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Abstract 

Clustered architectures are now ubiquitous in high performance computing; nearly all 

supercomputers today are built using a collection of nodes, each having multiple cores 

with shared memory. The hybrid programming model has been born out of the need for 

a programming model that fits this hybrid architecture; suited to both the shared and 

distributed memory aspects of such a system. It is debated, however, whether or not 

hybrid implementations lead to better performance than simply having a message-

passing implementation. 

GS2 is a gyrokinetic simulation code parallelised using the MPI message-passing 

library. In this project we investigated the addition of OpenMP directives to GS2, in 

order to create a hybrid version of the code. We then set about testing the performance 

of our hybrid version compared to that of the original MPI-only version. 

It was found that with the correct ratio of MPI processes to OpenMP threads, a 

performance increase is possible. We found this performance increase to be cumulative 

and proportional to the number of time steps simulated, i.e. the more time steps 

simulated the larger the increase in performance when compared to the MPI-Only 

version of GS2. Furthermore, the addition of OpenMP threads allowed GS2 to scale to  

much larger core counts, as well as outperforming the like for like MPI process counts.   
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Chapter 1 

 

Introduction 

In the past architectures used in high performance computing generally fell into one of 

two categories, shared memory or distributed memory. Shared memory architectures 

consist of two or more processors connected to a single address space, via an 

interconnect. Whereas distributed memory is multiple nodes, each having a processor 

with its own memory, connected via an interconnect. There is also the third option of 

creating a clustered architecture were each node in a distributed memory machine is a 

shared memory multiprocessor (SMP). The advent of multi-core processors has made 

this hybrid architecture ubiquitous throughout modern high performance computing.  

One such system is HECToR, the system used whilst undertaking this project and the 

UK national supercomputing service at the time of writing. With the rise of this type of 

architecture opportunities for improved programming models becomes available for 

suitable programs. Currently the standard message passing approach is commonly used; 

however this does not take advantage of the shared memory capabilities within a node. 

It stands to reason that a shared memory programming model could be used for intra-

node computation, whilst maintaining message passing for the inter-node 

communication. Taking this approach also allows us to take an existing code 

parallelised using the message passing approach, and add shared memory threading to 

computationally intensive sections of code. 

For the purposes of this study we will be using the ‘GS2’ code, which is used to model 

particles in nuclear fusion plasma. Currently GS2 is parallelised using the MPI message 

passing library, and we will be adding OpenMP directives to provide the thread control. 

In doing this we hope to see a decrease in execution time, when using similar 

computational resources. Chapters two and three will provide background to system 

architectures and associated programming models respectively, while chapter four 

looks more closely at GS2 and the specific performance hotspots associated with it. 

Moving on to chapters five and six we outline the implementation of OpenMP 

directives and discuss the performance results. 
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Chapter 2 

 

Architectures 

This chapter will cover the architectures used throughout high performance computing. 

For the purposes of this project we will classify these parallel architectures in terms of 

their memory, specifically: shared memory, distributed memory and clusters. The 

figures given to exemplify these architectures throughout this chapter where created by 

the author, based on the information presented and referenced. 

For continuity throughout report we will refer to an independent computational unit as 

a processing element (PE), i.e. a core on a multi-core chip would be a single processing 

element, or a single core CPU would be considered a PE. 

The information presented in this chapter is based on that found in [1]. 

2.1 Shared Memory  

A shared memory machine involves several PEs connected via a bus/interconnect to a 

single global space memory. Shared memory systems are run using a single operating 

system (OS) across the entire system; this creates the appearance of a single machine 

from the users’ perspective. This OS is also responsible for automatically moving jobs 

around the PEs. 

One form of shared memory machine is the symmetric multiprocessor (SMP) shown in 

figure 2.1 below. In an SMP system each PE has equal access to all parts of memory. 

For shared memory architectures communication is entirely implicit. Any change in 

shared memory is accessible to other PEs, using these changes in memory, not explicit 

messages; data is ‘exchanged’ between PEs. 
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Figure 2.1: Symmetric Multiprocessor Shared Memory Architecture 

 

Having multiple independent PEs using the same global address space also complicates 

the use of caching, specifically maintaining cache coherence between each PE. A more 

detailed look at the architecture outlined in figure 2.1, shows that each PE would 

actually have a cache structure as represented in figure 2.2. Cache coherency can be 

implemented using various mechanisms, such as ‘directory-based coherence’ or 

‘snooping’, and is not usually something a programmer is concerned with. 

 

 

Figure 2.2: PE Focus in Shared Memory Architecture 

 

Another implementation of the shared memory architecture is ‘Non-Uniform Memory 

Access’ (NUMA), as shown in figure 2.3. In this case although physically separate, 

memory is still addressed as a single global space. However,  PEs take less time to 

access data on physically close memory, specifically on what is referred to as “local” 

memory. In figure 2.3, the memory labelled X would be considered ‘local’ to PEs 1, 2, 

3. A cache coherent NUMA architecture is referred to simply as CC-NUMA. 

 

MEMORY 

BUS/INTERCONNECT 

PE PE PE PE PE PE 

MEMORY 

BUS/INTERCONNECT 

PE PE PE PE PE PE 

PE 

Caches 



 4 

 

Figure 2.3: NUMA Shared Memory Architecture  

 

Using a NUMA shared memory architecture can also help to abate the occurrence of a 

bottleneck on the bus/interconnect. In SMP systems this can cause problems in scaling, 

as adding more PEs may overwhelm the bus/interconnect. Through the use of CC-

NUMA architecture the scaling of a shared memory system can be vastly improved, 

however maintaining a coherent cache between all of the PEs remains a limiting factor.  

2.2 Distributed Memory 

Distributed memory systems consist of numerous independent PEs connected via an 

interconnect mechanism, with each PE having a local private memory space; as shown 

in figure 2.4. For distributed memory architectures each PE runs its own OS, this 

allows each PE to operate completely independently. It also means that each process 

run for a particular program is fixed on a set PE. Data is passed between PEs via 

explicit messages, these messages are direct in that they are sent specifically between 

PEs; rather than altering a shared memory space.  

 

 

Figure 2.4: Distributed Memory Architecture 
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In a distributed system adding PEs increases the memory bandwidth as such a 

distributed system could grow to almost any size, assuming power consumption and 

other physical factors such as cooling are not limiting. However, for a distributed 

system to scale well the interconnect used becomes a key factor. The interconnect 

‘shape’ is often an important feature of a distributed memory machine, as an effort is 

made to reduce aspects of the network such as the bisection width or diameter.  

Unlike shared memory architectures a distributed system can continue to utilise cache 

memory effectively as each PE operates solely on a local private memory space. 

However, to fully exploit the benefits of a distributed memory system there is often a 

larger overhead for the programmer. For example the explicit nature of 

communications means careful attention must be paid to ensure messages are sent and 

received by the correct PE, at the correct time.  

2.3 Shared Memory Cluster 

A shared memory cluster brings together the features of shared and distributed memory 

architectures, as a collection of shared memory nodes connected via an interconnect, as 

shown in figure 2.5. This should not be confused with distributed shared memory 

architectures, which are physically similar to distributed memory systems, but each PEs 

local memory is utilised in a single shared global address space.  

 

 

Figure 2.5: Shared Memory Cluster Architecture 

 

Each node of a cluster has a local memory space shared between PEs within the node, 

however it is private from other nodes in the system. This allows intra-node 

communication to be implicit via shared memory, whereas inter-node communication 

is explicit via message passing. It is common to find a multi-core processor used as a 

node in a shared memory cluster, due to their cost effective nature. However, it can be 

difficult to take advantage of the heterogynous nature of the architecture and it is often 

more difficult to decipher its performance.  
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Chapter 3 

 

Programming Models  

In this chapter we will discuss the programming models applied throughout this project. 

We will be using the ‘process interaction’ classification, i.e. the classification is based 

on the mechanisms used for process communication in a parallel system. We begin by 

covering the 2 programming models that are brought together for hybrid computing; 

the shared memory and distributed memory models. It should be noted that throughout 

this chapter details of programming APIs will be used that may be available across 

various languages, as this project was carried out using Fortran, this is the language we 

will be using as context for discussing any APIs or code examples. 

3.1 Shared Memory 

If following section is based on information found in [2] and [3]. Although some of the 

concepts and principles covered in this section will be universally true for all shared 

memory Application Program Interfaces (APIs), will be focusing on the OpenMP API 

as it was used during the implementation of the project. The OpenMP API is a joint 

project owned by a set of hardware and software vendors, this group is called the 

OpenMP Architecture Review Board (ARB). The ARB is responsible for overseeing 

and approving new versions of the OpenMP specification. 

As with all shared memory APIs, OpenMP is based on the concept of threads. 

Generally speaking in high performance computing a single thread will execute on a 

single PE, however if a chip has simultaneous multi-threading, or similar technology, 

multiple threads could execute on the same PE. A program parallelised using OpenMP 

will begin in a serial manner by running a single thread. This initial thread is known as 

the master thread and will continue to execute for the entire program run. When the 

master thread reaches a section of the code to be run in parallel (or parallel region), the 

predefined number of threads is spawned using the fork/join model. As you can see 

from figure 3.1 once in a parallel region all threads (including the master thread) 

execute the same code, and at the conclusion of the parallel region the all the child 

threads terminate and the master thread continues to execute through the code. 
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Figure 3.1: OpenMP executing code with both Serial and Parallel Regions 

 

OpenMP uses a combination of runtime library routines, compiler directives and 

environment variables to implement parallelism in a serial code. As stated above, all 

threads will execute the same code within a parallel region, however, through the use of 

conditional statements using the threads ID, different threads to execute different paths 

within the region. When entering a parallel region with a compiler directive often a 

number of clauses can be employed allowing the programmer to attach additional 

attributes to a parallel region. These attributes include the scope of variables used 

within a region, work distribution and collective functions.  
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‘shared’. If a variable is set to ‘shared’ for the parallel region, a single copy of the 
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variable has been instantiated and set before the parallel region, it will retain its value 

when entering the region. When a variable is flagged as private for a parallel region 

each thread will instantiate its own copy, which can be only be accessed by that thread. 

A private variable will always be empty upon entering the parallel region, unless the 

‘firstprivate’ clause is used, in which case each threads copy of the variable will be 

instantiated with the value of the variable prior to the parallel region. 
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3.1.1 Communication  

Communication between threads in OpenMP is implicit, using shared variables to make 

data publicly available to all threads. Using shared variables in this way places the onus 

on the programmer to ensure that individual threads do not overlap in their access to a 

shared variable. This form of communication is particularly useful when implementing 

it with a vector variable such as a shared array. A simple example can be seen in code 

supplement 3.1 below. 

 
  

1 ! OpenMP directive 

2 !$OMP PARALLEL SHARED(id_array), PRIVATE(id) 

3   ! Retrieve the threads id 

4   id = OMP_GET_THREAD_NUM() 

5   ! As Fortran array bounds begin at 1 by default and 

6   ! OpenMP thread IDs begin at 0 we add 1 to the ID so 

7   ! it may be used as a valid array index, each thread then 

8   ! assigns its ID to a different element in id_array 

9   id_array(id+1) = id 

10 !$OMP END PARALLEL 
  

Code Supplement 3.1: Threads setting an individual element in a shared array 

 

This code allows all threads to access the data in the entire array, including the master 

thread even after the parallel region has finished as the array is declared shared. It is 

often good practice to add the ‘default’ clause, set to ‘none’, to parallel regions. Adding 

this clause ensures that each variable must be specifically set to either private or shared. 

In this case, if a variable is used within a parallel region and has not been explicitly 

declared shared or private, an error will be thrown at compile time. This can be a very 

useful tool for programmers, ensuring every variable in a parallel region has been 

accounted for. 

 

3.1.2 Synchronisation 

Many OpenMP directives employ implicit synchronisation before exiting the parallel 

region they denote; the standard ‘parallel’ directive is an example of this. In these cases 

each thread must reach the end of the parallel region before the master thread can 

continue executing the serial code. For some directives, this implicit barrier can be 

removed using the ‘no wait’ clause. This can be of particular use in cases where 2 

consecutive, independent do loops are parallelised, as the ‘do’ directive has the 

aforementioned implicit barrier. See code supplement 3.2 for an example were a ‘no 

wait’ clause may be implemented effectively. 
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1 !$OMP PARALLEL SHARED(a, b), PRIVATE(i, j) 

2 ! First do loop does not need an implicit barrier 

3 !$OMP DO NOWAIT 

4   DO i = 1, 20 

5     a(i) = i 

6   END DO 

7 !$OMP END DO 

8 ! Second do loop is not influenced by the first 

9 !$OMP DO 

10   DO j = 1, 10 

11     b(j) = j 

12   END DO 

13 !$OMP END DO 

14 !$OMP END PARALLEL 
  

Code Supplement 3.2: Effective use of the ‘NOWAIT’ clause for consecutive 

parallelised do loops 

 

OpenMP also has a mechanism for explicit synchronisation, using the ‘barrier’ 

directive. This directive should be employed carefully by the programmer as it can add 

considerable overheads. It may also lead to a program to deadlock if used in regions of 

code only executed by a subset of the total threads, as it requires all threads to enter the 

barrier before they may continue executing. See code supplement 3.3 for an example of 

the barrier directive being used alongside a directive without an implicit barrier. 

 
  

1 !$OMP PARALLEL SHARED(a), PRIVATE(i) 

2 ! The master directive does not have an implicit barrier 

3 !$OMP MASTER 

4   a = 0 

5 !$OMP END MASTER 

6 ! ‘a’ must be set before all threads execute the loop 

7 !$OMP BARRIER 

8 !$OMP DO 

9   DO i = 1, 10 

10     a(i) = a(i) + 2 

11   END DO 

12 !$OMP END DO 

13 !$OMP END PARALLEL 
  

Code Supplement 3.3: Use of the ‘barrier’ directive following a ‘master’ region 

 

Another form of explicit synchronisation in OpenMP is a critical section. Critical code, 

indicated with the use of the ‘critical’ directive, can only be executed by a single thread 
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at any given time. Critical section can also be ‘named’, this allows critical sections to 

be grouped, no thread can enter a critical section if a thread is currently executing code 

in a critical section with the same name, see code supplement 3.4. 

 
  

1 !$OMP PARALLEL SHARED(a), PRIVATE(i) 

2 ! The critical sections are named ‘ALPHA’ 

3 !$OMP CRITICAL (ALPHA) 

4   stack = getNext(list) 

5 !$OMP END CRITICAL 

6   call orderList(stack) 

7 ! Once all the stacks have been retrieved then return them 

8 !$OMP CRITICAL (ALPHA) 

9   call addItem(list, stack) 

10 !$OMP END CRITICAL 

11 !$OMP END PARALLEL 
  

Code Supplement 3.4: Example of named critical sections in synchronisation 

 

The critical directive is blocking, in this context a blocking directive is a directive at 

which all threads must wait before entering, while a non-blocking routine allows 

threads to continue executing other code until the directive is available for execution. 

For a non-blocking synchronisation routine, a lock is ideal as it can be either blocking 

or non-blocking. In this case a lock must be held before executing a section of code, 

once completed the lock is then released, allowing another thread to enter the lock 

routine. For single statements, rather than employing a critical region, an ‘atomic’ 

directive may be used. An atomic directive may incur less overhead than a critical 

region but it may only be used for statements of the follow forms: x = x op expr, x = 

expr op x, x = intr (x, expr) or x = intr(expr, x); where op is one of +, *, -, /, .and., .or., 

.eqv., or .neqv; and intr is one of MAX, MIN, IAND, IOR or IEOR.  

3.1.3 Work distribution  

The OpenMP directives used to indicate work distribution amongst threads are the ‘do’, 

‘single’ and ‘master’ directives. The single and master directives have similar functions 

but with some key differences. They both indicate that a section of code should be 

executed once, by a single thread only. However, the master directive has the additional 

caveat that the thread to execute this code must be the master thread, whereas the code 

in a single directive is executed by the first thread to reach the block. The single 

directive is one of the directives which have an implicit barrier at the end of the block, 

which is not the case for the master directive. Therefore during the execution of a single 

region all other threads are idle until the thread has completed the block, while during 

the execution of a master region, all other threads continue on through the code after 

the master region. 

The do directive is used to divide the iterations of a loop between threads. This is 

another example of a directive having an implicit barrier in OpenMP, upon completion 
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of a threads allotted loop iterations it then waits until all threads have completed before 

moving on. The use of loops to exploit parallelism in a code is very common, as such 

there is a shorthand directive combining the ‘parallel’ and ‘do’ directives, the ‘parallel 

do’ directive. If a do directive has no additional clauses the iterations of the loop will be 

divided amongst the threads as equally as possible, however this can be an ambiguous 

process. For example 7 iterations may be divided amongst 3 threads as 3, 3, 1 iterations 

or 3, 2, 2 iterations. There is however the ‘schedule’ clause which provides some 

control to the programmer as to how the iterations of a loop are distributed across the 

threads. The schedule directive takes the form SCHEDULE (kind[, chunksize]), where 

kind takes one of the following values: 

 STATIC: the ‘chunks’ of iterations are assigned in a block cyclic schedule. 

 DYNAMIC: the chunks are executed in a first come first serve basis by the next 

available thread until all the chunks have been executed. 

 GUIDED: chunks are assigned to threads in a similar way to dynamic, however 

size of the chunks varies. Chunks begin large and reduce in size exponentially, each 

chunk being the size of the remaining iterations divided by the number of threads. 

 AUTO: allows the runtime to decide on the assignment of iterations to threads. 

 RUNTIME: the schedule is defined at runtime by the user with the environment 

variable OMP_SCHEDULE. 

chunksize is a positive integer indicating the number of iterations in a chunk to be 

executed contiguously by a thread. It is optional to add chunksize to the clause in which 

case static scheduling behaves the same as not stating any type of schedule, while the 

dynamic and guided schedules default to a chunksize of 1 if not explicitly stated. A 

chunksize cannot be given for the auto or runtime schedule types.  

Each schedule has characteristics that may be useful depending on the situation. For 

well-balanced loops, i.e. those where iterations all require similar time to execute a 

static schedule works well and has the least overhead associated with it. Dynamic 

scheduling is good for loop in which iterations have a large variance in execution time, 

but does not take advantage of data locality. Guided usually incurs less overheads than 

dynamic, but it can produce disastrous performance if the first set of iterations of a loop 

are the most computationally expensive. An automated schedule choice can be 

beneficial in situations where a loop is executed repeatedly. 

 

3.2 Message Passing 

The information presented in this section is based on that found in [4] and [5]. The code 

used for this project was previously parallelised with the Message Passing Interface 

(MPI) standard, as such the following chapter will focus on the aspects of MPI and not 

any other message passing libraries. Message passing programming is used almost 

ubiquitously in high performance computing. This is due to its ability to run on both 

shared and distributed memory architectures. Although it is more suited to distributed 

memory architectures as each PE has a private memory space and therefore must 

communicate with other PEs via explicit messages.  
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In message passing programming each PE runs a copy of the same code, each referred 

to in MPI as a process. Each process will execute the same code, but as with OpenMP 

the path of execution can be altered using the process ID, in MPI this ID is referred to 

as the process rank. This rank is unique within a set collection of processes, called a 

communicator. The initial global communicator containing all processes is referred to 

as MPI_COMM_WORLD.  

3.2.1 Communication  

Communications in MPI take place within a communicator, identifying a receiving 

process by its rank within this communicator. The sender and receiver may be referred 

to as the source and destination respectively. There are 2 types of communication in 

MPI, point-to-point and collective.  

In point-to-point communication there is a single source and destination.  The source 

calls a ‘send’ routine while the destination must call a corresponding ‘receive’ routine. 

The send routine states the data that is to be sent in the message, the send buffer. While 

the receive routine specifies the receive buffer, where the data should be stored. A 

message will also contain metadata describing the message, this is called the status and 

is stored separately from the receive buffer. Along with the rank of the sender/receiver 

and a communicator, a point-to-point message may also be ‘tagged’. A tag must be a 

non-negative integer value and in many cases programs simply set all tags to 0. 

However, tags can be useful if specific message want to be chosen from all of the 

received messages.  

A receiver may also employ ‘wildcarding’. Using the MPI_ANY_SOURCE and/or 

MPI_ANY_TAG environment variables, a message can be received from any sender 

and/or with any tag respectively. The programmer can retrieve the actual source and 

value of a tag by looking at the ‘status’ of a message. If a receive matches multiple 

messages from the same sender in the “inbox”, MPI guarantees message order 

preservation, i.e. messages will be processed in the order they were sent. 

There are several communication ‘modes’ that can be used when sending a message. 

These modes determine when a call to the send routine completes for the process 

calling it. These modes are as follows: 

 Synchronous: Only completes when the receive has completed. 

 Buffered: Always completes (unless an error occurs), irrespective of receiver. 

 Standard: May be ether synchronous or buffered, depending on availability of 

buffer space. 

 Ready: Completes when a message has arrived at a process (that process may not 

have posted the necessary receive). 

Unlike the send routine, the receive routine will simply complete when the message has 

arrived. 

For a point-to-point message to succeed the following requirements must be met: 

 Sender must specify a valid destination rank. 

 Receiver must specify a valid source rank. 
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 The call to the send and receive routines must specify the same communicator. 

 The call to the send and receive routines must specify the same tag. 

 The call to the send and receive routines must have matching message types. 

 Receiver’s buffer must be large enough. 

 

Collective communications are called by all processes in a given communicator, for 

example a collective communication called using the MPI_COMM_WORLD 

communicator must be called by all processes. A collective communication may have 

multiple sources and multiple destinations and unlike point-to-point messages a tag is 

not included. Collective communications can be used to distribute or collect data across 

many processes, globally reduce a value after a distributed work effort or synchronise 

the processes within a communicator. To ‘copy’ data from a process to all processes 

within a communicator the broadcast routine is used, see figure 3.2. 

 

 

Figure 3.2: Graphical representation of the Broadcast routine 

 

For data distribution and collection 2 important routines are the scatter and gather 

routines respectively. These routines have a root process, this is the process from which 

the data is being distributed and to which the data is collected for the scatter and gather 

routines respectively, see figure 3.3 below. 

 

A 

A A A 
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Figure 3.3: Graphical representations of the Scatter and Gather routines 

 

For a collective reduce there are 2 routines with slightly different functions, the 

MPI_REDUCE and MPI_ALLREDUCE. The reduce function can be used to perform 

many types of reductions, such as a sum or finding the maximum or minimum of a 

collection. The ‘all reduce’ is particularly useful as every process involved is given the 

result of the communication, i.e. there is no root process. See figure 3.4. 

 

 

Figure 3.4: Graphical representation of the all reduce function 
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Many communications have 2 forms, blocking and non-blocking. This determines 

when a procedure calling a communication function will return, note this is not the 

same as a communication completing. The non-blocking form of a communication is 

paired with a ‘wait’ routine, this will then block progress through the code until the 

communication has completed. A non-blocking communication followed immediately 

by the corresponding wait is equivalent to the blocking form of the communication. 

3.2.2 Synchronisation 

Synchronisation is largely implicit, through the use of communications. When using 

synchronous point-to-point or collective communications, the processes involved are 

synchronised upon completing the communication. Threads involved in synchronous 

point-to-point communications must wait for a ‘handshake’ from the partner thread 

before proceeding to execute the message, ensuring synchronisation. In the case of 

collective communications although threads may enter the communication routine at 

different times, they have to wait for all other participating processes, before they 

collectively execute the communication. Data synchronisation will take place after all 

blocking communications, as once the communication completes the data used in the 

following computation will be correct. However, with the use of buffered messaging 

this does not ensure processes are synchronised in the execution of the code. 

This data synchronisation must be carefully monitored when using non-blocking 

communications. When using non-blocking communications to interleave 

communication and computation, it is the programmer that becomes responsible for 

ensure the data being used in the computation is correct.  

For explicit process synchronisation there is a collective barrier routine, which will only 

complete when all processes in the given communicator have entered. This will ensure 

that processes will be synchronised in point of execution but can have large overheads 

associated with it. This particular form of explicit synchronisation is rarely used in MPI 

programs, except in cases where a programmer uses it for diagnostic purposes, i.e. 

timing sections.  

 

3.3 Hybrid 

This chapter is based on information found at [6]. As discussed in the previous chapter, 

hybrid architectures are becoming more prominent in high performance computing; as 

such it follows that the hybridisation of the 2 previous programming models could be 

advantageous for such architectures.  

In theory the hybrid scheme would be very successful on a clustered architecture. 

Where message passing is perfectly capable of being run across the PEs within the 

nodes in a cluster, it does not take advantage of explicitly sharing data and other useful 

functions provided by shared memory. The use of the shared memory model within a 
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node reduces the amount of explicit communication needed, and therefore the 

overheads incurred by such communication.  

In the following section we will be discussing the hybrid model as implemented using 

the combination of MPI and OpenMP, as they were the APIs used for this project. 

3.3.1 Hybrid Programming Model 

In the hybrid the MPI nodes are used to distribute the workload whilst utilising threads 

to simultaneously compute any parallelisable code within the MPI process’ workload. 

In its purest form the hybrid model consists of all of the PEs within a node being used 

with shared memory programming, whilst inter-node communication is implemented 

using the message passing model. A thread on the node will usually be responsible for 

communicating with other nodes by calling the MPI communication routines, usually 

this is the master thread. The master thread will then spawn additional threads were 

needed to utilise shared memory parallelism.  

Whilst this may seem sensible it is often the case that this is not the most productive 

way to distribute MPI processes across the system. As described in chapter 2, shared 

memory architectures do not always have symmetric memory access but instead are 

often NUMA, this is particularly common for nodes used in clustered architectures. In 

this case it may be that a single MPI process may be placed in each NUMA region. The 

remaining PEs within that NUMA region will then be populated with threads spawned 

from the MPI process to fully utilise the performance of shared memory programming. 

Arranging processes and threads in this way ensures that all related threads have equal 

access to the shared memory resource.  

 

 

Figure 3.5: Threads running within a NUMA region, the master thread (orange 

PE, labelled 0) acting as the MPI process for the NUMA region 

 

The thread performing inter-node communication via MPI does not have to be the 

master thread. Calling MPI does not need to be restricted to a single thread either, 

however implementing MPI communication on all of the threads adds considerable 

overheads. The various schemes available in hybrid programming can be summarised 

as follows: 
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 Master Only: All MPI communication takes place through the master thread 

outside of the OpenMP parallel regions. 

 Funnelled: All MPI communication takes place through the master thread; this can 

be inside a parallel region. 

 Serialised: MPI communication is performed by a single thread at any given time. 

In this case the sending/receiving threads can be distinguished using MPI tags or 

communicators. 

 Multiple: MPI communication is performed simultaneously in multiple threads. It 

should be noted however, not all MPI implementations will support this form of 

hybrid parallelism. 

The simplest schemes to implement are ‘master only’ and ‘funnelled’ as they can be 

implemented quickly on a code already parallelised using MPI by adding OpenMP 

directives. This allows shared memory parallelism to be added to sections of code with 

particular performance issues that may benefit from such additional parallelism, whilst 

keeping programmer overheads to a minimum. Code supplement 3.5 below shows how 

the ‘master only’ and ‘funnelled’ schemes differ in their implementation in code. 

 

 Master Only 
 

Funnelled 
    

1 !$OMP PARALLEL   !$OMP PARALLEL 

2   computation    computation 

3 !$OMP ENDPARALLEL  !$OMP BARRIER 

4     !$OMP MASTER 

5   call MPI_SEND(…)    call MPI_SEND(…) 

6   !$OMP END MASTER 

7 !$OMP PARALLEL  !$OMP BARRIER 

8   computation    computation 

9 !$OMP END PARALLEL  !$OMP END PARALLEL 
    

Code Supplement 3.5: Master Only and Funnelled hybrid schemes implemented 

in code. 

 

This simplicity during implementation is not without cost however. Using either 

‘master only’ or ‘funnelled’ hybrid parallelism, will leave the remaining threads idle 

whilst serial code is being executed. Also, having only a single thread performing MPI 

communication means the inter-node bandwidth may not be fully utilised.  

3.3.2 Performance Considerations 

Although in principle it is easy to create a hybrid code, particularly when starting from 

a code already parallelised using MPI, it can be difficult to reach a good level of 

performance. To fully utilise the addition of shared memory programming the entire 

code must implement threads, not just the key kernels. Often when moving from a 

solely MPI implementation to a hybrid implementation, the performance will dip. The 

programmer must then continue to work with the code to build the performance of the 

code up to a reasonable standard. This can occur for many reasons, such as the addition 
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of explicit synchronisation needed in shared memory programming, where with a 

strictly MPI implementation would only have the implicit synchronisation through 

messages. Having two levels of synchronisation also creates two levels of parallel 

overhead. It is therefore necessary to assess why a code may benefit from hybridisation. 

For this there are many aspects of a code that may indicate whether or not a hybrid code 

some be pursued. Here we will discuss a handful of common reasons for moving to a 

hybrid implementation. 

MPI codes which use a lot of replicated data across the processes may benefit from 

hybridisation. The use of OpenMP allows the programmer to take advantage of shared 

memory, therefore reducing the amount of replicated data. Rather than having one copy 

of a key data structure per PE, we now require one copy per node or, depending on the 

distribution of MPI processes, per NUMA region. Now the data structure is shared, we 

can also reduce the amount of MPI buffer space reserved as intra-node messages are no 

longer required or, are significantly reduced. 

If an MPI code scales poorly it may be the case that a hybrid code scales better. 

OpenMP may allow the code to scale better as the domain decomposition does not 

compliment MPI. This could be due to the load balancing of the domain, where 

OpenMP has much more flexible load balancing options. It is also possible that the 

domain is very simple and therefore a shared memory structure is more efficient, rather 

than a slew of messages to exchange large numbers of halos relative to the work load of 

an individual process.  

Rather than the code being unable to scale to large numbers of MPI processes, it could 

be that the system being used doesn’t give the capability to scale, or even that the 

implementation of the MPI library being used isn’t able to handle the level of 

parallelism desired. This could be for many reasons, such as limit buffer space. The 

addition of OpenMP to an MPI code will in theory reduce the number of MPI processes 

required whilst maintaining similar levels of performance. Similarly whilst the MPI 

library implementation may be able to scale, it may not be optimised for the 

architecture on which it is being used, in this case a clustered architecture. Using the 

hybrid model, the programmer is effectively manually coding a more efficient way of 

performing, for example, an ‘all reduce’. The threads within a node will locally reduce 

using shared memory, this is then followed by a reduction across the MPI processes, in 

doing so this decreases the number of messages that need to be sent, in theory reducing 

the overall overhead of the operation. This is true for many messages, aggregating 

smaller message into one large message to be sent between nodes, this reduces the 

effects latency has on the performance of the code. 
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Chapter 4 

 

GS2: The Gyrokinetic code investigated 

GS2 was the code investigated during this project. The development of GS2 was 

funded primarily by the United States Department of Energy, as part of the ‘Scientific 

Discovery through Advanced Computing’ program, and is currently used by 

researchers around the world. In this chapter we will cover a brief description of GS2 

with more emphasis on the sections of the code worked with during the hybridisation 

process. We will also discuss the initial performance profiling of GS2, and how this 

provided the points of interest for the project. 

4.1 GS2 

Much of the information provided here is based on that found in [7], for a more 

complete description of GS2 please follow the link given in the references. 

GS2 is used in several fields of physics to study low-frequency turbulence in 

magnetised plasma. These fields include natural plasmas, such as those found in 

astrophysical systems, and plasmas produced in a lab environment. It is more 

commonly used for laboratory purposes, assessing the microstability of the plasmas, 

along with calculating key properties of the turbulence which results from instabilities. 

GS2 used Eulerian algorithms, these are a combination of spectral methods and grids in 

the 5-D phase space of gyrokinetics. It was the first code of its type able to “handle 

fully electromagnetic fluctuations with fully kinetic electrons in general non-circular 

tokamak geometry”[8]. It uses Eulerian algorithms and provides treatment of the 

multiple species, collisions and sheared flows found in the core region of tokamaks.  

GS2 features fully gyrokinetic, nonlinear simulations and flexible simulation geometry. 

Flexible simulation geometry allows a range of assumptions to be made when carrying 

out linear and nonlinear calculations. When used on a parallel system, as the case is 

with this project, users can perform nonlinear simulations of fully developed 

turbulence. By taking advantage of the principles used in object-oriented programming, 

GS2 maintains portability. Each module may be exchanged for a system appropriate 

version. For example the communications routines used to implement the parallelism 

are contained within a single module, allowing different APIs to be used. Presently 

MPI and SHMEM are supported; along with the option of serial execution. 
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GS2 maintains good performance by independently calculating the linear and 

quasilinear proportions of the least damped eigenmode at a given wavenumber. 

Another factor in the impressive performance of GS2 is its efficiency when dealing 

with turbulent structures. Using coordinates following the magnetic field lines of the 

plasma, the structures can be resolved in a flux tube of modest extent, with very high 

efficiency. The program can also maintain this performance when scaling as separate 

optimisations are used depending on the size of the system used, see figure 4.1. 

 

 

Figure 4.1: Graph comparing the achieved parallel performance of GS2 with the 

ideal parallel performance. Source for graph [9]. 

 

Running GS2 requires an input file with the extension ‘.in’, the name of this file is used 

as the reference for a given simulation. The input file consists of a series of ‘namelists’, 

each namelist specifying various parameters. A comprehensive list of these namelists 

and their parameters can be found at [10]. Given the number of namelists it is often 

more sensible to take an existing input file and modify it to match the users 

requirements. An example input file can be found in appendix A. 

  

4.2  The ‘timeadv’ routine 

Our main concern throughout this project was with the ‘timeadv’ routine, found in the 

‘dist_fn’ module.  The main purpose of this module is to advance the discrete 

gyrokinetic equation by calculating the source and dealing with the parallel boundary 

conditions. Whilst the computational methods used in the timeadv function are beyond 
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the scope of this project, the structure and execution path of the function provide insight 

into areas of the code to which the addition of threaded parallelism is viable. Therefore 

this section will contain an overview of the structure of the timeadv routine. 

The timeadv function calculates the distribution function at the next timestep of the 

simulation. The function is relatively short, consisting of 23 lines of “active” code, 

which is code not including comments, routine boundarys and blank lines. It is 

comprised of 4 main function calls; add_explicit_terms, invert_rhs, hyper_diff and 

vspace_derivatives. There purposes can be summarised as follows: 

 add_explicit_terms: Calculates the explicit nonlinear terms. 

 invert_rhs: Responsible for the actual evolution of the distribution function. 

 hyper_diff: Adds hyper diffusions if present. 

 vspace_derivatives: Adds collisions if present. 

These functions are then followed by calls to redistribute and enforce parity if required. 

Due to the modular, object-oriented style of GS2 each function call above continues to 

call subroutines down a call tree until reaching the routines containing the 

computational intensive sections, see figure 4.2. 

 

 

Figure 4.2: Example of a call tree in the timeadv routine 

 

4.3 Initial Benchmarking and Profiling 

We began by doing some basic benchmarking of GS2, to assess the general 

performance of the code, prior to any changes made. In order to discern routines in GS2 

in which large amounts of execution time is spent, performance profiling was then 

undertaken. This would then shed some light on the sections of code that when 

parallelised using threads, would provide the most benefit to the performance of the 

code.  

timeadv(…) 

add_explicit_terms(…) 

add_explicit (…) 

add_nl(…) 

… 
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4.3.1 Benchmarking 

We began by accessing the execution time relative to the number of processes used. 

These runs were performed on the HECToR system, see chapter 5 for details. The test 

case used throughout this project is provided as appendix A. Initial tests showed that 

execution time could vary slightly for identical runs, to provide more reliable data 

points, each run was performed 3 times and the values obtained where then averaged.  

 

0

50

100

150

200

250

0 512 1024 1536 2048 2560 3072 3584 4096

To
ta

l E
xe

cu
ti

o
n

 T
im

e 
(s

)

Number of PEs
 

Figure 4.3: Graph showing the execution time of GS2 for 1000 time steps using 

varying numbers of PEs, initial data point is 64 PEs 

 

Figure 4.3 shows us that the execution time for GS2 reduces as the PE number 

increases up to 2048 where we see a dramatic increase. Closer inspection of the data 

shows that for 4096 PEs the initialisation procedure continues to decrease as the trend 

would suggest. However, the execution time for advancing the time step and solving 

the fields increases.  

The speed up factor and parallel efficiency of GS2 are shown in figures 4.4 and 4.5 

below. Although the standard distribution of GS2 is capable of running in serial, we 

could not run this particular version of GS2 in serial. Therefore data points given for 

speed up where given by dividing the execution time for 64 PEs by the execution time 

gained for P PEs, rather than the time for running GS2 in serial on a single PE. Parallel 

efficiency is given by taking the speedup for P PEs and dividing it by P. 
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Figure 4.4: Graph showing the speed up of GS2 for 1000 time steps using varying 

numbers of PEs, initial data point is 64 PEs 
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Figure 4.5: Graph showing the parallel efficiency of GS2 for 1000 time steps using 

varying numbers of PEs, data has been re-biased to begin at 1 for 64 PEs 
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4.3.2 Scalasca Profiling 

GS2 comes with optional Scalasca support, activated by a variable in the primary 

makefile before building the code. This allows us to view a detailed performance 

profile, showing routines which are performance hotspots. Figure 4.6 shows that at the 

highest level of the call tree the execution time hotspots are contained in two separate 

functions, namely ‘init_fields’ and ‘advance’. It should be noted that the ‘init_fields’ 

routine, is part of the initialisation procedure for GS2. Therefore, it is only run once 

during the total execution time. Whereas the ‘advance’ procedure will be called 

proportionally to the number of steps in the simulation. With this in mind the ‘advance’ 

procedure will dominate execution time for real-world simulations, often involving a 

large number of steps. 

 

 

Figure 4.6: Top level Scalasca report, showing hotspots for execution time. 

 

However, when the call trees are investigated further, we see that much of the 

execution time within these two functions can be attributed to the same subroutine, the 

‘timeadv’ routine, see figure 4.7.  
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Figure 4.7: Extended call trees in Scalasca output, showing the ‘timeadv’ function 

responsible in both cases for the large execution time. 

Moving further down through the Scalasca tree we find that the following routines take 

up the highest percentages of execution time: 

 add_nl 

 transform2_5d_accel 

 get_source_term 

 solfp_ediffuse 

 conserve_diffuse 

 solfp_lorentz 

 conserve_lorentz 
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4.3.3 Communications and Data Distribution 

We can see from figure 4.8 that MPI communications in GS2 take up 30% of the total 

run time. With the addition of OpenMP threads, there will be reduction in MPI 

processes. This should theoretically reduce the number of messages passed throughout 

the run time.  

 

 

Figure 4.8: Scalasca screen showing the proportional time consumed by MPI 

communications, and routines in which communications are most commonly 

called. 

 

Along with this, the figure 4.9 shows the amount of data transferred throughout the run 

time. With a reduction in messages there would also be a reduction in data transfer. 

With less data transferred, the program will be less susceptible to overheads caused by 

bandwidth constraints. 
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Figure 4.9: Scalasca screen showing the amount of data transferred throughout 

the run time of GS2, along with the routines involved in transferring the higher 

proportions of this data. 

 

It has been shown that at large process counts the remote copy functionality of GS2 has 

a significant effect on performance.[11]  This is one of the motivations to implement 

the hybrid model within GS2. As it will keep process counts lower, therefore there will 

be less data distribution across the system. However, unlike simply running the code 

with a lower number of processes, we retain the compute power in the form of 

additional threads. The larger chunks of the distributed data can then be work on in 

shared memory between all of the threads, requiring less message passing and there 

suffering less of the overheads associated with it. 
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Chapter 5 

 

Implementation  

This chapter describes the implementation of threaded parallelism in the GS2 code, 

along with the systems that were used to develop and test the additions. The Culham 

Centre for Fusion Energy development version of GS2 was used for this project. Given 

the time constraints of the project a complete threaded implementation of GS2 was out 

of the project scope. Work was therefore done on the sections of code which took large 

amounts of execution time; the hope was to reduce the overall execution time of the 

program. After examining the code in computationally heavy routines, sections that 

lend themselves to threaded programming where identified. 

5.1 System Used 

This section describes the high performance computing system, HECToR, used for this 

project. The description presented in the section is derived from [12], for a more 

information on the system please follow the link provided in the references. At time of 

writing, HECToR is the system used for the UK national supercomputing service. 

HECToR uses the Cray Linux Environment as its operating system, along with a 

variety of compilers including PGI, GNU and Cray compilers. 

It is currently in Phase 3 and is a Cray XE6 system, with a total of 704 compute blades. 

With a total of 2816 compute nodes, each with 2 16-core AMD Opteron 2.3 GHz 

Interlagos processors. This gives a total of 90,112 cores, with a theoretical peak of over 

800 TFlops. The interlagos processor is arranged into 2 NUMA regions. Each 16-core 

socket is paired with a Cray Gemini routing and communications chip. For every 2 XE 

nodes there is a Gemini router chip, each chip has 10 network links used to implement 

a 3D-torus.  

The system has a total of approximately 90TB of memory, distributed amongst the 

processors as 16GB of memory per 16-core processor (8GB of memory per NUMA 

region). HECToR is equipped with over 1PB of high-performance RAID disks, 

accessible from any node using the Lustre distributed parallel file system. Along with 

this HECToR also has a tape based backup system, with a maximum capacity of 

approximately 1.02 PB.  
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5.2 Introducing OpenMP 

We began introducing threads by using the OpenMP ‘parallel do’ to parallelise the do 

loops found in the previously mentioned chapter. This followed the master only scheme 

in hybrid programming. However, this proved to be inefficient as threads had to be 

repeatedly initialised, incurring additional overheads for each parallel region. We 

therefore decided to use the funnelled approach to hybrid programming and have a 

single parallel region per routine, implementing a master region where necessary for 

MPI communications along with code note suitable to parallel execution. This was 

largely successful as there are large bodies of GS2 involved loops which can be easily 

parallelised using threads. 

In having only a single parallel region per routine we also took advantage of were to 

begin the region. With this in mind we positioned the parallel region as far into the 

routine, until reaching an appropriate parallelisable region. This was to ensure as much 

serial code could be executed as possible before initialising the threads and forcing the 

serial code into a master directive. This allows the PE on which the MPI process is 

running to take advantage of the extra resources available to it when its adjoining PEs 

are idle. Also it relieves the need for extra explicit OpenMP barrier routines at the end 

of a master region, therefore avoiding unnecessary overheads. 

During the implementation of the OpenMP directives the decision was made to use the 

‘default (none)’ clause for every parallel region. This prevented automatic variable 

casting to private or shared, and produced and error on compilation if a variable had not 

been explicitly declared within the shared or private clauses. This proved to be a useful 

tool in error detection, when a variable had been missed with the region. We also 

decided to by default the ‘schedule’ clause to each ‘do’ directive to allow for quick 

refactoring of the code in situations where different schedules are desired.  

While ideally all of the hotspot routines mentioned in the previous chapter would be 

threaded. We successfully threaded all of these routines bar the ‘transform2_5d_accel’. 

Unfortunately, the main computational loop in this routine (shown in code supplement 

5.1) contained a variable with a unique value for each loop iteration. 
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1 idx = g_lo%llim_proc 

2 do k = accel_lo%llim_proc, accel_lo%ulim_proc 

3  if (aidx(k)) then 

4    ag(:,:,k) = 0.0 

5  else 

6    if (ik_idx(g_lo, idx) .ne. 1) then 

7      do iduo = 1, 2 

8        do itgrid = 1, 2*ntgrid +1 

9          g(itgrid, iduo, idx) = 0.5 * g(itgrid, iduo, idx) 

10          ag(itgrid - (ntgrid+1), iduo, k) = g(itgrid, iduo, idx) 

11        enddo 

12      enddo 

13    else 

14      do iduo = 1, 2 

15        do itgrid = 1, 2*ntgrid+1 

16          ag(itgrid-(ntgrid+1), iduo, k) = g(itgrid, iduo, idx) 

17        enddo 

18      enddo 

19    endif 

20    idx = idx + 1 

21  endif 

22 enddo 
  

Code Supplement 5.1: The main computational loop within the 

transfrom2_5d_accel routine (not including comments) 

 

The ‘idx’ variable is used in every iteration, and then continues to be used after it has 

been set for the final time at the end of the loop. As each thread would receive a 

different set of iterations the ‘idx’ variable would need to be set to the correct starting 

value for each thread. However, as we see in line 1 of code supplement 5.1, prior to 

entering the loop ‘idx’ is set to a value unknown until run time. While it may be 

possible to create a firstprivate version of ‘idx’ for the thread executing the first set of 

iterations, this would not suit for the other threads executing iterations further in the 

loop. Not only this but the variable does not simply increment with each iteration of the 

loop, it is part of the conditional statement, therefore threads executing later iterations 

could not assume what the value would be. Although I’m sure a solution could be 

conceived, due to time constraints this was not possible in this instance. 

Another problematic routine was the ‘integrate_moment_c34’ function. It is repeatedly 

called in functions such as ‘conserve_lorentz’ in between the computational loops, and 

is involved in redistributing data across the processes by calling functions in the 

communication module. It would be highly inefficient to close the parallel region 

before each call to this function, to then have a separate parallel region within the 

function; as such we decided to attempt implementing orphaned OpenMP directives. 

Orphaned directives are directives that are used within the dynamic scope of a parallel 

region but are not in the lexical scope of a parallel region. However, by using orphaned 
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directives we have less direct control over declared variables as shared or private. This 

created a particular issue with the ‘total_small’, which we originally had as a reduction 

across a loop that had been threaded. However, for the reduction clause to be used a 

variable must be shared, from which private are copies are made for use within the 

work sharing region. By default variables declared inside a function with orphaned 

directives are private. We attempted to solve this problem in several ways, including 

declaring ‘total_small’ as a global variable, which are shared by default in when used in 

orphaned directives. But all attempts to rectify the issues gave erroneous results when 

tested, therefore we simply surrounded the calls to the integrate moment function with 

the master directive. This ensured communication continued through the master thread 

as well as keeping efficiency up by not having to enter and exit parallel regions. 

 

5.2.1 Thread Ratio 

Once threads where introduced to GS2 we proceeded to test the most effective ratio of 

OpenMP threads to MPI processes. We began by devoting an entire NUMA region to 

each thread; this is equivalent to one process to eight threads. We then continued to 

reduce this number by half until each process had two threads. Figure 5.1 gives a 

breakdown of the data gained. 
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Figure 5.1: Chart showing time spent in advance steps, initialisation and total 

execution time against the number of threads per MPI process for the hybrid 

implementation of GS2 running 1000 time steps 

 

As we can see from figure 5.1 that for all implementations using threads the total 

execution time for 1000 time steps is longer than the MPI only version of GS2. 

However, when run using two threads per process while the initialisation and total 

execution is longer, the time for advance steps is slightly shorter. Given that the 

initialisation is an overhead that should remain the same regardless of the number of 

time steps, and the advance step time will is proportional to the number of steps, the 

small reduction in advance step given by the hybrid implementation could cause a 

significant reduction in total execution time for runs with a large numbers of time steps. 

We therefore decided to proceed with two threads per process for further testing. 
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Chapter 6 

 

Results and Analysis  

This section covers the results gained from running the hybrid and MPI-Only versions 

of GS2 under varying workloads and across multiple numbers of PEs. These tests were 

run using the test case provided in appendix A as previously stated.  

 

6.1 Scaling Performance 

The following section discusses the results gained from strong scaling tests. Strong 

scaling involves the global volume to be fixed while increasing the number of PEs used 

to execute that workload. The performance results in this section were all gained using 

1000 time steps.  
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Figure 6.1: Graph showing the Total Execution time for Hybrid GS2 across 

varying numbers of PEs for 1000 steps 

 

Figure 6.1 shows us that the hybrid implementation of GS2 continues to scale well to 

large number of PEs. When compared to figure 6.2 we can see that the MPI-Only 

version of GS2 begins to increase in execution time from 4096 PEs. We can also see 

that up until 4096 PEs the hybrid codes performance is, only slightly worse than the 

MPI-Only version. 
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Figure 6.2: Graph showing the Total Execution time for both Hybrid and MPI-

Only GS2 against the number of PEs used. Initial data point is at 128 PEs. 

 

As we can see from figure 6.3, the speed up for the hybrid code remains fairly linear 

where the MPI-only code decreases dramatically at 4096 PEs. 
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Figure 6.3: Graph showing the speed up against number of PEs used for both 

Hybrid and MPI-Only GS2. Initial data point is at 64 PEs. 

 

We again see this pattern at 4096 PEs as figure 6.4 shows the parallel efficiency of the 

Hybrid code levelling, whereas the MPI-only code continues declining. 
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Figure 6.4: Graph showing Parallel Efficient against number of PEs used for both 

Hybrid and MPI-Only GS2. Initial data point is at 64 PEs, data has been re-biased 

to begin at 1. 
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Whilst figure 6.2 shows the comparison of performance based on the computing 

resources used, figure 6.5 gives a performance comparison based on the number of MPI 

processes used. It could be argued that this gives us a better comparison of performance 

as the data distribution amongst the MPI processes will be equal. 
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Figure 6.5 : Graph showing the Total execution time against the number of MPI 

processes used for both Hybrid and MPI-Only GS2. Initial data point is at 64 MPI 

processes. 

 

As we can see in figure 6.5 the hybrid code consistently runs faster than the MPI-only 

code when using the same number of MPI processes. We can also see very similar 

patterns emerging from figures 6.6 and 6.7.  
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Figure 6.6: Graph Showing the Initialisation time against Number of MPI 

processes for both MPI-Only and Hybrid GS2. 

 

In figure 6.6 we see that for lower MPI process counts, the hybrid code initialises faster 

than the MPI-only version. However, as they approach 4096 processes they converge. 

This indicates that the section of code allowing the hybrid implementation to 

outperform the MPI implementation is not in the initialisation phase of the program. 

 

Figure 6.7: Graph Showing the Advance Step time against Number of MPI 

processes for both MPI-Only and Hybrid GS2. 

 

Figure 6.7 provides some insight into why the hybrid code begins to drastically 

outperform the MPI-only code. As we can see moving towards 3072 processes, the two 
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implementations converge, with the hybrid implementation being slightly faster. 

However, upon reaching 4096 processes the MPI-only code drastically increases in 

advance step execution time, while the hybrid code continues to plateau. The data show 

in figure 6.7, along with the similarity in the graph shapes with figure 6.5, suggests that 

the advance step execution time is indeed a deciding factor in the total execution time 

of GS2, and when using equal numbers of MPI processes, the hybrid code outperforms 

the MPI-only code. Although, it may be the case that the addition of threads to the code 

provided this performance increase, it may also be the case that the performance was 

gained simply through under population of the node.  

Under population of a node in clustered architecture is simply running on fewer than 

the total number of PEs on the node. Often this will be fraction of the node such as one 

half, and the work will be spread evenly across the node. This can often provide the 

active PEs with the resources normally used by an adjoining PE, such as the floating 

point unit or shared cache. 

 

6.2 Workload Performance 

In this section we will discuss the results of the workload testing we performed. The 

workload testing for this project took the form of varying the number of steps to be 

completed for a single execution of GS2. Whilst testing this aspect of the program, we 

used 1024 PEs for both the MPI-only and hybrid version. This meant that the hybrid 

version is running with 512 MPI processes, with each process being coupled with two 

OpenMP threads. For example submission scripts see appendix B. We test a range from 

1000 to 10,000 steps, incrementing by 1000 until 5000, we then increase to 10,000. 
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Figure 6.8: Graph showing Total Execution time against Number of time steps for 

both Hybrid and MPI-Only GS2. 
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We can see in figure 6.8 that from 1000 to 4000 the executions times converge, with 

the hybrid implementation being slightly slower than the MPI-only implementation. 

The execution times then begin to diverge, with the hybrid implementation 

outperforming the MPI-only implementation. 

 

 

Figure 6.9: Graph showing the Initialisation time against the number of time steps 

for both Hybrid and MPI-Only GS2. 

 

Figure 6.9 shows the time taken for the initialisation of GS2 across the varying number 

of time steps. The initialisation time is fairly stable across all step numbers for both 

versions of GS2. This is as we would expect as the initialisation is a single overhead. 

This data also indicates that initialisation is not proportional to the number of steps in a 

run. Figure 6.9 clearly shows that the initialisation for the hybrid implementation takes 

longer than for the MPI-only implementation. This coupled with what we see in figure 

6.10 goes some way in explaining the graph we see in figure 6.8. 

As we can see in figure 6.10 the advance step time for both the hybrid and MPI-only 

implementations are equal for 1000 steps, but immediately begin to diverge with the 

MPI-only implementation taking longer. The total execution time for the hybrid 

implementation would higher than the MPI-only implementation, until the gains given 

by the advance step code outweighs the additional initialisation overhead, which is 

what we see happening in figure 6.8 at 4000 steps. 
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Figure 6.10: Graph showing the Advance Step time against the number of time 

steps for both Hybrid and MPI-Only GS2. 

 

As we mentioned, figure 6.10 shows the advance step time slowly diverging, this 

indicates a marginal decrease in execution time for an individual time step. This would 

therefore produce a cumulative effect that gradually increases the performance gap. 

However, as previously stated, we are unable to tell whether this is a genuine increase 

due to the OpenMP additions or due to under population of the nodes with regards to 

the MPI processes.  
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Chapter 7 

 

Conclusions  

At the beginning of this project we set out to optimise the GS2 gyrokinetic simulation 

code through the use of the hybrid programming model. This involved adding threaded 

parallelism to key functions in the existing code base, which already used message-

passing parallelism in the form of the MPI library. Our main aim was to access any 

improvements in performance that might occur due to the addition of OpenMP 

directives. 

For the project we used the CCFE test version of GS2, which presented some issues in 

throughout the life cycle of the project. One such issue was the inability to run GS2 in 

serial. However, there were no problems serious enough to deadlock the project. After a 

detail performance profiling we isolated several routines that were responsible for large 

amounts of execution time, many of which were suitable for threaded parallelism 

(section 4). 

Upon completing the addition of OpenMP directives to the code, we then set about 

testing the ratios of OpenMP threads to MPI processes. While it was initially thought 

that making use of an entire NUMA region would be beneficial, maximising the use of 

shared memory within a node, this was not the case. The best performing ratio was a 

ratio of 2:1 threads to processes. After looking into the data used in creating loop 

bounds, it was found that often the loops that had been parallelised would have very 

few iterations. This short fall in iterations would make it very inefficient to distribute 

over a large number of threads, and goes some way in explaining why we got the 

performance results we did. 

Whilst we did see a slight improvement in the overall execution time for GS2 given a 

large enough workload and/or PEs used, I do not believe we can be certain that the 

additional parallelism is responsible. As we have stated previously in this report there 

are other factors at work that may explain the performance changes we have seen. That 

being said, I think many more routines in GS2 could successfully make use of threads. 

Given a more complete realisation of the hybrid programming model, throughout the 

code I think it would give a marked improvement to the overall performance of GS2. 
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7.1 Future Work 

There are several aspects of the project that I would like to see revisited in future work. 

The most prominent of which is the introduction of OpenMP threads to the entire GS2 

code. However, given the complex modular structure of the program, this would be 

very time consuming to implement, and for an unknown level of pay off. It would most 

definitely be subject to a cost-benefit analysis, from which it may not be deemed worth 

pursue.  

As GS2 has built in support for the SHMEM single-sided communications library, I 

would be very interested in exploring the performance ramifications of adding OpenMP 

to a SHMEM implementation. 

Along with a more extensive implementation of OpenMP, I would also like to see 

further testing take place, with a wide variety of test cases. A diverse group of test cases 

could uncover aspects of performance not seen by the example test case used during the 

project. Alongside this form of testing, I would also like to see a comparison of the 

hybrid implementation of GS2 with a similar code such as GKW, which reports to scale 

2-4x further using the hybrid model. 
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Appendix A  

 

Input Datafile 

&theta_grid_knobs 

 equilibrium_option='eik' 

/ 

 

&theta_grid_parameters 

 rhoc = 0.4 

 ntheta = 30 

 nperiod= 1 

/ 

 

&parameters 

 beta = 0.04948 

 zeff =   1.0 

 TiTe = 1.0 

/ 

 

&collisions_knobs 

 collision_model = 'default' 

 !collision_model = 'none' 

 !collision_model='lorentz' 

/ 

 

&theta_grid_eik_knobs 

 itor = 1 

 iflux = 1 

 irho = 3 

 ppl_eq = .false. 

 gen_eq =  .false. 

 efit_eq = .true. 

 gs2d_eq = .true. 

 local_eq = .false. 

 eqfile = 'equilibrium.dat' 

 equal_arc = .false. 

 bishop = 1 

 s_hat_input = 0.29 
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  beta_prime_input = -0.5 

 delrho = 1.e-3 

 isym = 0 

 writelots = .false. 

/ 

 

&fields_knobs 

 field_option='implicit' 

/ 

 

&gs2_diagnostics_knobs 

 write_ascii = .false. 

 print_flux_line = .true. 

 write_flux_line = .true. 

 write_nl_flux = .true. 

 write_omega = .false. 

 write_omavg = .false. 

 write_final_moments = .false. 

 write_final_fields=.false. 

 print_line=.false. 

 write_line=.false. 

 

 save_for_restart=.false. 

 nsave=         1000 

 

 nwrite=        100 

 navg=          200 

 

 omegatol=  1.0e-5 

 omegatinst = 500.0 

/ 

 

&le_grids_knobs 

 ngauss = 8 

 negrid = 8 

/ 

 

&dist_fn_knobs 

 boundary_option= "linked" 

 gridfac=   1.0 

/ 
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&init_g_knobs 

 !restart_file= "nc/input.nc" 

 ginit_option= "noise" 

 phiinit=   1.e-6 

 chop_side = .false. 

/ 

 

&kt_grids_knobs 

 grid_option='box' 

/ 

 

&kt_grids_box_parameters 

 y0 = 10 

 ny = 96     

 nx = 96     

 jtwist = 2   

/ 

 

&knobs 

 fphi= 1.0 

 fapar= 0.0 

 faperp= 0.0 

 delt= 1.0e-4 

 nstep= 1000 

 wstar_units = .false. 

/ 

 

&species_knobs 

 nspec=  2 

/ 

 

&species_parameters_1 

 type  = 'ion' 

 z     = 1.0 

 mass  = 1.0 

 dens  = 1.0 

 temp  = 1.0 

 tprim = 2.04 

 fprim = 0.0 

 vnewk = 1.0 

 uprim = 0.0 

/ 

 



 46 

&dist_fn_species_knobs_1 

 fexpr  = 0.45 

 bakdif = 0.05 

/ 

 

&species_parameters_2 

 type  = 'electron' 

 z     = -1.0 

 mass  = 0.01 

 dens  = 1.0 

 temp  = 1.0 

 tprim = 2.04 

 fprim = 0.0 

 vnewk = 1.0 

 uprim = 0.0 

/ 

 

&dist_fn_species_knobs_2 

 fexpr= 0.45 

 bakdif=  0.05 

/ 

 

&theta_grid_file_knobs 

 gridout_file='grid.out' 

/ 

 

&theta_grid_gridgen_knobs 

 npadd = 0 

 alknob = 0.0 

 epsknob = 1.e-5 

 extrknob = 0.0 

 tension = 1.0 

 thetamax = 0.0 

 deltaw = 0.0 

 widthw = 1.0 

/ 

 

&source_knobs 

/ 

 

&nonlinear_terms_knobs 

nonlinear_mode='on' 

cfl = 0.5 
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/ 

 

&additional_linear_terms_knobs 

/ 

 

&reinit_knobs 

 delt_adj = 2.0 

 delt_minimum = 1.e-8 

/ 

 

&theta_grid_salpha_knobs 

/ 

 

&hyper_knobs 

/ 

 

&layouts_knobs 

 layout = 'yxles' 

 local_field_solve = .false. 

 unbalanced_xxf = .true. 

 max_unbalanced_xxf = 0.5 

 unbalanced_yxf = .true. 

 max_unbalanced_yxf = 0.5 

 opt_local_copy = .true. 

 opt_redist_init = .true. 

 opt_redist_nbk = .true. 

 velint_subcom = .true. 

/ 
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Appendix B  

Example Submission Scripts 

B.1 MPI-Only Submission Script 

#!/bin/bash --login 

#PBS -N gs2 

#PBS -l mppwidth=512 

#PBS -l mppnppn=32 

#PBS -l walltime=00:30:00 

#PBS -A d45 

 

cd $PBS_O_WORKDIR 

 

cd /work/d45/d45/s1268782/diss/testcases/ 

cp /home/d45/d45/s1268782/diss/ccfe_opt_test/gs2 . 

 

export NPES=`qstat -f $PBS_JOBID | awk '/mppwidth/ {print 

$3}'` 

export NPERNODE=`qstat -f $PBS_JOBID | awk '/mppnppn/  

{print $3}'` 

 

aprun -n $NPES -N $NPERNODE ./gs2 gs.in 

 

 

B.2 Hybrid Submission Script 

#!/bin/bash 

#PBS -N hybrid_1024 

#PBS -l mppwidth=1024 

#PBS -l mppnppn=32 

#PBS -l walltime=03:00:00 

#PBS -A d45 

 

cd $PBS_O_WORKDIR 

 

cd /work/d45/d45/s1268782/diss/hybrid_1024/ 

cp /home/d45/d45/s1268782/diss/ccfe_opt_test/gs2 . 

 

export NPES=`qstat -f $PBS_JOBID | awk '/mppwidth/ {print 

$3}'` 
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export NPERNODE=`qstat -f $PBS_JOBID | awk '/mppnppn/  

{print $3}'` 

export PSC_OMP_AFFINITY=FALSE 

export OMP_NUM_THREADS=2 

 

echo "OMP_NUM_THREADS" $OMP_NUM_THREADS 

 

aprun -n 512 -N 16 -d $OMP_NUM_THREADS -S 4 ./gs2 gs.in 
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