into the program, this behaviour is most 

likely typical for relatively small samples and computationally inexpensive options. 

Although, it is not part of this project, we believe that it may be advantageous if the 

future work was to improve the efficiency of the reading the data in, as the program is 

often used just for changing the format of the data. The contribution from the vector 

class differed for different sample sizes and PLINK options but it was present in all of 

them (not only those presented above). That is because PLINK stores most of the 

genetic data in dynamically allocated vectors. That is also the reason why other std 

class members are also present in the profiles – manipulating the data requires 

allocating, inserting, sorting, pushing back, resizing etc. Thus the vector class is used 

extensively across all of the program options.  

 

 

3.2 Epistasis and Haplotype blocks option 

In this part of the chapter we present the profiles of the fast epistasis and 

haplotype blocks option. Optimising them is the main focus of this project and 

therefore, they are discussed separately and in more detail than the tutorial cases. 

First, we will discuss briefly what are they doing and what they used for and then the 

profiles will be discussed. The fast epistasis option has been performed on slowest 

format of the hapmap1 sample (normal text file) and for the haplotype blocks option 

Genoplink_20130502 sample has been used. 
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3.2.1 Epistasis 

 

 

As mentioned in chapter 2 and discussed in more details in chapter 5, some 

inconsistencies have been discovered in analysis results produced by the code 

parallelised by the InSilico Research Group [2]. Moreover, the epistasis analysis 

proved to be computationally expensive even for relatively small datasets, because it 

requires analysing of the billions of SNP combinations. It is a good candidate for the 

OpenMP parallelisation because it is calculating the pairwise interaction between SNPs 

inside the nested loop region (two loops going over all of the SNPs in the dataset, code 

structure is discussed in more detail in chapter 5). Additionally, the collaborating 

scientist (Dr. Mairead Bermingham) was also interested in incorporating this analysis in 

her research. Identifying the SNP by SNP interactions and accounting for them in the 

model would improve the model's predictive performance.  

 As explained in the background section epistasis is the measure of how 

polymorphism at one site on the genome interacts with polymorphisms at other sites. 

The polymorphic sites have been shown to contribute to the variation in complex traits 

(e.g. diseases). To date, many studies identifying the genetic basis underlying them did 

not account for those interactions [24]. The primary reason for that is the high 

computational cost associated with incorporating epistasis in GWAS [25]. 

 This section describes the basic usage of the option, its performance on the 

PLINK default settings and potential use in the scientific research. The structure of the 

code and the parallelisation method are discussed in detail in chapter 5.   

The epistasis test can be done pairwise between all of the SNPs, between the 

set of SNPs and all other SNPs or between two chosen sets of SNPs. In all cases the 

output files will only contain the results that are above a certain thresholds regulated 

through the additional commands. Throughout the project default PLINK threshold 

values have been used. To display the epistatic result, the interaction needs to be 

larger than or equal to 0.0001 and to count it as a significant result it needs to be 

larger than or equal to 0.01.  

Epistasis analysis is computational expensive and so the hapmap1 sample 

(83534 SNPs) and fast epistasis option have been used. The PLINK has been run with 

the command: 

 

./plink --file hapmap1 --fast-epistasis  

 

 

The analysis has been performed in “All x All” mode (all SNPs x all SNPs) and 

the total number of valid tests was 1846969599. The results were saved into two output 

files. The first one plink.epi.cc has six columns: chromosome of first SNP (CHR1), 

identifier for first SNP (SNP1), chromosome of second SNP (CHR2), identifier for 

second SNP (SNP2), chi-square statistics (STAT) and asymptotic p-value (P). The first 

four columns are self-explanatory – pair of analysed SNPs and what chromosome they 

are located on. The chi-square statistic is calculated as a squared standard deviation 

from the case that the SNPs are not affecting each other. The last column contains 

corresponding p-value. Extract 4 shows first six lines of this output file. The 

chromosome and first SNP identifier is the same for all presented entries which is 
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consistent with the idea of first checking all of the partners of one SNP and then 

proceed to the next. Because hapmap1 sample has been picked at random, the 

calculated statistical measures are not representative to any population and hence we 

are not going to discuss them. 

 

 
                                                                   CHR1     SNP1      CHR2     SNP2        STAT        P  

1    rs6681049    2    rs2961958    15.7     7.418e-05  
1    rs6681049    6    rs4715714    19.31   1.114e-05  
1    rs6681049    6    rs3805802    18.66   1.567e-05  
1    rs6681049    6    rs9358001    18.66   1.567e-05  
1    rs6681049   11   rs1948069    16.46   4.97e-05  
1    rs6681049   11   rs361302      20.01   7.717e-06  
…  

 

Extract 4 The first few lines of the plink.epi.cc file obtained from fast epistasis analysis on 

hapmap1 sample.  

 

 

The second output file (plink.epi.cc.summary) has eight columns: the 

chromosome of the first SNP (CHR), then SNP identifier (SNP), number of significant 

epistatic tests (N_SIG), number of valid tests (N_TOT), proportion of valid tests 

(PROP), highest statistic for this SNP (BEST_CHISQ), chromosome of best SNP 

(BEST_CHR) and finally the identifier of the best SNP.   The proportion of valid test is 

simply quotient of number of significant test and number of valid tests. The best chi-

square value is the highest obtained chi-square value for this SNP (the strongest 

interaction of this SNP). The last two columns are the chromosome on which the 

partner of this strongest interaction is located and its identifier. Extract 5 shows first six 

lines of this output file. As the file contains the summary of the epistasis analysis the 

strongest interaction for each SNP is recorded. If the strength of the association does 

not meet the requirements of the thresholds some of the columns have zeros or not a 

number (-nan) label in them.       

 

 

 
CHR      SNP       N_SIG       N_TOT        PROP     BEST_CHISQ     BEST_CHR     BEST_SNP  
1 rs6681049      847          59174       0.01431       20.01                  11             rs361302  
1 rs4074137      196          51513       0.003805     12.09                   3              rs11716250  
1 rs7540009        0                 0             -nan               0                        1              rs6681049  
1 rs1891905      853         62736        0.0136         19.51                   7              rs9638439  
1 rs9729550      424         55359        0.007659    16.48                    9             rs7872472  
1 rs3813196        0           31865              0              4.885                   3             rs13099884  
… 

 

 

Extract 5 First few lines of plink.epi.cc.summary file obtained for fast epistasis analysis on 

hapmap1 sample.  
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The total time taken by the fast epistasis option executed on the hapmap1 

sample with the default PLINK settings was 91 minutes and 39 seconds. There are only 

four contributors present in the profile shown in figure 5. Clearly, the function 

responsible for epistasis calculation, Plink::calcEpistasis, accounts for nearly all of the 

execution time (99.78%). As we predicted the function responsible for reading the data 

in takes only 0.03% (less than 2 seconds) and filtering SNPs takes only 0.01% of total 

time. The other functions combined together do not even take 0.2 % of the execution 

time.   

The fact that the calcEpistasis function has been called only twice during the 

execution of the program and its overwhelming dominance suggest that parallelising 

this function may be very beneficial.   
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0.03%
0.01% 0.18%

Plink::calcEpistasis

Plink::readData

Plink::filterSNPs

other functions

 

 

 

Figure 5 Profile for the fast epistasis option performed on hapmap1 sample, with default 

PLINK settings and all x all mode.  

 

We have also attempted to measure the execution time for the epistasis option 

for the same sample size. However, the job has been terminated after 48 hours with 

only about 15% portion of the sample being analysed (about 12000 out of over 83000 

SNPs). Clearly, the epistasis option is much more computationally expensive than the 

fast epistasis, which makes it even more suitable candidate for parallelisation. The main 

reason behind the high computational cost is the use of linear or logistic regression, 

depending on whether a continuous or binary phenotype was being analysed, to 

calculate each pairwise association between SNPs.  
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 PLINK’s authors justify the use of fast epistasis option for computationally 

demanding problems because both approaches give similar results [1]. Depending on 

the objective of a study one may combine both approaches i.e. do the general test using 

the fast epistasis option and run the epistasis (using the logistic regression) on a smaller 

subset of SNP pairs. The two options would therefore benefit from optimisation and 

parallelisation, discussed in chapter 5.  

 

3.2.2 Haplotype blocks   

 

Due to the large number of SNPs it is more feasible and often informative to 

analyse simultaneously all of the markers in the region of interest. As mentioned in 

chapter 2, haplotype is a combination of alleles at adjacent sites on a chromosome 

that are inherited together. It is the strength of LD between adjacent SNPs that 

determine whether the two SNPs belong to the same haplotype blocks. The haplotype 

blocks estimation in PLINK is classified under the LD calculation options. Linkage 

disequilibrium is a phenomenon in which the markers display the statistical 

dependence. The studies suggest [26] that each chromosome can be divided into 

many blocks and each such block has limited number of haplotypes. Moreover, it is 

seems that LD is locus and population specific. 

Dr Bermingham plans to use the haplotype information to reduce the 

redundancy in the genotype data by determining whether removing the SNPs in High 

LD improves the predictive performance of adopted models.  

 

To run the haplotype blocks estimation the following command has been used:  

 

./plink --tfile Genoplink_20130205 --blocks --out blocks_original 

 

The same command and data sample (Genoplink_20130205) has been used by 

the collaborating scientist in her research. Due to the nature of the computation, only 

individuals with non-missing phenotype are taken into account. The default settings 

allow calculation of pairwise LD only between the SNPs within 200kb. This distance 

can be changed by addition of another command line flag.  

The results of the analysis were written into two output files: 

blocks_original.blocks and blocks_original.blocks.det. The first one contains the list 

of blocks containing 2 or more SNPs. Extract 6 shows the list of SNPs making the 

first six blocks. Three of them consist of two SNPs only, two of them have three 

SNPs and one has 5 SNPs.  

The second output file contains more information, stored in six columns (Extr. 

7). The first one holds the chromosome identifier (CHR), the next two contain the start 

and end position (in base-pair units) of this block. The fourth column has the distance 

spanned by this block given in kilobases. The last two entries are number of SNPs in 

this block and their list.   
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* rs6687776 rs4970405 rs12726255 

* rs11260549 rs9729550 

* rs3813199 rs3766186 

* rs3766178 rs3128342 rs2296716 

* rs7531583 rs6681938 rs4648592 rs7525092 rs2474460 

* rs12755035 rs884080 

… 

 

 

Extract 6 First few lines of the blocks_original.blocks file containing the haplotype blocks of 

the Genoplink_20130205 sample.  

 

 

 

CHR     BP1         BP2           KB        NSNPS                 SNPS 

  1 1030565   1049950   19.386        3               rs6687776|rs4970405|rs12726255 

  1 1121794   1135242   13.449        2               rs11260549|rs9729550 

  1 1158277   1162435    4.159         2               rs3813199|rs3766186 

  1 1478180   1497824   19.645        3               rs3766178|rs3128342|rs2296716 

  1 1706160   1844046   137.887      5              rs7531583|rs6681938|rs4648592|rs7525092|rs2474460 

  1 2026361   2026749   0.389          2              rs12755035|rs884080 

  … 

 

Extract 7 First few lines of the blocks_original.blocks.det file containing detailed information 

on the haplotype blocks of the Genoplink_20130502 sample. 

 

 

The first column for all six entries indicates that the blocks are located on 

chromosome 1. The starting position indicates where exactly on the genetic map they 

lie. The end position naturally indicates where the block ends and thus how long it is. 

The size of the blocks may vary significantly. Among the blocks shown in the extract 7 

the shortest has 0.389 and the longest has 137.887 kilobases. They contain 2 and 5 

SNPs, respectively. 

 The haplotype blocks analysis took 5 hours 3 minutes and 17 seconds. The log 

file indicates that all of the SNPs and individuals present in the sample were used in the 

analysis. The analysis divided 267912 SNPs into 60434 blocks. 

Figure 6 shows the profile of the execution time for haplotype blocks analysis. 

The most dominant is HaploWindow::enumerateGenogroups function – it takes more 

than 31% of the execution time. This function is responsible for dividing the 

individuals present in the sample into groups of the same genotype. The second most 

time consuming function, taking almost 21%, is the vector class. The third and the 

fourth are HaploPhase::includeIndividuals and HaploPhase:: phaseAllHaplotypes 
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functions, respectively. The former checks whether each individual has enough non-

missing genetic data to be included in the analysis and the latter performs the 

haplotype tests. The two_locus_table function (4.4%) constructs the table of 

independent alleles observed at two loci in all of the individuals. Next function 

prunePhase (~3%) removes unlikely regional phases from the further analysis, and 

performAlternEM function (2.22%) is used to calculate haplotype frequencies. The 

other functions label groups all of the other functions with execution time smaller 

than 2% of the total time. All those functions together take almost 15%. The structure 

of the code of above the mentioned functions is described in more details in chapter 5. 
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Figure 6 The profile obtained for haplotype blocks option performed on Genoplink_20130502 

sample and with default PLINK settings. 

 

 

Compared with other analysed PLINK options, haplotype blocks option has 

clearly different structure. The main computation is not inside one function only. 

Moreover, there is large number of functions taking much less than 1% of the 

execution time. Also the contribution coming from the vector class is very noticeable. 

Moreover, all of the most dominant functions are called multiple times (table 1). Most 

of the functions were called over 6 million times and IncludeIndividuals and 

PrunePhase function were called almost a billion times! Consequently, the time spent 

in the single call for all of those functions is extremely small.  
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Function name  Number of calls  

HaploWindow::enumerateGenogroups 6351159 

HaploPhase::IncludeIndividuals 998731686 

HaploPhase::phaseAllHaplotypes 6351159 

two_locus_table 6351159 

HaploPhase::prunePhase 998731686 

HaploPhase::performAlternEM 6351159 

Table 1 Number of calls to the most dominant functions of the haplotype blocks option. 

 

Taking into account the number of functions contributing to the profile hence 

containing a significant part of computation, and the number of times those functions 

were called, it seems that the parallelisation may prove challenging. Therefore, 

depending on the structure of the code it may be more beneficial to concentrate on 

serial optimisation rather than parallelisation.  

  

 

 

3.2.3 Conclusions 

 

 

In this chapter we have presented the behaviour of four different options. The 

missingness rate and allele frequencies options have been executed on both artificial 

(hapmap1) and real life (Genoplink_20130205) data samples. The execution time of 

both options on small samples is dominated by the function performing the main 

computation of the analysis (Plink::filterSNPs). The contribution of other functions is 

also clearly noticeable (fig. 1 and 3). On the other hand, the execution times on bigger 

data sample are dominated by the functions reading the data into the program (fig. 2 

and 4). This behaviour is believed to be typical only for the computationally 

inexpensive options and so the improvement of the rate of reading the data in has not 

become part of this project. The effect of different file formats on the execution time 

has also been investigated. The missingness rate analysis took the shortest time when 

the binary file format has been used; the transposed data format was clearly slower and 

normal text file was even slower. We have decided to work with the slowest file format 

(text format) when working on both epistasis options, fast epistasis and epistasis, and 

transposed format when working on the haplotype blocks option. The reason, we can 

use text file format for epistasis options is because of relatively small size of the 

hapmap1 sample (89 individuals and 83534 SNPs). On the other hand, the size of the 

Genoplink_20130205 sample is much larger (2186 individuals and 267912 SNPs) and 

therefore, the more efficient transposed file format has been used.   

 The fast epistasis and haplotype blocks options showed significantly different 

profiles (fig. 5 and 6) related to the different code structure. The execution time of the 

fast epistasis option is dominated by the Plink::calcEpistasis function, called twice and 
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taking 99.78% of the total time. This behaviour and the nature of the epistasis analysis, 

calculating the pairwise interactions between SNPs, suggest that parallelisation is the 

best approach to improving the performance. On the other hand, the haplotype blocks 

option seems to have the computation scattered between many different functions, 

which take really short time but are called enormous number of times. Depending on 

the code structure, the serial optimisation of the dominant functions may be the most 

efficient and effective way of improving the performance. 

 All of the initial investigations presented in this chapter has been performed 

with the default PLINK settings (g++ compiler and –O3 flag). In the next chapter the 

effect of different compilers and optimisation flags on the execution of epistasis and 

haplotype blocks options is presented.       
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Chapter 4 

 

Compiler Optimisations  
 

Before attempting any serial optimisation or parallelisation, the compiler 

optimisation flags have been investigated. The investigation has been conducted on 

hapmap1 data sample and fast epistasis option and then the results were verified using 

the haplotype blocks option on Genoplink_20130502 data sample. The first part of this 

chapter presents the effect of different optimising flags of gnu compiler (g++) on fast 

epistasis and haplotype blocks options. The second part discusses briefly the 

performance of the Intel compiler (icc). 

 

4.1 Gnu g++ compiler and fast epistasis option 

 

As mentioned before, the default compiler specified in the Makefile is g++ 

and the default flags are -O3 and -I. The -O3 flag has the highest optimisation level 

available in gnu compilers. However, depending on the structure of the code it not 

always results in the best performance. The first step of the investigation was to check 

how the execution time changes for the following basic optimisation flags: -O, -O1, -

O2 and -O3. The execution time of the fast epistasis option on hapmap1 sample with 

those was respectively: 6746 s, 6400 s, 5232 s and 5499 s. 

In general, -O1 flag tries to reduce both the size of the code and the execution 

time. Hence none of the over 30 flags turned on by this flag take a great deal of 

compilation time. The -O2 flag turns almost all of the remaining optimisation flags 

that do not involve a space-speed trade-off. The -O3 flag introduces some higher level 

optimisations increasing both the size of the code and the compilation time. The 

effect of the first optimisation level is noticeable but -O2 and -O3 are clearly more 

effective. In fact, the code executes the fastest when -O2 flag is applied. The 

difference between -O3 and the -O2 flag is ~5.5 minutes.  

The next step was to determine the effect of the flags included in the third 

optimisation level but not in the second. These flags are: -finline-functions, -fgcse-

after-reload, -fipa-cp-clone, -ftree-vectorize, -fpredictive-commoning and -funswitch-

loops. Inline functions flag allows for the integration of simple functions into their 

callers. The fgcse-after-reload option eliminates the redundant load every time the 

reload operation is performed. This way the redundant spilling is cleaned. The fipa-

cp-clone flag clones the function to allow stronger inter-procedural constant 

propagation. The ftree-vectorize flag performs loop vectorization on trees. Next flag, 

fpredictive-commoning, allows for the re-use of computations in previous iterations of 

the loops. The last flag from the third optimisation level, funswitch-loops, moves 

branches with loop invariant conditions out of the loop by creating the duplicates of 

the loop on both branches. PLINK has been compiled using the combination of -O2 

and those flags. Also another flag -funroll-loops has been investigated, it is not part of 

the third level optimisation but the loopy nature of the code suggests it may produce 

good results. This flag, as its name suggests, unrolls the loops i.e. duplicates the 

interior of the loop to reduce number of iterations.  
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Figure 7 shows execution times for all of the investigated flags and 

combinations of flags. Table 2 provides the description of the legend used in figure 7, 

as well as execution times obtained when each combination was in effect.  

Considering the combination of -O2 with single flags, the best results have been 

observed for -fpredictive-commoning (5148s), -funswitch-loops (5145s) and -funroll-

loops (5175s). The fastest run obtained for -finline-functions flag was 5312 s, the 

other flags took over 5400s. Therefore, only the combinations of four most effective 

flags and -O2 flag have been considered in the further investigation.  

The first three combination (c1,c2 and c3) consisted of -O2, -finline-functions 

and one of the three loop flags. Only the option with the predictive commoning (c1) 

produced good execution time – 5167 seconds. The combinations with unswitching 

(c2) and unrolling loops (c3) took 5223 and 5474, respectively. The flags -O2, -

fpredictive-commoning and -funswitch-loops (c4) produced the code executing in 

5140 seconds. The next combination, taking 5195 second, involved -O2, -fpredictive-

commoning and -funroll-loops flags (c5). The sixth combination i.e. -O2, -funswitch-

loops and -funroll-loops flags (c6) was slower and took 5541 seconds. The execution 

time for the next three combinations (c7, c8 and c9) was slower taking: 5454s, 5549s 

and 5415s respectively. Combining -O2 and three flags: -fpredivtive-commoning, -

funroll-loops, -funswitch-loops (c10) gave the execution time of 5116 seconds. The 

last combination, of all five flags, produces the code executing in 5180 seconds. 

Clearly, the best performance is obtained when -O2 and three loop flags are applied. 

The difference in the execution time obtained for the default flag -O3 (5499s) and for 

the most effective combination (5116) is over 6 minutes.  
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Figure 7 The execution time in seconds for fast epistasis analysis done on hapmap1 sample 

when compiled with different optimisation flags. The legend is provided in table 2. 
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Label Flags Execution 
time (in 
seconds) 

f1 -O2, -finline-functions 5312 

f2 -O2, -fgcse-after-reload 5531 

f3 -O2, -fipa-cp-clone 5517 

f4 -O2, -ftree-vectorise 5409 

f5 -O2, -fpredictive-commoning 5148 

f6 -O2, -funswitch-loops 5145 

f7 -O2, -funroll-loops 5175 

c1 -O2, -finline-functions, -fpredictive-commoning,  5167 

c2 -O2, -finline-functions, -funswitch-loops 5223 

c3 -O2, -finline-functions, -funroll-loops 5474 

c4 -O2, -fpredictive-commoning, -funswitch-loops 5140 

c5 -O2, -fpredictive-commoning, -funroll-loops 5195 

c6 -O2, -funswitch-loops, -funroll-loops 5541 

c7 -O2, -finline-functions, -fpredictive-commoning, -funswitch-loops 5454 

c8 -O2, -finline-functions, -fpredictive-commoning, -funroll-loops 5549 

c9 -O2, -finline-functions, -funswitch-loops, -funroll-loops 5415 

c10 -O2, -fpredictive-commoning, -funswitch-loops, -funroll-loops 5116 

c11 -O2, -finline-functions, -fpredictive-commoning, -funswitch-loops, -
funroll-loops 

5180 

 

Table 2 List of g++ compiler flags under the labels used in figure 7.  

The fastest execution times are included.  

 

 

From table 2 it can be seen that some of the flags included in the –O3 flag 

have negative effect on the performance. The reason for that is the specific code 

structure. The flags that provide the most effective optimisations for the fast epistasis 

function are loop optimisations. Taking into account the structure of the function 

dominating the epistasis analysis, Plink::calcEpistasis, it makes perfect sense. 

However, it also implies that the haplotype blocks analysis, having completely 

different code structure, computation split among many small functions, may behave 

differently under the same set of flags and other flags might give better performance.  

 

 

4.2 Gnu g++ compiler and haplotype blocks option 

 

So far the effect of the flags has been checked only for the fast epistasis 

function and it is possible that the obtained results are characteristic for that function 

only. Therefore, the haplotype blocks analysis has been conducted when the 
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following flags were in effect: -O, -O1, -O2, -O3 and combination of the flags that 

were identified as the most effective for the fast epistasis option: -O2, -fpredictive-

commoning, -funroll-loops and -funswitch-loops. We have also decided to investigate 

the performance of the following combination: -O2, -finline-functions, -fpredictive-

commoning, -funroll-loops and -funswitch-loops. Although, this combination proved 

to produce slightly slower code for the epistasis option, it might perform better for 

haplotype blocks option. The -finline-functions might be a good way to deal with 

small functions called enormous number of times.  
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Figure 8 Effect of different compiler flags on execution of haplotype blocks analysis. The 

flags contained in the comb1 combinations are : -O2, -fpredictive-commoning, -funroll-loops 

and -funswitch-loops. Comb2 label includes: -O2, -finline-functions, -fpredictive-commoning, -

funroll-loops and -funswitch-loops. 

 

Figure 8 shows the execution times of haplotype blocks estimation with 

different compiler flags in effect. Each optimisation level produces coded with clearly 

different execution times. From figure 8, it is evident that -O2 flag produces faster 

code (16234s) than the default –O3 flag (17575s). The fastest combination for the fast 

epistasis option (comb1), gives the execution of 16502 seconds time, which is slower 

than –O2 but faster –O3 flags. The execution time for the second combination (with 

function inlining flag) produces clearly the fastest code - 15838 seconds. The reason 

why the first combination of flags is slower than –O2 flag is because they are focused 

on the loop optimisations which are not as effective for the haplotype blocks function 

as they were for epistasis option. The second combination of flags is faster than –O2 

flag because it allows compiler efficient inlining of small functions. Although, –O2 

flag does not produce the fastest code for neither function, it is only slightly slower 

than the best combinations. Therefore, it seems to provide the optimal performance 

for options with different code structure. Hence, we have not investigated any other 

optimisation flags and decided to use –O2 flag throughout the project.  
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4.3 Intel icc compiler 

  
Lastly, the behaviour of the Intel compiler icc have been investigated. Again, 

fast epistasis option and the hapmap1 data sample have been used. The effect of the 

following flags has been checked: -O0, -O1, -O2, -O3,-Os and -fast. The compilation of 

the program failed when the -fast flag has been applied (error with ipo) in the light of 

the performance of other flags, the reason has not been investigated. Figure 9 shows the 

execution times obtained for the mentioned flags. 

 The first level optimisation produce the code that is 3 times faster than the code 

generated without optimisations (-O0). The performance of -O2 and -O3 is similar and 

clearly better than that of -O1.  Although, the -Os flag is supposed to optimise the code 

for speed, its effect is less beneficial than for other level optimisations. In general, Intel 

compiler proved to be extremely slow. The fastest run with -O2 flag in effect took 7568 

seconds, while the same g++ flag took 5232 seconds. Therefore, further investigation 

has not been attempted. 
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Figure 9 The effect of different icc compiler flags on the execution of fast epistasis option on 

hapmap1 sample. 

 

 

Although, the Intel compiler has been identified as less suitable for 

compilation of PLINK than gnu compiler, testing it still had positive consequences. 

Intel compiler detected several bugs in the code; all of them were of the same type 

and inside the same code file. One of the icc compiler warnings is shown in extract 8. 

Instead of the comparison sign '==', assign '=' has been used in the code. This 

misspelling occurred 12 times in the segment.cpp code file. Although, this file is not 

used by any of the PLINK options investigated during this project, the bugs have 

been fixed for the sake of future users and developers. Intel compiler produced 

several other warnings but none of them had bearings on the program execution.  
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segment.cpp(2378): warning #187: use of "=" where "==" may have been intended 

else if ( par::cnv_col = 1 )  
^ 

 

Extract 8 The bug in the segment.cpp code file discovered by Intel compiler.  

 

  

 

 

4.4 Conclusions 

 

The flag –O2 has been chosen as an optimal compiler configuration, even 

though it does not produce the fastest code for both of the investigated options. 

However, the code produced for both options is only slightly slower than given by their 

best flag configuration and still clearly faster than the default -O3 flag. Both options 

have different best configurations, which is the result of significantly different code 

structure. Therefore, we have determined –O2 flag to be the most beneficial in terms of 

performance improvement of the analysed PLINK options. As mentioned before, the 

program provides a wide range of the WGAS analyses and analysing all of them is 

beyond the scope of this project. Therefore, it is hard to say what optimisation flags 

would provide the best combination for the majority of PLINK options. However, we 

believe the –O2 flag is the most optimal because the usefulness of the flags it contains 

is not as dependent on the code structure as for higher level optimisation flags. The 

specific combination of flags may provide significantly better performance for a 

specific PLINK option, however PLINK has been designed with providing all 

necessary functionality required for genome-wide association studies in mind. And so it 

is more important to provide the optimal performance for all of its options rather than 

significantly better for some of them and worse for the others.  Hence, -O2 flag has 

been used during the course of the project.  
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Chapter 5 

 

Optimising Epistasis   
 

The structure of the calcEpistasis function seems to be very suitable for 

OpenMP parallelisation. All of the computation is taking place inside the nested loop 

region, which might ensure good scaling. In the first subsection we present the 

structure of the code and OpenMP parallelisation of both epistasis and fast epistasis 

options. Then the correctness of both options is discussed and finally the code 

scalability is presented.  

 

 

5.1 Code structure  

 

As mentioned in chapter 2, PLINK provides two ways of performing epistasis 

analysis. The fast epistasis option, can be applied only when the phenotype is 

represented as a binary trait, i.e. either affected or unaffected, and to perform it --fast-

epistasis command needs to be used. It is an approximate test, based on a difference 

in association between two SNPs between cases and controls (or cases only, 

depending on the mode). The odds ratio measure is used to describe the strength of 

association between two SNPs and the value of 1.0 indicates no effect. The default 

analysis --epistasis uses either linear or logistic regression, depending on the 

phenotype representation (quantitative or binary). The model is based on the allele 

dosage for each pair of SNPs (allelic by allelic interaction). The model fits the 

following form:  Y ~ b0 + b1.A + b2.B + b3.AB + e and the strength of the interaction 

is based on the coefficient b3.  

 In this project, fast epistasis option has been used mainly during the 

parallelisation process. However, both options differ only in the way the pairwise 

interactions between SNPs are calculated, which as we will see, is done locally hence 

does not affect the parallelisation process. In fact, both options are called from within 

the nested loop region over pairs of SNPs, through the if statements (extract 9).  

Therefore, while describing the code structure we use fast epistasis option which profile 

has been discussed in chapter 3.    

 For both, epistasis and fast epistasis options, the function that dominates the 

execution time is calcEpistasis. It is called directly from main function contained in the 

plink.cpp code file. This function is responsible for performing the epistasis analysis 

can be divided into three functional parts. The first part sets up the output files, detects 

the mode of the epistatic test (AllxAll, Set1xAll, Set1xSet1 or Set1xSet2) and 

initializes the necessary variables. The second part contains the nested loop regions 

performing the epistasis analysis and produces the plink.epi.cc output file. The last part 

prints the epistatic summary statistics to the plink.epi.cc.summary file.  

 

 

 



 32 

 
#pragma omp parallel for schedule(dynamic,128) private(e1, e2) reduction(+:nepi,epcc) 

 
for (e1=0; e1<nl_all; e1++)           // loop over all of SNPs 
 {  
   if (sA[e1])             // if SNP is in the first set  
     { 
        ... 
        for (e2=0;e2<nl_all;e2++)       // loop over all of SNPs 
        {  
           ... 
            // Skip this test under certain conditions 
      If(par::bt && par::fast_epistasis) {      //if phenotype has binary form and fast epistasis option is in effect 

 
           // Perform test of fast epistasis here for each individual  
           // Calculate log(OR) and SEs – Odd Ratio and Standard Error 
           ... 
            // Check this is a proper result 
           ...  
           nepi++;       // one more test performed 

#pragma omp atomic 
            summary_good[e1]++;            //count as a good result for SNP1 
            If (sA[e2]) 

#pragma omp atomic  
                summary_good[e2]++;         //count as a good result for SNP2 
                ...   
            // Is this result the best score yet for marker in set A? 

#pragma omp critical  
            { 
               if (z > best_score[e1])           // if the current z is larger than the up to date best score  
                  {  
                   best_score[e1] = z;            // z becomes the best score  
                   best_partner[e1] = e2;             // corresponding marker becomes the best partner 
                   } 
               if (sA[e2])                     // the second marker might also be in set A  
                 {   
                    if (z > best_score[e2]) 
                    { 
                    best_score[e2] = z; 
                    best_partner[e2] = e1; 
                     } 
                   } 
               } 
 
                // Is this worth recording? 
             If (z >= par::epi_alpha1) 
               { 

#pragma omp critical 
               { 
                 // printing to file plink.epi.cc 
                  ...  
                } 
         }    // end fast epistasis 
 
     If (! par::fast_epistasis) { 
 
      // logistic or linear regression test for epistasis   
         …  
      } 
 
   }        // end of the loop over e2 
}        // end of the loop over e1 
… 
 

Extract 9 Pseudo-code of section of the code in calcEpistasis function responsible for 

calculating epistatic associations between the SNPs. The bold text is OpenMP parallelisation.  
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The region of interest is naturally, the second part of the function – the nested 

loop region. The pseudo-code is shown in extract 9. The first loop (over e1) goes over 

all of the SNPs, and then, if a SNP is included in the analysis, program loops over all 

SNPs from the second set (loop over e2) to calculate pairwise associations between 

them. During this project all by all mode has been used i.e. both sets are the same and 

include all of the SNPs from the hapmap1 sample. Also during the development and 

performance testing process unnecessary printing to the screen has been suppressed.  

The epistatic test is skipped for the given pair of SNPs if the second SNP is 

not in the analysed set or if the symmetric option is in effect and the loop iteration 

assigned to first SNP (e1) is larger or equal than the loop iteration assigned to the 

second SNP (e2). The test is also skipped when certain options are enabled i.e. SNPs 

lie on chromosome X and if SNPs are too close (case-only epistasis). The second 

point makes sure that each pair of SNPs is analysed only once i.e. the results for 

SNP1xSNP2 are the same as for SNP2xSNP1. Naturally, the symmetric option is 

only enabled when both sets are the same (AllxAll and SetxSet modes).  

Then if the --fast-epistasis option is in effect for each individual, the allelic 

test of a single locus is constructed. The independent alleles observed at two loci (two 

analysed SNPs) are counted and then the odd ratio and standard error between them is 

calculated. Essentially, the z value is given by the difference between odd ratios of 

cases and controls divided by the square root of the sum of their standard errors.  

Then the number of performed test is incremented and the validity of the 

results is checked. If the calculated z value is larger than or equal to 0.01 it is counted 

as a significant result. Also, if the current z value is larger than the best score, i.e. the 

best up-to-date z value, it becomes the new best score and the corresponding SNP2 

becomes best partner for SNP1. In other words, those two SNPs have the highest 

calculated interaction. If the second SNP is also in the first set (which is the case in 

All x All mode) the z is recorded as its best score and SNP1 as its best partner. Then, 

if the z value is greater than 0.0001 the interaction is recorded in plink.epi.cc file. 

Then the next pair of SNPs is considered.  

On the other hand, if the --epistasis option is in effect, the logistic model is 

constructed if phenotype is represented in binary format. Otherwise, the linear model 

is applied.  The strength of the interaction and other statistical variables are calculated 

through the calls to the member functions of the model object. The validity of results, 

best score and best partner for each SNP is calculated in the same way as for the fast 

epistasis option. The printing to the plink.epi.cc file is done slightly different and 

depends on the validity of the results and the phenotype representation. Then the next 

pair of SNPs is considered.  

After all of the pairs of SNPs are analysed, the summary of results is printed 

to the plink.epi.cc.summary file.    
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5.2 InSilico Research Group Parallelisation 

 

As mentioned in the previous section, the epistasis and fast epistasis analysis 

are invoked by the if statements from within the nested loop region (over two sets of 

SNPs). The best way to parallelise this nested loop region is through #pragma omp 

parallel for directive. That means that both options should be parallelised at the same 

time. Otherwise, the parallelisation of the loop region would be incomplete and might 

provide inconveniences for the users.   

The InSilico Research Group [2] has only attempted the parallelisation of the 

epistasis option and the fast epistasis branch has not been modified. Moreover, the 

results of the analysis done using the parallelised code are inconsistent with the serial 

code results. To investigate those inconsistences, we have modified the loops so that 

the 5000 by 5000 SNPs are analysed, and then executed the epistasis option on both 

serial and parallel versions of the code. The extract 10 shows the differences between 

the serial and parallel versions of plink.epi.cc.summary. Even for this small sample, 

there were 18 differing lines between both files. The difference occurred in three 

different columns, recording: number of valid tests, proportion of significant tests and 

identifier of the best partner SNP. Although, the first two variables may not be that 

important depending on the purpose of the analysis, but the last one is crucial. The 

first two differences shown in extract 10 have different last columns. In the serial 

execution SNP rs7554746 has the strongest interaction with the rs7539462 SNP and 

in serial execution the best partner is rs6693272. Similarly, the SNP 6684586 has 

SNP rs1203650 as best partner in serial and rs1203634 is parallel versions. The last 

difference shown in the extract 10 is the different number of valid tests (3813 in serial 

and 3814 in parallel versions) and resulting difference in the proportion of the 

significant test.    

 

 

 
 

2922< 1 rs7554746 0 1729 0.000000e+00 2.729000e-06 1 rs7539462  

2922> 1 rs7554746 0 1729 0.000000e+00 2.729000e-06 1 rs6693272 

2922: 0 0 0 0 0.000000 0.000000 0 1 

… 

4803< 1 rs6684586 25 3821 6.543000e-03 9.148000e+00 1 rs1203650  

4803> 1 rs6684586 25 3821 6.543000e-03 9.148000e+00 1 rs1203634 

4803: 0 0 0 0 0.000000 0.000000 0 1 

… 

4980< 1 rs593022 26 3813 6.819000e-03 9.546000e+00 1 rs740153  

4980> 1 rs593022 26 3814 6.817000e-03 9.546000e+00 1 rs740153 

4980: 0 0 0 1 0.000147 0.000000 0 0 

 

there are 18 differing lines 

 

 

Extract 10 The difference in the output files between the serial and parallelised (by InSilico 

Research Group) code, executed on 12 treads. Analysis has been done on 5000x5000 SNPs.  
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The reason behind those inconsistences is lack of a necessary reduction 

variables and critical sections.  The modification made to the code by the InSilico 

Research Group are as follow: directive #pragme omp parallel for schedule(dynamic,1) 

privates(e1,e2)  and one critical section have been used. The critical section is shown in 

extract 11.  

 

 
                

                 vector_t b; 
#ifdef _OPENMP 
#pragma omp critical 
              { 
#endif 
                 b = lm->getCoefs(); 
#ifdef _OPENMP 
              } 
#endif 

 

Extract 11 The only critical section introduced by InSilico Research Group in OpenMP 

parallelisation of epistasis option.  

 

Because both the vector_t variable and the object lm are declared within the 

parallel region, they are thread private by default. Hence, there is no need for critical 

section shown in extract 11. Also the #pragma omp directives are ignored by the 

compiler if the –fopenmp flag is not included and so there is no need to use ifdef 

conditional. The reason why the number of valid test and best partners are different 

for some of the interaction is because more than one thread is doing the updating at 

the same time i.e. classical race condition.    

 

 

 

5.3 Parallelisation  

 

All of the calculations are done on local variables and so there is no need to 

modify the code in any way to allow the OpenMP parallelisation. The #pragma omp 

for schedule has been used before the outer loop over first set of SNPs. The iterators 

of both outer and inner loops (e1 and e2) have been declared as private variables and 

two variables keeping count of performed test are declared as reduction variables.  

Also two critical sections and two atomic updates have been declared. The 

atomic updates are used when the numbers of the significant tests for both SNPs from 

the pair are incremented. This way, only one thread at a time increases the count. The 

order in which it occurs is not important as only the final, total value of the significant 

interactions for each SNP is recorded in the plink.epi.cc.summary. The first critical 

section is placed around the lines of the code responsible for determining the current 

best z score and corresponding best partner. Both SNPs are considered and updated at 

the same time to avoid the race condition which may occur when one of the analysed 
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SNPs is at the same time considered by different thread with relation to other SNP. This 

critical section makes sure that there is only one best z score and best partner for each 

SNP at a time. The last critical section is around the printing statements. In fact, there 

are different modes of printing available and each is within different critical section. 

The critical section around the printing statements is necessary to ensure that only one 

thread is writing to a file at a time. Otherwise, the output would be disordered as more 

threads would try to write their results to the same place in file.  

Although, the way of calculating the pairwise calculation in epistasis option is 

different (logistic and linear regression is used), the code for checking the validity of 

the results is exactly the same as in fast epistasis option. The printing the results to the 

plink.epi.cc is done in slightly different way but still within one critical section. There 

are no #pragma omp directives in the part of the code responsible for calculating the 

interactions. Therefore, all of the critical sections and atomic updates are almost in the 

same places in both options. In the whole Plink::calcEpistasis function four atomic 

operations and six critical sections have been used.  

 

 

5.4 Testing for correctness 

 

As mentioned before, to test the correctness of the parallelisation command 

diff and two simple tests have been used. This way the output files produced by the 

original (serial) version of the code have been compared with the files generated by 

the parallelised code. First, the diff command has been used and if two files have been 

recognised as identical no further testing has been attempted. When the diff command 

indicated that two files are different the other tests have been used. The diff command 

was useful only in cases when the order of data in both files was the same, which was 

only the case with plink.epi.cc.summary files. Those files hold the summary statistic 

ordered by first SNP loop iterator i.e. they are printed from within separate loop over 

e1. The order of the data in the parallel produced plink.epi.cc files is different because 

the printing is done from within loops over e1 and e2 (ext. 9). Therefore, depending 

on which thread analysed which loop iteration and how fast, the order of the data is 

different. However, if two plink.epi.cc files have the same data but recorded in 

different order, they are considered to be the same.  

The code, we believed to be parallelised correctly, unexpectedly produced 

differing output files. To investigate the differences in the summary files, a simple 

(written in C) test has been implemented. This test reads both files in and prints the 

differences between them. Extract 12 shows the fragment of the difference report 

produced by this test for the fast epistasis option executed serially and in parallel on 

hapmap1 sample. Only first and last, out of 15 differing lines are shown. The first line 

comes from the serially produced file, the second from execution on 12 threads and 

the third reports the difference in numbers. However, if the difference in the statistical 

values were smaller than the threshold of 0.001 they were not reported. For non-

number entries like SNP identifiers, zero is assigned when they are identical and one 

when they differ.  
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12383< 2 rs6758984 0 14112 0.000000e+00 2.831000e+00 2 rs6714743  
12383> 2 rs6758984 0 14112 0.000000e+00 2.831000e+00 2 rs10200481 
12383: 0 0 0 0 0.000000 0.000000 0 1 
… 

 
82023< 22 rs9606603 284 62040 4.578000e-03 1.580000e+01 2 rs10933406  
82023> 22 rs9606603 284 62040 4.578000e-03 1.580000e+01 2 rs778370 
82023: 0 0 0 0 0.000000 0.000000 0 1 
there are 15 differing lines  
 

 

Extract 12 Few output lines of the test written to compare two plink.epi.cc.summary files. The 

first line comes from serially executed code, the second from parallel execution on 12 threads, 

third line reports the difference.  

 

 

In all of the differing lines, only the second SNP identifier is different. This test 

has been repeated to observe how the reported differences change depending on 

number of threads. Every time the entries of first 6 columns were identical. However, 

the identifier of the second SNP (having the strongest epistatic interaction with SNP1) 

and sometimes the chromosome were different for some of the entries. As shown in 

extract 9 the best partner and the best z score are closely related to each other and 

determined in the same place and based on the loop iterators (e1 and e2). It is also 

strange that all of the statistical values were unchanged regardless of the number of 

threads the program was executed on and only the second SNP was different. The 

differences have also been observed between the plink.epi.cc files. Because the order of 

the data in those files is different depending on the number of threads, the python script 

has been written to match the corresponding data and report the differences between 

them. Interestingly, all of the data from the serial file have been matched to the data 

from the parallel execution. However, some of the data from the parallel execution 

were not present in serial one. In other words, the parallel execution produced more 

data. The serial plink.epi.cc has 64586 lines containing data whereas the parallel 

version has 64629 lines. The parallel version has 43 more lines which suggest that 

when the program is executed in parallel, somehow more pair of SNPs are analysed.  

To find the reason behind this behaviour, the code structure has been examined 

closer and special attention has been paid to the lines that could affect the identification 

of the second SNP and the number of analysed pairs. The symmetric option has been 

identified as a potential reason behind the observed behaviour. The parallel version may 

pick the pairs of SNPs incorrectly. To test this hypothesis, the code has been modified 

slightly to disable the symmetric option. Then the program has been executed serially 

to gain the point of reference. Before, executing the code in parallel we decided to 

compare the output file of the two serial versions of the code. Naturally, the non-

symmetric version of the plink.epi.cc should contain twice as many lines as the 

symmetric one and their order would also be different. However, the 

plink.epi.cc.summary reports only the strongest interaction for each SNP and so it was 

expected to be the same for both serial versions. After all, in a non-symmetric version 

each pair of SNPs is analysed twice but that does not affect the final result is any way.  
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However, the summary files of both serial versions exhibit the same behaviour 

as discussed above. Again, for some of the lines the second SNP is different. Thinking 

about how the code execution differs for both of the serial versions, it becomes 

apparent than the different second SNP is a result of pairs of SNPs being analysed in 

different order. In parallel version the order is different because the outer loop is 

divided among the threads, so it is natural that for example first iteration on the eighth 

thread will be executed faster than 78
th

 on first thread. In the serial non-symmetric 

version order is different because of the way the symmetric option is implemented. 

When the option was in effect the test has been skipped when the first loop iterator e1 

has been larger or equal to the second loop iterator e2 (ext. 9). In the non-symmetric 

version all of the pairs are analysed one by one without skipping (except e1 = e2 case).  

It is clear that the symmetric option does not provide the explanation for the observed 

behaviour. However, testing its effect gave the indication that the order of the analysis 

is a crucial factor in explaining the observed behaviour. As shown in extract 9 the 

second SNP (the best partner) is based on the value of the z score. Therefore, it is 

possible that responsible for the strange behaviour is not the way the second SNP is 

determined but how the z score is calculated. If the value of the z score could be the 

same for different pair of SNPs (i.e. for SNP1xSNP2 and SNP1xSNP3) then the 

program would take the one that has been analysed first. To see if SNP1 can have the 

same z score for different partners, the printing statement has been introduced into the 

code. Now, all of the values of z that are equal to the best score are printed together 

with the corresponding second SNP.  

 

 

 
... 
SNP rs6758984 has z value of 1.68258081 and its best partner is rs10200481 
SNP rs6758984 has z value of 1.68258081 and its best partner is rs6714743 
 
... 
 
SNP rs9606603 has z value of 3.97546195 and its best partner is rs778370 
SNP rs9606603 has z value of 3.97546195 and its best partner is rs10933406 
 

Extract 13 The best z scores for rs6758984 and rs9606603 SNPs and their corresponding 

partner SNPs obtained when the code has been executed on 12 threads.  

 

 

Because the z values change many times during the execution of the program, 

the list of the z scores is rather long. Therefore, grep command has been used to find 

the relevant values. Extract 13 shows the highest z values for the two SNPs that have 

been shown in extract 12, rs6758984 and rs9606603. Clearly, the same z values have 

been recorded for two SNPs and the one that has been analysed first has been stored as 

the best partner. In original, serial version rs6758984 has rs6714743 and rs9606603 has 

rs10933406 as the best partners. In the parallel execution on 12 threads those pairs are 

analysed after the rs6758984-rs10200481 and rs9606603-rs778370 pairs and hence the 

observed difference.  
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It is unclear why the parallel version of the plink.epi.cc has more lines than the 

one produced by the serial execution of the code. We have determined it is not related 

to the symmetric option in effect and the way the z score is calculated. It is highly 

possible that it is an effect of the rounding error. The condition for printing a given 

interaction is for its z score to be bigger or equal to 0.0001, therefore depending on the 

order of calculation z might or might not qualify. Due to the time constraint of the 

project, we have not attempted to prove this statement.  

The epistasis option has also been parallelised and tested. Because the epistasis 

option is so time consuming, the code has been modified slightly so that only 

5000x5000 SNPs have been analysed. The parallelised regions are exactly the same as 

in the fast epistasis option, the parts of the code responsible for determining the best z 

score and the best partner and printing of the plink.epi.cc file are duplicated from fast 

epistasis option. Therefore we are not going to discuss them separately. The way all of 

the statistical values are calculated is different and so it is not possible that two pairs 

have the same interaction strength (i.e. z values are unique). The inconsistencies present 

in the parallelisation done by the InSilico Research Group have been not observed.  

 

 

 

 

5.5 Scalability 
 

Before measuring the speed gain coming from parallel execution of the code, 

different schedule options have been investigated on 6 and 12 threads. Running on six 

threads means using whole processor (six core Intel Xeon) and 12 threads is making 

use of whole iDataPlex server (two processors). Fast epistasis analysis on hapmap1 

sample has been executed with the following schedules in effect: static, dynamic, 

guided and auto. Also the effect of different chunk sizes has been investigated for all 

of them, except auto.  

The schedule option allows specifying which loops iterations are executed by 

which thread. This way all of the threads can be utilised to the fullest even if the loop 

has imbalanced load. The static schedule with specified chunksize, divides the 

iteration space into chunks (each with chunksize iterations) which are then assigned 

cyclically to each thread in order. On the other hand, dynamic schedule assigns the 

chunks of size chunksize on a first-come-first-serve basis. When one thread finishes 

processing a chunk, it receives another chunk, first on the list of unprocessed chunks. 

In the guided schedule chunks are also assigned to threads dynamically (like in 

dynamic) but they start off large and get smaller exponentially. The size of each 

chunk is proportional to the number of unprocessed iterations divided by the number 

of threads and the size of the smallest chunk is specified by the chunksize. The auto 

schedule leaves the assignment of iterations to threads to the runtime. If the loop is 

executed many times, it is possible for runtime to develop good schedule with good 

load balance and low overhead.  

Figure 10 shows the plot of execution time against the size of the chunksize. 

The auto schedule has not been shown; however its performance is similar to that of 

guided schedule. On 12 threads auto schedule takes 801 seconds and on 6 threads it 

takes 1493 seconds. From the figure 10, it is clear that both the static and dynamic 

schedule have a similar performance which is not greatly affected by the size of the 
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chunks. There are really small differences in the execution times but the fastest 

execution on both 12 and 6 threads was observed for dynamic schedule with the 

chunksize of 128 – taking 455 s and 879 s respectively. Therefore, the #pragma omp 

parallel for schedule(dynamic, 128) directive have been used in the final version of 

the code (extract 9).  
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Figure 10 Effect of different schedules and chunk sizes on the execution time of fast epistasis 

analysis (hapmap1 sample) when executed on 6 and 12 threads.  

 

 

The guided and auto schedules have clearly worse performance than dynamic 

and static with specified chunksize. The reason why the size of the chunksize has no 

great effect on the performance and the guided schedule performs so poorly is the 

specific structure of the code. Because the symmetric option is in effect, if the SNP1 

iterator is larger or equal to the SNP2 iterator, the pair is not analysed (i.e. e1>=e2 for 

iterator loops shown in extract 9). This way the iteration at the beginning of the outer 

loop are more expensive than the iterations towards the end where there are less SNPs 

to consider. Therefore, the guided schedule trying to lessen the burden of the last 

iterations performs poorly. Also, the reduction of the load of each iteration is uniform – 

each following iteration has one less interaction to analyse. Hence, because the number 

of SNPs is quite large, as long as the size of the chunk is not huge, the computation will 

be distributed fairly between the threads. The truly uniform distribution is only possible 

with the dynamic schedule where the chunk distribution is done dynamically. If we 

only take into account specific load balance, it seems that the dynamic schedule should 

perform better than static. The similar performance of static and dynamic schedules can 

be explained by the time spent on assigning the work to threads. The gain of the 

uniform load distribution is most likely nullified by the thread management overhead. 

Hence, both schedules have almost identical performance.  
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Figure 11 shows the speedup observed for both fast epistasis and epistasis 

(5000x5000) options. There is a great difference between the performance when the 

schedule is not specified and the best schedule. When schedule dynamic 128 is applied, 

both fast epistasis and epistasis options executed on 12 threads perform over 10 times 

faster than on 1 thread. That means that the original time of about 80 minutes (when 

flag -O2 is applied) has been reduced to about 8 minutes. Similar results are observed 

for the epistasis option.  
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Figure 11 Speedup obtained for fast epistasis (hapmap1) and epistasis (first 5000x5000 SNPs 

from hapmap1 sample) options.   

 

 

 

The reason that both epistasis and fast epistasis options scale so well is because 

the most computationally demanding part of the calculation is inside the parallelised 

region. Although, there are multiple critical sections and atomic updates, they are 

relatively insignificant when it comes to the consumed time because they do not 

involve any complicated arithmetic operations. Moreover, they are not performed for 

all of the SNP pairs but only for those that have epistatic interaction above certain level.  

To check how the code scale on different machines EPCC training machine 

Morar has been used. However, regardless of the number of threads the analysis has 

not been completed within the job time of 20 minutes. We have tried to execute the fast 

epistasis option on hapmap1 sample on 6,8,12,16, 32 and 64 threads and all of them 

were aborted far from being completed (the fastest execution, on 8 threads analysed 

only 5 out of 22 chromosomes). It is uncertain why the fast epistasis option takes this 

much longer on Morar than on Eddie. Due to the time constraints of the project, further 

investigation in this matter has not been attempted.  
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5.6 Serial Optimisation  

 

The serial optimisation of the fast epistasis option has also been attempted. 

Simple optimisations, like moving declaration of some of the variable outside of the 

nested loop region, have been tested and proved to be not very effective. The most 

time consuming is the part of the code responsible for building the allele dependence 

between two SNPs. It contains multiply nested conditional else_if statements with 

simple arithmetic operations. Re-engineering the code to remove some of the 

branches would be time consuming. Similarly, some of the vectors could be replaced 

with arrays but that would require significant modification to the code structure thus 

increased development time. Also because the parallelisation was so effective, any 

performance improvement coming from the serial optimisations would be barely 

noticeable. We have not investigated in details the implementation of the logistic and 

linear regression models and thus their optimisation have not been attempted. Due to 

the time constraints, they were deemed to be beyond the scope of this project. 

Improving the performance of those models would be very beneficial to the 

performance of the epistasis option.  

 

 

 

5.7 Conclusions 
 

Although, simple serial optimisations have been attempted, they did not 

provide any significant performance improvement. On the other hand, parallelisation 

proved to be very effective. The correctness of the parallelisation has been confirmed 

through extensive testing. The consistencies observed in the results for the InSilico 

Research Group have not been observed in our parallelisation. The fast epistasis 

option produces slightly different results when executed on different number of 

threads. These inconsistences have been proved to be the results of the algorithm 

responsible for calculating the strength of the interaction. In the implemented 

calculation it is possible for a given SNP to have the same strength of interaction with 

more than one SNP, and the best partner becomes the one that have been analysed 

first.   

The serial version of the fast epistasis code executes in about 90 minutes 

while the parallelised code on 1 thread executes in about 80 minutes. The parallelised 

code executed on a single thread has a significantly shorter execution time. This 

implies that the –fopenmp flag introduces some changes in the code that allows 

compiler to optimise the code more effectively. On 12 threads, the code is executed in 

less than 8 minutes, which is over 10 times faster than when executed on 1 thread. 

The epistasis option scales equally well. The execution time of epistasis analysis 

including 5000x5000 SNPs on 1 thread is 1800s and on 12 threads it is 171 seconds. 

That means that the execution on 12 threads is 10.5 times faster than on 1 thread.  

Both options have benefited greatly from the OpenMP parallelisation – 

running them on 12 threads reduces the execution time over 10 times. Because the 

parallelisation has been so effective and simple while serial optimisations proved to 

be ineffective, further optimisations have not been attempted.  



 43 

Chapter 6 

 

Optimising Haplotype blocks  
 

In this chapter we will first describe the structure of the code and the functions 

call tree. Due to the structure of the code, OpenMP parallelisation is not as beneficial 

in the epistasis option case. Therefore, the main focus is on serial optimisations. The 

modifications to the most time consuming functions are presented in separate 

subsections. Due to the large number of optimisations tested, only the most 

significant ones are discussed. Secondly, the parallelisation attempt is described 

briefly and then the overall improvement in performance is presented.  

 

 

 

6.1 Code structure 

 

As mentioned in chapter 3, the structure of the code of the haplotype blocks 

option is very different from the epistasis option. The main function calls 

Plink::mkBlks function which contains the loops over the chromosomes and regions 

of DNA considered in kilobases. This function uses LDPair class and 

PairwiseLinkage to calculate LD and confidence interval (CI) between the SNP pairs 

and then makes a list of strong LD pairs within the analysed region. Next, the 

haplotype blocks are constructed.. The blocks cannot overlap, need to have at least 2 

SNPs, cannot be too long in bases compared to their size in markers (if they are long 

in bases they need to have many markers) and 95% of informative markers need to 

have strong LD. If the block meets these criteria, it is added to the block list in order 

by first marker number. Finally, the blocks and their information are printed into 

output files (*.blocks and *.blocks.det)  

The most time consuming part of mkBlks function is LD calculation invoked 

by calculateLD function which contains a single call to another function – dprime 

shown in the extract 14.  

 

 

 

 
void PairwiseLinkage::calculateLD() 
{ 
    dp = PP->haplo->dprime(a,b); 
} 

 

Extract 14 CalculateLD function, called from within the mkBlks function.   
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double HaploPhase::dprime(int l1, int l2) 
{ 
   calculateDp = true; 
   double dp = rsq(l1, l2); 
   calculateDp = false; 
   return fabs(dp) 
} 
 

Extract 15 Dprime function called from within the calculateLD function. 

 

 

The function HaploPhase::dprime, shown in extract 15, calls HaploPhase:: 

rsq function which then calls HaploPhase::phaseAllHaplotypes. The last function is 

present in the haplotype blocks profile shown in figure 6. All the other functions 

having considerable contribution to the total execution time are called from within the 

phaseAllHaplotypes function.  

 

 

6.2 Optimising dominant functions 

 

There are six functions named in the haplotype blocks execution profile shown 

in figure 6. They are: HaploWindow::enumerateGenogroups (31.2%), HaploPhase:: 

includeIndividuals (14.03%), HaploPhase::phaseAllHaplotypes (9.69%), 

two_locus_table (4.4%), HaploPhase::prunePhase (3.02%) and HaploPhase:: 

performAlternEM (2.22%). The optimisation of all of them has been attempted, with 

the most time spent on the most dominant functions. In the following subsections code 

structure and attempted optimisations are discussed. 

    

 

6.2.1 EnumerateGenogroups function 

 

This function is located in a separate code file called genogroup.cpp. It is 

responsible for collapsing all genotypes into unique groups - genoGroups. This way 

the subsequent analysis is performed on these entities rather than on individuals. 

Extract 16 shows the original code. It loops over all of the individuals and groups 

them with respect to their genotype. Only the representative individuals (founders) 

with non-missing genetic information are considered. Then the genotype set is built 

using MultiLocusGenotype class. It consists of bool vectors g and skip, and integers 

count and reference. Vector g holds the allele codes, the count holds the number of 

individuals with the given genotype, and reference stores the identifier for each 

group. Vector skip is not used in this function.  
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void HaploWindow::enumerateGenogroups() 
{ 
 
  for (int i=0; i < P->n ; i++)                //consider each individual 
  { 
       if ( ! (P->sample[i]->founder && haplo->include[i]))             //only phase non-missing founders 
          continue; 
 
      MultiLocusGenotype * m = new MultiLocusGenotype;       // build new multilocus genotype set 
 
      if ( haplo->X ) 
         m->g.push_back(P->sample[i]->sex);                      // include sex if X chromosome is analysed 
 
      for (int s = 0; s < ns; s++)                           // analyse genotypes 
      { 
         bool s1 = par::SNP_major ?  
         P->SNP[ S[s] ]->one[i] : 
         P->sample[i]->one[ S[s] ]; 
 
         bool s2 = par::SNP_major ?  
         P->SNP[ S[s] ]->two[i] : 
         P->sample[i]->two[ S[s] ]; 
 
         m->g.push_back(s1); 
         m->g.push_back(s2); 
      } 
 
    m->count = 1;  
    m->reference = i; 
  
 // But have we already seen a similar genoGroup? 
    set<MultiLocusGenotype*>::iterator im = genotypes.find(m); 
    if (im == genotypes.end() )  
      { 
        genoGroup[i] = m; 
        genotypes.insert( m ); 
     }  
     else  
     { 
       delete m; 
       (*im)->count++; 
       genoGroup[i] = *im; 
     } 
 
   } // Next individual 
} 
 

Extract 16 Unmodified genogroup.cpp code file. 

 

If the chromosome X is taken into consideration, then vector g holds additional 

element. The SNPs are coded depending on their allele frequency and pushed back onto 

the vector g. The object intvec_t S holds the list of SNP numbers and the 

vector<individual*> sample stores the genotype information for each individual.  

Next, the count is set to 1 and reference to i (number assigned to the current 

individual). In other words, at this point it is assumed that this individual is the first one 

belonging to this group. Then all of the previously analysed groups are searched to 

determine whether the current group is unique or has been recorded before. If the group 

is unique then the current m is assigned to the genoGroup i and this new group is 
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inserted into genotypes set. The genoGroup is a vector of type MultiLocusGenotype* 

and clearly holds the information which genoGroup each individual belongs to. The 

set<MultiLocusGenotype*> genotypes stores information about each unique group (i.e. 

its reference number, number of individuals belonging to it and genotype data). If the 

similar genoGroup already exists then the currently processed individual is assigned to 

it and the current m is destroyed. Then the next person is analysed.  

The first modifications are shown in extract 17. First the bool variables s1 and 

s2 were declared outside the loop over s. Then the ternary conditional operators were 

replaced with if...else statements. Now both Boolean variables are declared only once 

for each individual and the conditional statement is calculated only once for each s. 

These changes did not improve the performance greatly because in the used data set 

(Genoplink_20130205) the variable ns (number of SNPs in haplotype) is equal to 2. 

The samples with larger values of ns would benefit more from this modification.  

Also, to avoid referencing global P->n (number of individuals in the sample) 

with each iteration of the loop over individuals, it has been stored in the local variable 

size (extract 17).  

 

 

… 
int size = P->n; 
bool s1,s2; 
for (int I = 0; i < size; i++)  
   { 
     ... 
     for(int s=0; s<ns; s++){ 
     
        if (par::SNP_major){ 
 
           s1=P->SNP[S[s]]->one[i]; 
           s2=P->SNP[S[s]]->two[i]; 
           m->g.push_back(s1); 
           m->g.push_back(s2); 
       } 
       else{ 
           s1= P->sample[i]->one[ S[s] ]; 
           s2= P->sample[i]->two[ S[s] ]; 
           m->g.push_back(s1); 
           m->g.push_back(s2);  
       } 
   } 
   ... 
} 
... 

Extract 17 Modifications made to the genogroup.cpp code file.   

 

 

Push backs are more expensive than direct access to the memory locations. 

Therefore, we have attempted to replace the push backs with direct writes. Vector g has 

been resized to have 2*ns (or 2*ns + 1 if haplo->X is true i.e. X chromosome is also 

being analysed) elements. Then both s1 and s2 were written directly into the 

corresponding elements of g. However, this modification significantly increased the 

execution time. This is because resizing of the vector was much more time consuming 

than the push backs. The time spent in each part of the function has been measured and 

printed to screen. The resizing of the vector g took 0.00000852 seconds and the time 
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spend in the loop over s was 0.00000036 seconds. The time spend inside the loop over s 

in the original code was 0.00000048 seconds. Clearly, the time gained by replacing the 

push backs with the direct memory accesses does not compensate the time spend on 

resizing the vector.  

The reason for that is relatively small number of push backs (ns = 2 only). Also 

because the vector can be resized only after it has been declared, the resizing has been 

done for all of the individuals i.e. inside the loop over i. Therefore to reduce the 

resizing time, the resizing would have to be done only once for all of the individuals i.e. 

outside the loop over i. Consequently, the declaration of m should be placed before the 

loop as well. The problem is m is dynamically allocated and so all of the memory 

accesses to it are done through pointers. Moreover, genoGroup is a vector of pointers to 

m and it is used not only by enumerateGenogroups function but by other unrelated 

functions as well. Thus all of the relevant m’s need to exist at the same time. It is not 

possible to declare only one m and reuse it for all individuals without significant re-

engineering of the code in several different functions. Due to the time constraints 

further investigation into this optimisation has not been conducted.  

The last modification attempted was moving the condition haplo->X outside the 

loop over individuals (over i). It is possible because the condition is not dependent on 

any variable inside the loop. This modification requires duplication of the code but 

results in the condition being calculated only once. However, this modification slowed 

down the execution considerably.  

 

 

 

… 
if ( haplo->X )                    //if chromosome X is being considered 
   { 
      for (int i=0; i < P->n ; i++)       //consider each individual 
       { 
          ...  
          m->g.push_back(P->sample[i]->sex); // add sex 
      … 
        } 
else { 
       for (int i=0; i < P->n ; i++) {           // consider each individual, do not analyse chromosome X  
         ... 
       } 
 

 

Extract 18 Modification done to the enumerateGenogroups function – loop independent  

condition has been moved outside of the loop.  

 

 

It is possible that because the HaploPhase::includeIndividuals is rather small 

function, the compiler was doing a rather good job inlining it. However, increasing the 

size of the function (duplication) made it less effective. Therefore, only the 

modifications shown in extract 17 have been used in further development and 

performance analysis. The code with those changes has been executed in 13421 

seconds which is 2813 s (46 min) faster than the unmodified code compiled with –O2 

flag (16234). 
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6.2.2 IncludeIndividuals function 

 

 

The HaploPhase::includeIndividuals function takes over 14% of the total 

execution time. It is responsible for checking the genotype information for a 

particular individual and if certain conditions are met or the person has too much 

genotype data missing they are excluded from the subsequent analysis. The most 

significant part of the code is shown in extract 19. Only two changes have been made 

in this function. Boolean vectors s1 and s2 have been replaced with Boolean scalars. 

Then as a consequence of the first modification, two loops over s have been merged. 

The first step required the second because the second loop re-uses the results of the 

first loop. Replacing vectors with scalars is possible because the allele codes are used 

only to calculate the amount of missing genotype data (nm). Therefore they are 

needed only locally, and merging both loops ensures the required locality.  

 

 

 

 
void HaploPhase::includeIndividuals(int i) 
{ 
// Do not look at non-reference individuals in some circumstances 
…  
vector<bool> s1(ns); 
vector<bool> s2(ns); 
 
// Flipping allele-coding for homozygotes 
for (int s=0; s<ns; s++) 
   { 
    if (par::SNP_major) 
      { 
       s1[s] = P.SNP[S[s]]->one[i]; 
       s2[s] = P.SNP[S[s]]->two[i]; 
      } 
   else 
     { 
      s1[s] = P.sample[i]->one[S[s]]; 
      s2[s] = P.sample[i]->two[S[s]]; 
     } 
    if (s1[s] == s2[s]) 
     { 
       s1[s] = !s1[s]; 
      s2[s] = !s2[s]; 
     } 
   } 
 
 // Count amount of missing genotype data at this position 
int nm = 0; 
for (int s=0; s<ns; s++) 
     if (s1[s] && !s2[s]) 
       nm++; 
 
// if too much genotype data is missing do not include this individual 
... 
} 
 

Extract 19 Unmodified HaploPhase::includeIndividuals function.  
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The individual effects of those changes are not big however, because the 

includeIndiviudals function has been called almost a billion times (table 2) they 

accumulate and have a positive effect on the overall performance. The modified code 

(extract 19) executes in 12831 seconds which is 3403 s (over 56 min) faster than the 

unmodified code and almost 10 min faster than the previous version. Also replacing 

vectors with scalars reduced contribution from the vector class.  

  

  

 

6.2.3 PhaseAllHaplotypes function 

 

 

This function took almost 10% of the execution time and is responsible for the 

main part of the estimation. All the other functions of the HaploPhase type are called 

from within this function. The function calculates the haplotype frequencies. The first 

step is to define the regions of the analysis and the SNPs they contain, then the 

haplotypes (HaploPhase::enumerateHaplotypes), genoGroups (HaploPhase:: 

enumerate Genogroups) and phases (HaploPhase::enumeratePhase) are enumerated. 

Next the EM algorithm (Expectation-Maximisation) is used to estimate the haplotype 

frequencies (HaploPhase::performAlternEM), after which the unlikely regional 

phases are pruned (HaploPhase::prunePhase). The last part involves reporting 

haplotype frequencies and haplotype phase probabilities, and performing the 

haplotype association tests (HaploPhase::performHaplotypeTests).  

Quite a large number of small modifications have been tested. However, it 

was hard to determine their effect on the overall performance. Not only, the changes 

were small but also most of the optimisation work has been tested on the subset of 

two chromosomes which made it even harder to determine their effect. Therefore, 

taking into consideration the time necessary to test all of the modification on the 

whole sample (3 measurements required) and the fact that the function takes only 

10% of the execution time, we have decided to test the changes that had chance to 

clearly improve the performance.  

In the end, after development work on the fragment of the data set (2 

chromosomes only), the only adopted changes were: common sub-expression 

elimination (instead of P.n – number of individuals, integer Indiv_num), moving 

some of the variable declarations outside of the loops and replacing the power 

function call with multiply sign. Therefore, we have reduced the number of 

declarations, improved locality by using local variable instead of global and reduced 

the number of small function calls. Observed for the entire sample timings were very 

inconsistent and the best one was only 3 minutes faster (12659) compared to the 

previous code version with unmodified phaseAllHaplotype function (12831). The 

slowest was almost 15 minutes slower. Thus we have decided to leave the 

phaseAllHaplotype function unmodified.     
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6.2.4 Two_locus_table function 

 

The two_locus_table function is not part of HaploPhase class. It is defined 

inside the helper.cpp code file and it is being called from mkBlks function. This 

function is used only by the haplotype blocks option. It counts the independent alleles 

observed at two analysed loci for all of the individuals present in the sample. Because 

two_locus_table function takes only 4.4% of the total execution time only the 

optimisations that could clearly improve the performance at the small development 

cost, have been considered. Three changes have been made. Extract 20 shows the 

relevant part of the code before and extract 21 shows the same part of the code after 

modifications. First of all, the declarations of the Boolean scalars have been placed 

outside of the loop over individuals. Secondly, the four ternary conditional statements 

have been replaced by one if…else conditional statement. Lastly, local integer 

variable size has been declared to hold the number of individuals (PP->n).  

 

 
 
 … 
for (int i=0; i< PP->n; i++) 
{ 
    Individual * person = PP->sample[i]; 
    If ( person->missing || ! person->founder )  
       continue; 
 
    bool a1 = par::SNP_major ? PP->SNP[l1]->one[i] : person->one[l1]; 
    bool a2 = par::SNP_major ? PP->SNP[l1]->two[i] : person->two[l1]; 
    bool b1 = par::SNP_major ? PP->SNP[l2]->one[i] : person->one[l2]; 
    bool b2 = par::SNP_major ? PP->SNP[l2]->two[i] : person->two[l2]; 
    … 
 

Extract 20 Part of the original code of two_table_locus function located in phase.cpp code file.  

 
 
bool a1, a2; 
bool b1, b2; 
int size = PP->n; 
 
for (int i=0; i<size; i++) 
    { 
     Individual * person = PP->sample[i]; 
     if ( person->missing || ! person->founder )  
       continue; 
 
    if(par::SNP_major){  
       
       a1 = PP->SNP[l1]->one[i]; 
       a2 = PP->SNP[l1]->two[i]; 
       b1 = PP->SNP[l2]->one[i]; 
       b2 = PP->SNP[l2]->two[i]; 
    } 
  else{ 
       a1 = person->one[l1]; 
       a2 = person->two[l1]; 
       b1 = person->one[l2]; 
       b2 = person->two[l2]; 
   } 
… 
 

Extract 21 Part of the modified code of two_table_locus function located in the phase.cpp code 

file. 
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The above described modifications have improved the performance of the 

haplotype blocks option. The code executed in 12367 s which is 464 seconds (almost 

8 min) faster than the previous version of the code – 12831 (with modified 

enumerateGenogroups and includeIndividuals functions).  

 

 

 

6.2.5 PrunePhase and performAlternEM functions 

 

 

Because both of those functions are not very time consuming (prunePhase – 

3.02% and performAlternEM – 2.22%) we did not spend much time on optimising 

them. The performAlternEM function contains the Expectation-Maximisation 

algorithm and thus has rather complicated code structure. Taking into consideration 

the time constraints of this project, only simple modifications have been tested. They 

were: the common expression elimination for the number of individuals present in the 

analysed sample (accessed through P.n) and moving time consuming declarations 

(vectors) out of the loops and nested regions.  

In prunePhase we attempted to replace push backs to multiple vectors with 

direct memory accesses. However, some of the variables modified inside the loop had 

an impact on the vector sizes and since the resizing of vectors before the loop and 

replacing them with arrays became more complicated, no significant modifications 

have been made to this function.  

Those changes resulted in code executing in 12849 seconds which is slower 

than the code after the last adopted modification (12367s). Therefore, both 

prunePhase and performAlternEM functions have not been modified in the final code 

version.  

 

 

 

6.3 Serial Optimisation results 

 

The overall performance improvement after each major optimisation stage is 

shown in the figure 12. Changing the optimisation flag from –O3 to –O2 reduced the 

execution time from 17575 to 16234 seconds and introducing the changes into the 

enumerateGenogroups functions (discussed in section 6.2.1) resulted in the execution 

time of 13421 seconds. The changes made to the includeIndividuals and 

two_locus_table functions gave the code executing in 12831 and 12367 seconds, 

respectively.   

The initial execution time of 4 hours and 53 minutes has been reduced to 3 

hours and 26 minutes. Thus the performance of the haplotype block options has been 

improved by about 30%.   
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Figure 12 Execution times measured after each major optimisation stage.  

 

 

 

6.4 Parallelisation 

 

Unlike in the epistasis option, the haplotype blocks option does not have any 

obvious regions for parallelisation. Parallelising the functions present in the profile (fig. 

6) would not improve performance because the time needed to spawn the threads is 

larger than the time needed to execute those functions. Therefore, the only region 

potentially suitable for OpenMP parallelisation is within the mkBlks function, shown in 

extract 22. The first loop (over the chromosomes) is not the best candidate for using the 

parallel for directive because there are only 23 chromosomes in human genome. Hence 

the loop is not big enough to benefit significantly from parallelisation.  The loops over 

the analysed regions (200kb – default settings) and the intervals (depending on the 

distance between the SNPs within the region) are much bigger and so may be 

parallelised. Extract 22 shows the introduced parallelisation. The parallel for directive 

has been used and two variables x and y (loop iterators) have been declared as private. 

Three critical regions have been defined. The first one encompasses the calculation of 

linkage disequilibrium and confidence interval for each analysed pair of SNPs. Both 

functions calculateLD and caclulateCI contain the calls to the functions using global 

variables and so they need to be executed by one thread at a time. The other two 

functions involve inserting objects into map and set. The dpStore is a map of pairs and 

their corresponding LD and CI coefficients and StrongPair is a set of pairs of SNPs 

with strong LD and distance between them. To eliminate the possibility of two threads 

trying to perform writes to the same space in the memory (conflicting stores) both 

inserts have been placed within the critical sections. Figure 13 shows the resulting 

speedup. On 2 threads the execution time is 11185 seconds and on 12 threads it is 
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10901 seconds. The execution time on 2 threads is almost 20 minutes faster than on 1 

but adding more threads does not reduce the execution time significantly. There is 

almost no speedup. 

 

 

Map<Range, vector<int> > Plink::mkBlks(int null1, int null2) 

    { 

     ... 

    for(int chr = startChromosome; chr <= finalChromosome; chr ++)             // loop over all chromosomes 

      { 

        … 

#pragma omp parallel for private(x,y) 

         for(x = fromPosition; x < toPosition; x++)                           // loop over all regions 

             { 

              … 

              for(y = x+1; y <= toPosition; y++)                                  // loop over smaller segments within each region 

                  { 

                   … 

#pragma omp critical 

                                       { 

                                        PairwiseLinkage thisPair(x,y); 

                                        thisPair.calculateLD( );                                // calculate linkage disequilibrium coefficient for pair x,y 

                                        thisPair.calculateCI( );                                 // calculate the confidence interval for pair x,y 

                                        } 

                     … 

#pragma omp critical 

                                        { 

                                         dpStore.insert(make_pair(t,d));           // t is x,y pair and d consists of corresponding coefficients 

                                        } 

                    … 

#pragma omp critical 

                                       { 

                                        strongPairs.insert(p);                          // p stores pair x,y and the distance they span 

                                        } 

                   … 

 

 

Extract 22 Code of the mkBlks function. The bold text shows introduced 

parallelisation. 

 

 

The lack of time prevented us from investigating the effect of different 

schedules. However, the code structure suggests that even the most suitable schedule 

would not improve the performance significantly. The only way to improve the 

performance of the parallelised code is to reduce the size of the critical section 

encompassing the LD calculation. That would require moving the critical section 

deeper into the functions call tree. As discussed at the beginning of this chapter, 

calculateLD function calls dprime function, which calls rsq function, which calls 

HaploPhase:: phaseAllHaplotypes  function. The last function calls all the other 

functions present in the profile (fig. 6). To locate all the regions that could cause the 

race condition when not executed inside the critical section, the Valgrind’s DRD tool 

(thread error detector) [23] has been used. After reporting 10000000 detected 

potentially conflicting load and stores, the program stopped reporting. Because of the 

time constraints of the project we were unable to investigate detected errors. Therefore, 

reducing the size of the critical section is deferred to the future development works.     
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Figure 13 The speedup obtained for the haplotype blocks option. 

 

 

 

 

6.5 Conclusions 

 

During the optimisation process, only the modifications clearly improving the 

performance have been adopted. Three functions have been optimised: 

enumerateGenogroups, includeIndividuals and two_locus_table. Although the 

optimisation of other functions has been attempted, it did not result in performance 

improvement. The final version of the code has been executed in 12367 seconds which 

is almost 1.5 hour faster than the original code (17575s). 

The parallelisation of the haplotype blocks option proved to be challenging. The 

only region suitable for parallelisation is inside the mkBlks function. The parallelised 

code scales very poorly because the most computationally expensive calculations are 

performed within the critical section. Due to the time constraints, the investigation into 

the effect of different OpenMP schedules and possibility of reducing the size of the 

critical section by moving it deeper into the function call tree has not been attempted.   
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Chapter 7 

 

Conclusions  

In this project we have worked on improving performance of two PLINK 

options – epistasis and haplotype blocks. First, to understand how the PLINK works 

and what functionality it provides, PLINK tutorial has been analysed. Some of the 

tutorial cases have been executed on artificially small data sets and profiled. Then both 

epistasis and haplotype blocks options have been profiled as well. The haplotype blocks 

option has been always performed using the real life data set consisting of 267912 

SNPs from 2186 individuals (Genoplink_20130205) and the epistasis has been always 

performed using the artificially smaller data set (83534 SNPs from 89 individuals – 

hapmap1). 

The first step of the optimisation was investigation of different compilers and 

optimising compiler flags. The behaviour of the default Gnu g++ and Intel icc 

compilers and their different flags have been studied. It has been determined that the 

most optimal performance for both analyses has been given by the g++ compiler and –

O2 optimisation flag. Although both options had the combinations of flags that 

produced slightly faster code than –O2 flag, they were different for each option. 

Therefore, in order to provide good performance for all of the PLINK options the 

second optimisation level has been adopted.        

The profiles of epistasis and haplotype blocks options differ significantly. Those 

differences are the result of different code structure. To gain the best improvement in 

the performance different approaches have been adopted for both options. 

The epistasis option has been successfully parallelised and proved to scale very 

well. Both methods of performing the epistasis analysis showed the speedup of about 

10.5 when executed on 12 threads and using schedule dynamic with the chunksize of 

128. The correctness of parallelisation has been tested and the explanation for all of the 

inconsistences has been given. The simple serial optimisation of the fast epistasis 

analysis did not produce clear improvement in the performance, and thus further 

investigation has not been attempted. The performance of the normal epistasis (using 

the linear or logistic regression) could be improved by optimising the implementation 

of the regression models.  

Due to the specific code structure of the haplotype block option, the focus has 

been put on serial optimisation. The modifications that proved to be the most beneficial 

were: replacing the ternary conditions with the if…else statements, replacing the 

Boolean vectors with Boolean scalars and removing some of the declarations from 

inside the loops. The initial time of about 5 hours has been reduced to about 3.5 hours, 

which means the performance has been improved by 30%.   

There was no obvious region for parallelisation inside the code of haplotype 

blocks options. It has been parallelised but because of the specific code structure it did 

not scale well. Even though the functions present in the profile have many loops and 

nested loop regions, parallelising them would not be beneficial because the time spent 

within those functions is comparable to the time required to spawn the threads. The 
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#pragma omp parallel for directive has been used inside the mkBlks function but 

because the most computationally expensive part of the calculation has to be inside the 

critical region, the performance improvement is hardly noticeable regardless of the 

number of threads used.  

Any future attempts on the parallelisation of the haplotype blocks options 

should focus on reducing the size of the critical section by moving it deeper inside the 

function calls. The performance of this analysis would also benefit greatly from 

reducing the number of vectors and vector operations used in the code.  
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Appendix A  

 

Example job script 

The contents of the example job script haplo.sh: 

 

#!/bin/sh 

#$ -l h_rt=06:00:00 

#$ -cwd 

#$ -M mantraani@yahoo.pl 

#$ -m abe 

#$ -N haplo_OMP1 

#$ -pe OpenMP 1 

 

 

. /etc/profile.d/modules.sh 

export OMP_NUM_THREADS=$NSLOTS 

echo OMP_NUM_THREADS = $NSLOTS 

 

make clean 

make 

 

./plink --tfile /exports/work/physics_epcc_msc/s0789793/Genoplink_20130205 --blocks --out blocks_mod1  
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