

New micro-benchmark to investigate the scalability

of MPI point-to-point matching

Jia Song

August 22, 2013

MSc in High Performance Computing

The University of Edinburgh

Year of Presentation: 2007

I

Abstract

With the development of high performance techniques, the computational capability of

supercomputers will be improved to an exascale level to process larger sets of data. It is anticipated

in these future circumstances that the latency and overhead per message will be one of the most

important factors of the machine’s performance. This project develops a new way to investigate the

performance of the MPI libraries of some the most advanced HPC facilities. By implementing the

micro-benchmark suite on Blue Gene/Q, HECToR, INDY and ECDF, it was possible to obtain the

time spent on forcing the matching order of the messages on each machine which provides

theoretical references for judging the performance of MPI libraries on HPC systems.

II

Content

Abstract .. I

List of Figures .. IV

List of Tables .. VI

Acknowledgements ... VIII

1. Introduction .. 9

2. Background ... 11

2.1 Background Literatures ... 11

2.2 MPI Programming Model ... 12

2.2.1 MPI Non-blocking Communication .. 12

2.2.2 MPI Message Passing Protocols ... 12

2.3 Architecture ... 13

2.3.1 Distributed Memory Architecture .. 13

2.3.2 Shared Memory Cluster ... 14

2.3.3 cc-NUMA (Non Uniform Memory Access) ... 14

2.4 Benchmark Classification .. 15

2.4.1 Pingpong and Pingping Benchmark ... 15

2.4.2 Intel MPI Benchmarks .. 15

3. Methodology ... 16

3.1 Tag Algorithm ... 16

3.1.1 Code Design for Tag Algorithm ... 16

3.1.2 Mathematic Model for Tag Algorithm .. 20

3.1.3 Implementation .. 21

3.1.4 Data Analysis Strategy for Tag Algorithm ... 22

3.2 Comm Algorithm ... 23

3.2.1 Benchmark_comm Code Design .. 24

3.2.2 Mathematic Model for Comm Algorithm... 26

3.2.3 Compilation and Implementation .. 27

3.2.4 Data Analysis Strategy for Comm Algorithm .. 27

4. Machine Configuration and Program Outcomes ... 28

4.1 Blue Gene/Q .. 29

4.1.1 Machine Configuration .. 29

4.1.2 Program Outcomes .. 31

III

4.2 HECToR .. 46

4.2.1 HECToR Configuration ... 46

4.2.2 Programs Outcomes ... 48

4.3.1 INDY Configuration ... 61

4.3.2 Programs Outcomes of INDY-Linux .. 62

4.3.3 Programs Outcomes of INDY-Windows .. 73

4.4 ECDF .. 74

4.4.1 ECDF Configuration .. 74

4.4.2 Programs Outcomes of ECDF ... 75

4.5 Morar... 76

6. Performance Comparison .. 76

6.1 Direct Results Comparison .. 76

6.2 Final Result Comparison .. 77

7. Conclusion and Further Work ... 79

Appendix ... 81

Bechmark_tag Code .. 81

Benchmark_comm Code ... 87

Reference .. 93

IV

List of Figures

Figure 1: Distributed memory architecture ………………………………………………………………………..…13

Figure 2: Shared memory cluster architecture…………………………………………………………….…….….13

Figure 3: cc-NUMA architecture…………………………………………………………………………………….….….14

Figure 4: illustrates the In-Order algorithm showing two complete iterations with each data

 block containing 4 messages………….……………………………………………………….…...…..17

Figure 5 Hardware architecture of Blue Gene/Q…………………………………………………………...……..30

Figure 6: Direct results for 80 bytes messages transferring by Tags Algorithm on BGQ…...…..32

Figure 7: Diff figure of 80 bytes messages transferring by Tags Algorithm on BGQ…………...….32

Figure 8: Matching time for 80 bytes messages transferring by Tags Algorithm on BGQ…...…32

Figure 9: Direct results for 80 bytes messages transferring by Tags Algorithm on BGQ…….....33

Figure 10: Matching time for 800 bytes messages transferring by Tags Algorithm on BGQ.....34

Figure 11: Direct results for 8000 bytes messages transferring by Tags Algorithm on BGQ.....35

Figure 12: Direct results for 80000 bytes messages transferring by Tags Algorithm on BGQ...36

Figure 13: Diff figure of 80000 bytes messages transferring by Tags Algorithm on BGQ.........36

Figure 14: Direct results for 800000 bytes messages transferring by Tags Algorithm onBGQ..37

Figure 15: Diff figure of 800000 bytes messages transferring by Tags Algorithm on BGQ........38

Figure 16: Direct results for 8000000 bytes messages transferring by Tags Algorithm

 on BGQ..39

Figure 17: Diff figure of 8000000 bytes messages transferring by Tags Algorithm on BGQ......39

Figure 18: Massage mating time on of Tag Algorithm BGQ..41

Figure 19: Direct results for 80 bytes messages transferring by Comm Algorithm on BGQ......42

Figure 20: Diff figure of 80 bytes messages transferring by Comm Algorithm on BGQ............42

Figure 21: Matching time for 80 bytes messages transferring by Comm Algorithm on BGQ....43

Figure 22: Massage matching time of Comm Algorithm on BGQ..45

Figure 23: Hardware Architecture of HECToR...47

Figure 24: Direct results for 80 bytes messages transferring by Tag Algorithm on HECToR.....49

Figure 25: Diff figure for 80 bytes messages transferring by Tag Algorithm on HECToR..........49

Figure 26: Matching time for 80 bytes messages transferring by Tag Algorithm

 on HECToR..50

Figure 27: Direct results for 800 bytes messages transferring by Tag Algorithm

 on HECToR..51

V

Figure 28: Direct results for 8000 bytes messages transferring by Tag Algorithm

 on HECToR...52

Figure 29: Direct results for 80000 bytes messages transferring by Tag Algorithm

 on HECToR...53

Figure 30: Direct results for 800000 bytes messages transferring by Tag Algorithm

 on HECToR...54

Figure 31: Direct results for 8000000 bytes messages transferring by Tag Algorithm

 on HECToR...55

Figure 32: Message matching time for HECToR..56

Figure 33: Direct results for 80 bytes messages transferring by Comm Algorithm

 on HECToR...57

Figure 34: Diff figure for 80 bytes messages transferring by Tag Algorithm on HECToR...........58

Figure 35: Matching time for 80 bytes messages transferring by Comm Algorithm

 on HECToR...58

Figure 36: Massage matching time of Comm Algorithm on HECToR..61

Figure 37: Direct results for 80 bytes messages transferring by Tag Algorithm on INDY0........62

Figure 38: Diff figure for 80 bytes messages transferring by Tag Algorithm on INDY0.............63

Figure 39: Matching time for 80 bytes messages transferring by Tag Algorithm on INDY0......63

Figure 40: Direct results for 800 bytes messages transferring by Tag Algorithm on INDY0......64

Figure 41: Direct results for 8000 bytes messages transferring by Tag Algorithm on INDY0....65

Figure 42: Direct results for 80000 bytes messages transferring by Tag Algorithm

 on INDY0..66

Figure 43: Direct results for 800000 bytes messages transferring by Tag Algorithm

 on INDY0..67

Figure 44: Direct results for 8000000 bytes messages transferring by Tag Algori thm

 on INDY0..68

Figure 45: Approximate value of Matching time of Tag Algorithm on HECToR.........................69

Figure 46: Direct results for 80 bytes messages transferring by Comm Algorithm

 on INDY0..70

Figure 47: Diff figure for 80 bytes messages transferring by Comm Algorithm on INDY0........71

Figure 48: Matching time for 80 bytes messages transferring by Comm Algorithm

 on INDY0..71

VI

List of Tables

Table 1: Results of 80 bytes messages transferring by Tags Algorithm on BGQ.......................31

Table 2: Results of 800 bytes messages transferring by Tags Algorithm on BGQ.....................33

Table 3: Results of 8000 bytes messages transferring by Tags Algorithm on BGQ...................34

Table 4: Results of 80000 bytes messages transferring by Tags Algorithm on BGQ.................35

Table 5: Results of 800000 bytes messages transferring by Tags Algorithm on BGQ...............37

Table 6: Results of 8000000 bytes messages transferring by Tags Algorithm on BGQ.............38

Table 7: Components of IOT and ROT...40

Table 8: Message matching time on of Tag Algorithm BGQ..40

Table 9: Results of 80 bytes messages transferring by Comm Algorithm on BGQ....................42

Table 10: Results of 800 to 8000000 bytes messages transferring by Comm Algorithm

 on BGQ..44

Table 11: Matching time of Comm Algorithm on BGQ...45

Table 12: Direct results for 80 bytes messages transferring by Tag Algorithm on HECToR......48

Table 13: Direct results for 800 bytes messages transferring by Tag Algorithm on HECToR....50

Table 14: Direct results for 8000 bytes messages transferring by Tag Algorithm on HECToR..51

Table 15: Direct results for 80000 bytes messages transferring by Tag Algorithm

 on HECToR...52

Table 16: Direct results for 800000 bytes messages transferring by Tag Algorithm

 on HECToR...53

Table 17: Direct results for 8000000 bytes messages transferring by Tag Algorithm

 on HECToR...54

Table 18: Message matching time for HECToR...55

Table 19: Confirmatory results for Tag Algorithm on HECToR..56

Table 20: Direct results for 80 bytes messages transferring by Comm Algorithm on HECToR..57

Table 21: Results of 800 to 8000000 bytes messages transferring by Comm Algorithm

 on HECToR...60

Table 22: Matching time of Comm Algorithm on HECToR...60

Table 23: Direct results for 80 bytes messages transferring by Tag Algorithm on INDY0.........62

Table 24: Direct results for 800 bytes messages transferring by Tag Algorithm on INDY0.......64

VII

Table 25: Direct results for 8000 bytes messages transferring by Tag Algorithm on INDY0.....65

Table 26: Direct results for 80000 bytes messages transferring by Tag Algorithm on INDY0...66

Table 27: Direct results for 800000 bytes messages transferring by Tag Algorithm

 on INDY0...67

Table 28: Direct results for 8000000 bytes messages transferring by Tag Algorithm

 on INDY0...68

Table 29: Message matching Time of Tag Algorithm on INDY0..69

Table 30: Direct results for 80 bytes messages transferring by Comm Algorithm on INDY0....70

Table 31: Results of 800 to 8000000 bytes messages transferring by Comm Algorithm

 on INDY0...73

Table 32: Message matching Time of Comm Algorithm on INDY0...73

Table 33: Direct results of Comm Algorithm on INDY-Windows..74

Table 34: Original Results of ECDF with 10 80 bytes messages transferring by

 Tag Algorithm..76

Table 35: Direct IOT results of Tag Algorithm on three machines..77

Table 36: Matching time Comparison among the three machines..78

 (using identical input parameters for each job)

VIII

Acknowledgements

I sincerely thank my supervisor Dan Holmes for his guidance and support throughout the life time

of the whole project. His feedback during our weekly meetings was highly informative and

invaluable to the success of this project.

I want to thank Fiona Reid and Stephen Booth for guiding me while Dan was away for a brief

period.

9

1. Introduction

In June this year, the International Supercomputing Conference 2013 released the newest Top 500

List. The Chinese Supercomputer Tianhe-2 won first with a performance of 33.86 petaflop/s [1].

Over the past few years, computing capabilities of the top supercomputers in the world has shown

both an impressive and sustained growth. The performance has increased by approximately 10x

every 3.6 years. The first generation of supercomputers started with 1 Gflop/s in 1985. The Intel

ASCI Red later achieved 1 TFlop/s in 1997, the Roadrunner developed with 1 PFlop/s in 2009,

and presently the exaflop machine with 1000 PFlop/s is expected to be implemented around 2018

[2].

Exascale computing is able to undertake large scale scientific computations with a huge data set

which may consist of millions of messages, a large amount of which may be transferred at one

time. Hence, the per message overheads and latency as well as the actual message sending time

will play a more and more important role in the efficiency of the HPC systems. This project

investigates the performance issues of MPI libraries on the four most advanced supercomputers by

using a new micro-benchmark suite.

Various kinds of benchmark suites for MPI programs exist now, but at present they are not able to

meet the need of measuring the overheads and latency for each message. They may contain

communication overheads, time for invoking subroutine calls and other factors. The

micro-benchmark suite aims to execute a multi-pingpong program with a number of messages (a

data package) between two nodes in two orders, InOrder or ReverseOrder. By calculating the

difference between the numbers of matching in InOrder or ReverseOrder communication patterns

as well as the difference between the time of in order matching and out of order matching to

compute the matching time and overheads of a message with a certain size.

The four HPC machines involved in this project are the Blue Gene/Q, HECToR, INDY and ECDF.

Blue Gene/Q is the third generation product of the IBM Blue Gene project which aims to invent

the fastest and most powerful computing facilities [3]. HECToR is a parallel supercomputer which

represents for the UK’s high-end computing resource, funded by the UK Research Councils [4].

INDY is an industry machine maintained by Edinburgh Parallel Computing Center [5]. ECDF is

the Edinburgh Compute and Data Facility which belongs to the University of Edinburgh [6]. All

these machines provide resources to compute large data MPI programs.

10

This dissertation is structured as following:

Chapter 2 sets out the background research of the project which is based on the thesis of McMPI -

a Managed-code Message Passing Interface Library for High Performance Communication in C#

[7]. The programs are written in C programming language with Massage Passing Interface model,

furthermore this is explained in detail. Memory architecture is also a dominating factor of the

efficiency of computers, some typical architecture of these machines will also be discussed.

Finally, some other benchmark suites will be introduced.

Chapter 3 outlines the code design consideration, mathematic model, implementation details and

data analysis strategy of the program. In order to satisfy the particular needs of the program and to

guarantee accuracy, two algorithms are developed for the micro-benchmark code, Tag Algorithm

and Comm Algorithm.

Chapter 4 introduced the major configuration information and performance information of four the

HPC machines (Blue Gene/Q, HECToR, INDY and ECDF. Moreover, the programs output results

are illustrated after the configuration of each machine.

Chapter 5 compares and evaluates the performance and computational abilities of these four

machines.

Chapter 6 draws a conclusion of this project which includes the findings during the project life

time, these four supercomputers’ performance, their latency and matching time for a message of

the HPC facilities. It also recommends some further work to the project.

11

2. Background

This chapter provides a summary of the principle background research behind this project. Firstly

is provides an overview of the key literature underpinning this study. Secondly, it highlights some

MPI communication mode and subroutines applied to build the benchmark code. Additionally, it

reviews the memory architectures of the HPC systems. Finally, primary existing benchmark suites

are considered and discussed.

2.1 Background Literatures

One of the most notable studies related to this project is Daniel Holmes’s thesis, McMPI - a

Managed-code Message Passing Interface Library for High Performance Communication in C#

[7], which aims to combine and reinforce the best-practice academia on technological

advancement in the sectors of high performance and the current commercial high productivity

computing.

In this day and age, the HPC is prevalent in the academic arena designed to do large scale

simulations and computations, especially in physics, chemistry and biology disciplines. One of the

most important HPC technologies is the Massage-Passing model which taken a dominating role in

the efficient parallel programming on distributed memory architectures. All the top

supercomputers in the world are equipped with MPI to deal with big data parallel programming

with different MPI libraries. However, there are only some existing universal MPI libraries for C

and Fortran programming language not for C#. As one of the object-oriented computer languages

C# is able to improve the programmers’’ productivity and programs’ portability. It is therefore

necessary to enhance and extend the paradigm in C# by building with MPI libraries in the near

future.

The highlight of the project is that it establishes a thread-to-thread delivery model and regards

every thread as a rank rather than treating a rank as a separate process. It may result in a shorter

time for message transferring between threads when we use the thread-as-rank model to test a

communication pattern.

In summary, Holmes’s work proves that pure C# (one of the .Net suite of computer languages) can

be employed to build a reliable high performance MPI library with semantics and syntax

following the MPI version 2.0 standards [8]. Though the code of the micro-benchmark project is

12

written in C programming language, Holmes’s study also provides an initial idea and structure of

the communication model and algorithm prototype for the benchmark program.

2.2 MPI Programming Model

The major MPI technic applied in the micro-benchmark suite is the MPI non-blocking

communication. This constructs core algorithms. Another term is the MPI Message Passing

Protocols, which effects performance of communication.

2.2.1 MPI Non-blocking Communication

Non-blocking communications allow the overlap computation with communication to deliver

performance gains [8]. Typically, after initiating the communication the process can return to

perform operations. Then, at some later time, it must test or wait for the completion of the

non-blocking operation. There are four primary reasons to employ the non-blocking

communication in the program. Above all, overlapping communication and other useful work is

conducive to hiding the communication cost. The other advantages of non-blocking

communication are avoiding: deadlocks, idle processors and unnecessary synchronization

resulting in benefits for performance. However, limitations and weaknesses need to be noted. It is

not safe to modify or operate on the buffers (e.g. send buffer) before completion of a non-blocking

operation. Hence, the programmer should pay special attention to ensure the buffers are free for

reuse so the data is sent and received correctly. Furthermore, there are four communication modes

for the non-blocking communication: Standard send (MPI_Isend), Synchronous send

(MPI_Issend), Buffered send (MPI_Ibsend) and Ready send (MPI_Irsend) and a non-blocking

receive (MPI_Irecv).

The completion of each non-blocking communication is achieved by testing (MPI_Test or

MPI_Testall) or waiting (MPI_Wait or MPI_waitall).Thus, the behaviors of the receiver cannot

effect the operation on the sender.

2.2.2 MPI Message Passing Protocols

Typically MPI implementations utilize different underlying protocols depending on the size of the

message, so the protocol may have an effect on the performance dependent on the size of the data

package changes [8]. A noteworthy feature is that the protocols are not defined by the MPI

standard, but are determined by implementers. A combination of protocols for the same MPI

routine may also be applied to the MPI implementations. There are many variants of these basic

protocols. The two most common protocols are the eager protocol and rendezvous protocol.

13

Eager protocol is an asynchronous protocol by which the sending buffer can send messages

without acknowledgement receiving process. The performance can benefit from the eager protocol

because it reduces synchronization delays. The weakness is that it is not scalable and may cause

memory exhaustion. In general, the eager protocol used for small messages, and the limit message

size can also be changed by the number of MPI tasks. The default eager protocol message size

varies in different environments, which can be set with MPI_EAGER_LIMIT. For example, the

IBM eager protocol message size for 33 to 64 MPI tasks is 1024 bytes. Rendezvous protocol is a

synchronous protocol which requires a matching receive launched before the send operation to

complete. The protocol is memory friendly because only the small message envelops need to be

buffered however a downside is that it may cause a higher synchronization delays.

2.3 Architecture

This section introduces some very commonly used memory architectures for HPC facilities. These

memory architectures include distributed memory architecture, shared memory cluster, Symmetric

MultiProcessing (SMP) architecture, and cache-coherency Non Uniform Memory Access

(cc-NUMA).

2.3.1 Distributed Memory Architecture

The majority of HPC facilities are distributed memory architectures (Figure 1). All processors

have their own local memory separately. They are connected with each other by the interconnect

mechanism and communicate with each other via explicit message passing. This is a highly

scalable architecture as adding processors increases memory bandwidth. The disadvantage of

distributed memory architecture cannot be ignored. Its scalability relies on a good interconnect

and the system management overhead may be quite high.

Figure 1: Distributed memory architecture Figure 2: Shared memory cluster architecture

14

2.3.2 Shared Memory Cluster

The distributed machine can be configured with SMP (Symmetric MultiProcessing) node which

contains multiple processors and each processor has equal access to all parts of memory. It will

result in a new architecture called shared memory cluster (Figure 2). This new formation combines

features of two architectures with shared memory within a node and distributed memory between

nodes. It means it constructed as a standard distributed memory machine but with more powerful

nodes. Thus, the scalability, availability and other computational capabilities can be enhanced by

this cluster system. The memory bus bottleneck can be avoided, however the bandwidth of the

interconnect could be too slow to sustain high performance gains.

2.3.3 cc-NUMA (Non Uniform Memory Access)

The cc-NUMA architecture (Figure 3) follows in scaling from SMP architectures. It refers to

memory access time depends on the memory location of a processor. On this basis each processor

has some fast local memory and slow remote memory, and the remote memory can be accessed

via a global address space. Every process has a single address so the cache misses and conflicts

can be decreased. It also shows a low latency and high bandwidth global memory. All the

capabilities scale as the system grows. But the access remote memory latency is much greater than

the local memory latency, therefore the time for sending messages between two nodes may

fluctuate quite heavily.

Figure 3: cc-NUMA architecture

15

2.4 Benchmark Classification

2.4.1 Pingpong and Pingping Benchmark

The pingpong or pingping benchmarks are point-to-point MPI benchmark programs in which two

processes (rank 0 and rank 1) repeatedly pass a message back. They mainly aim to measure

latency and bandwidth. MPI standard blocking communication is normally used. The pingpong or

pingping patterns are done in a loop. To be more specific, rank 0 should send a message to rank 1,

rank 1 should receive this message then send the same data back to rank 0, rank 0 should receive

the message from rank 1 and then return it and so o. The timing calls are inserted before the

iteration and after the last iteration to measure the time taken by all the communications.

2.4.2 Intel MPI Benchmarks

As a widely used set of benchmarks, Intel MPI Benchmarks provide an efficient way to measure

the performance of some of the specific MPI sunroutines. It is comprised of three parts:

IMB-MPI1, IMB-MPI2 and IMB-IO [9].

The objectives of the Intel® MPI Benchmarks are [9]:

• Provide a concise set of benchmarks targeted at measuring the most important MPI functions.

• Set forth a precise benchmark methodology.

• Report bare timings rather than provide interpretation of the measured results. Show

throughput values if and only if these values are well defined.

Intel® MPI Benchmarks is developed using ANSI C plus standard MPI.

Intel® MPI Benchmarks is distributed as an open source project to enable use of benchmarks

across various cluster architectures and MPI implementations [9].

Intel MPI Benchmarks offer a set of performance measurements to both the MPI point-to-point

and global communication operations. The outputs of the benchmark programs are able to

measure the overall system performance by measurements such as network latency, node

performance and throughput. Furthermore, the efficiency of the MPI implementation is another

key element of Intel MPI Benchmarks [9]

16

3. Methodology

Two versions of the code, Benchmark_Tag and Benchmark_Comm, using different algorithms

(Tag Algorithm and Comm Algorithm) are described in sections 3.1 and 3.2. The main

distinguishing element of the two versions is the different approaches to forciing the ordering of

matching the messages in each data package. More specifically, the Tag Algorithm uses different

tags to force the matching order of the messages, whereas the Comm Algorithm uses different

communicators to achieve the same goal. Thus, the communication patterns are labeled

InOrderTags and ReverseOrderTags for the Tag Algorithm but InOrderComms and

ReverseOrderComms for the Comm Algorithm. This chapter mainly explains the methodology for

the two algorithms. For each algorithm, the methodology contains the design of the

micro-benchmark code, the mathematic model, the implementation processes and the analysis

strategy.

It should be noted that the In-Order means the first node sending messages from 1 to n according

to the sequence of the messages while the receiver on the opposite side receives all the messages

in same order by using different tags or communicators. The Reverse-Order refers to messages

sent by one node in order but matched at the target node in reverse order.

3.1 Tag Algorithm

3.1.1 Code Design for Tag Algorithm

The micro-benchmark code works as a multi-pingpong program. The data package contains a

number of messages (e.g. 10 or 45) which is sent from one node, whilst a node from another side

receives all the messages then responds with the same amount of messages. The operation of the

program can be changed by inputting three parameters: 1) the number of messages to be sent per

data package, 2) the length of each message (note: each length is the number of 8-byte

double-precision floating point values, the size of messages is 8*length bytes) and 3) the number

of iterations between two nodes. It is quite flexible so that users can control the program according

to the machine situation. The Figure 4 simulates the above described communication process.

17

Figure 4: illustrates the In-Order algorithm showing two complete iterations with each data block

containing 4 messages

The communication patterns in the Tag Algorithm apply the InOrderTags pattern and

ReverseOrderTags pattern. In both patterns, point-to-point non-blocking communication standard

mode is utilized to send and receive messages, i.e. MPI_Isend and MPI_Irecv. After each

operation, MPI_Waitall is used to wait for all given MPI requests to complete.

The InOrderTags pattern communication can be described as follows: the send buffer copy is

transmitted the entire data package which contains a number of messages from one node, and then

sending these messages in sequence; the receive buffer on the opposite side receives all the

messages in same order by using different tags; next, the second node copies the data package into

its send buffer and sends this back to the first node; the first node then checks the returned data

package against the outgoing messages to verify they are identical with each other. In contrast, the

ReverseOrderTags patter refers to the messages sent by one node in order but matched at the target

node in reverse order. The complete code is concluded in Appendix.

The sending algorithm for both InOrderTags and ReverseOrderTags pattern can be represented as

the following pseude-code:

MPI_Barrier (MPI_COMM_WORLD)

FOR tag = 1 TO n

 MPI_Isend (sbuf[tag], …, tag, …);

Rank 0 Rank 1

Sending

Receiving

Matching}

{

Matching

Sending

Receiving

Timing Start

Timing End

1st iteration

Sending

Receiving

Matching

Matching

Sending

Receiving

Timing Start

Timing End

2nd iteration
}

{

4 messages

18

END FOR

MPI_Waitall (requests)

FOR tag = 1 TO n

MPI_Irecv (rbuf[tag],…, tag, …)

END FOR

MPI_Waitall (requests)

The receiving algorithm for the InOrderTags pattern can be represented as the following

pseude-code:

IF (order == inorder)

FOR tag = 1 TO n

 MPI_Irecv (rbuf[tag],…, tag, …)

END FOR

MPI_Waitall (requests)

FOR tag = 1 TO n

MPI_Isend (sbuf[tag], …, tag, …)

END FOR

MPI_Waitall (requests)

END IF

The receiving algorithm for the ReverseOrderTags pattern can be represented as the following

pseude-code:

IF (order == reverseorder)

FOR tag = n-1 TO 0

 MPI_Irecv (rbuf[tag],…, tag, …)

END FOR

MPI_Waitall (requests)

FOR tag = n-1 TO 0

MPI_Isend (sbuf[tag], …, tag, …)

END FOR

MPI_Waitall (requests)

END IF

19

In the Benchmark_Tag program, important variables should be defined before communication and

computation. Firstly, this benchmark program requests to run on two nodes, otherwise it will abort.

Secondly, three parameters within limits should be supplied as command-line arguments to run the

program. Thirdly, a send buffer and a receive buffer should be created on each node to store the

messages. The buffers are allocated dynamically by using malloc and their size depends on the

number of messages, length of message and the size of the double type in C programming

language. Fourthly, in order to store the timing results and other outputs, some arrays are created

with sizes that depend on the number of iterations and the number of repetitions (defined as a

constant at the beginning of program).

A timer is specified to measure the parallel execution after a barrier which guarantees that all the

processes are ready to do the communication and computation. Another timer is specified just

after the completion of a whole iteration which means the time for a one round-trip of the

ping-pong will be measured per iteration. The outputs are passed and written to the defined array

which will be printed at the end of the program. This guarantees that no extra time is spent on

printing or other operations recorded between the two timers. The core part of InOrderTags code

that are the “for” loops are illustrated as an example below to show the implementation of the

pseudo-code. The complete code is concluded in Appendix.

 if (order == 0){

 for(iter=0;iter<numiter;iter++) {

 Int1[rep*numiter+iter]= MPI_Wtime();

 if(rank == 0){

 for(i=0; i<nummess; i++){

 MPI_Isend(&sbuf[i*length],length,MPI_DOUBLE,1,i,comm,&r[i]);

 }

 MPI_Waitall((int)nummess,r,statuses);

 for(i=0; i<nummess; i++){

 MPI_Irecv(&rbuf[i*length],length,MPI_DOUBLE,1,i,comm,&r[i]);

 }

 MPI_Waitall((int)nummess,r,statuses);

 }

 if (rank == 1){

 for(i=0; i<nummess; i++){

 MPI_Irecv(&rbuf[i*length],length,MPI_DOUBLE,0,i,comm,&r[i]);

 }

 MPI_Waitall((int)nummess,r,statuses);

20

 for(i=0; i<nummess; i++){

 MPI_Isend(&sbuf[i*length],length,MPI_DOUBLE,0,i,comm,&r[i]);

 }

 MPI_Waitall((int)nummess,r,statuses);

 }

 Int2[rep*numiter+iter]= MPI_Wtime();

 }

 order = 1;

 }

3.1.2 Mathematic Model for Tag Algorithm

In the common situation, the computing time for transferring an iteration of a data package can be

divided in to two parts, the actual time for sending the messages and its latency. The latency

includes the time for successful matching as well as the time for unsuccessful matching which

happens in the ReverseOrder pattern. However the aim of this project is to measure the

(unsuccessful) matching time, so the unsuccessful matching time should be extracted from the

latency part. But the time for successful matching are still included in the latency part because for

both orders, this time is the same.

Hence, in the Tag Algorithm for a certain number of messages (n) the time (IOTn or ROTn) for

transferring a round of multi-pingpong program, in either algorithm, can be divided in three parts.

The first part can be seen as latency (L) which is comprise of the time for sending header files,

time for calling subroutines ,pipeline latency and the time for n successful numbers of matching.

This part should be a constant for all the messages if the time of n numbers successful matching is

subtracted. The second part is the actual time (S) for sending a couple of messages which should

be proportional to the number of messages (n) in a data block. The third part time is the time (M)

for unsuccessful matching for all the messages which equals to the number of matching (zero or

n(n−1)

2
) multiplies the matching time per message (M). Please note that the unsuccessful matching

time per message is different in InOrderTags and ReverseOrderTags. Thus, some formulas can be

described as the following:

 For InOrder Communication: IOT(n) = L + n S ①

 For ReverseOrder Communication: ROT(n) = L + n S +
n(n−1)

2
 M ②

The difference between the two equations is the total time for
n(n−1)

2
 numbers of unsuccessful

matching and it can be calculated by ②-① equations:

 Diff(n) =
n(n−1)

2
 M ③

21

Hence, the matching time per message can be written in the following form:

 M =
Diff(n)

n(n−1)

2

⁄ ④

In theory, the values of IOT are proportion to n, the trend of the values of IOT should be linear,

whereas the values of ROT are proportion to n2 and the graph should be a parabola. Moreover,

the total difference (IOT-ROT) for a data package with the fixed size of messages is a parabola as

well, and the matching time per message should be a constant.

3.1.3 Implementation

After testing the benchmark programs on Morar, the program was ported to the Blue Gene/Q,

HECToR, INDY and ECDF facilities. A great number of repetitions of the test have been done to

get the more robust results. Theses have then been subsequently displayed in the results tables set

out Chapter 4. This section explains the compilation and execution tools for these machines,

followed by some implementation details.

3.1.3.1 Compilation and Execution

This project employs various makefiles to build the MPI programs on the Linux system for these

four machines respectively according to the compilers installed in the machines. For instance,

Blue Gene/Q utilize IBM XL compiler by default and MPI codes written in C programming

language are compiled with the mpicc command in the makefile. After successful compilation, the

program can be executed by a submission script which depends on the job submission

environment of each machine. These benchmark programs need to run with 2 nodes, so this option

should be set in the script file..

INDY-Windows is a different operating system. The compilation of MPI jobs is assisted by two

pieces of software: Microsoft Visual Studio and Microsoft HPC Pack. The current version

supplied on INDY-Windows is Microsoft Visual Studio Express 2012 for Windows Desktop and

Windows HPC Server 2008 R2. By setting some parameters and options in Visual Studio and the

HPC pack will be connected with the compiler, and then an executable program will be built in

Visual Studio files. Moreover, the execution process of the job on INDY-Windows is managed by

the HPC Server job scheduler which provides a primary interface for submitting and monitoring

jobs to the backend nodes. The job manager is included in the Microsoft HPC Pack which is

equipped with an integrated application platform for running, managing, and developing parallel

computing software [5].

22

3.1.3.2 Implementation

After coding the program and testing on Morar, both Tag Algorithm and Comm Algorithm

programs were compiled and run on the HPC facilities (Blue Gene/Q, HECToR, ECDF and

INDY). This section describes the implementation process and the analysis strategy of the data

results each of the machines. More specifically, each machine has two groups of output for the two

algorithms, and each group contains the time for in order communication and the time for out of

order communication.

To guarantee accuracy and stability, the programs adopts three methods. Firstly, the number of

repetitions of the whole program can be defined at the begging of the program as a constant. The

multi-pingpong process is repeated many times by changing the number of iterations and

repetitions. Moreover the whole test was repeated multiple times at various times of a day in case

of some exceptional conditions of the machines such as a big program occupying the computing

resources for a long time causing the network to be always in a busy state which could make the

test outcomes of the programs unreliable. Secondly, an analysis method was adopted that

combines the maximum-minimum method and average method together to eliminate outliers and

obtains a set of reliable results. Lastly, there is a check point for each size (i.e. size is 80 or 800)

with the number of messages is 45. This method is useful for checking the outcomes are stable and

also helpful to reject the outlier.

Under common situation, the number of messages (No. of Mess) is set as 1,

10,20,30,40,50,60,70,80,90 and 45 (works as a check point); the length of each message (Length)

is assigned value of 10,100,1000,10000,100000 and 1000000 (note: this is the number of 8-byte

double-precision floating point values in each message) to cover both the small and big data sets;

the number of iterations (iters) is equal to 10 and the repetition (reps) is defined as 5. Additionally,

the whole test is repeated at least 5 times in various time periods. If the outcomes of tests with

above value are not constant enough, some extra tests were performed.

3.1.4 Data Analysis Strategy for Tag Algorithm

After implanting numerous tests, a huge amount of data will be obtained. The majority of the of

robust data should be extracted and selected. Further to this, the average value should be

calculated to produce the final results. This value is named as data unit which refers to the time for

processing an iteration (send and receive) in InOrder pattern (IOT) or time for ReverseOrder

pattern (ROT). This section explains the analysis strategy while the results obtained from all the

machines. These are discussed in nest Chapter 4. This strategy primarily includes two kinds of

23

analysis, direct results analysis which is based on the direct results of the program and the in-depth

analysis that requires more information by further calculating of the direct results.

3.1.4.1 Direct Results Analysis

The theoretical value of IOT and ROT should increase as the number of messages grows. This is

attributed to the fact that a double-precision floating-point number occupies eight bytes in the

machine, the total size of data package will therefore increase when more messages are transferred.

Additionally, the ROT should be always slightly bigger or approximately equal to IOT. The reason

for this is the fact that some extra unsuccessful matching will occur in ReverseOrderTags

communication. According to section 3.1.2 the InOrderTags has n times successful matching for n

messages, but the ReverseOrderTags need to launch n times successful matching for n messages

and another
𝑛(𝑛−1)

2
 times unsuccessful matching.

3.1.4.2 In-depth Analysis

On the grounds of the direct results, firstly, the in-depth analysis should subtract the IOT from the

ROT to obtain the value of the difference (Time Diff) between IOT and ROT. The results refer to

the time of all
n(n−1)

2
 times unsuccessful matching. Hence, each message’s matching time

(Matching Time per Mess) can be obtained though dividing the values of Time Diff (5th column in

Table 3) by the values of Matching Diff (6th column in Table 3). The equation is stated in section

3.1.2:

M = Time Diff
n(n − 1)

2
⁄

If the multiple values of M taking into account the number of messages (No of Mess), are similar

with each other, the assumption and mathematic model of the Tag Algorithm is correct and

appropriate. Further to this the average values of M are calculated as the principal outcome. It is

important to note that is this analysis demanded a high accuracy of the results, because the

matching time pre message is at the level of a very small time variant such as microseconds. So if

the machine’s performance is not stable and reliable enough, the in-depth analysis will not be

proceeded.

3.2 Comm Algorithm

Generally speaking, the Comm Algorithm is analogous to the Tag Algorithm apart from the

method used to force the matching order of messages. It provides a separated communicator of

24

every message. The communication patterns in this algorithm are labeled InOrderComms and

ReverseOrderComms.

3.2.1 Benchmark_comm Code Design

Most of the variable definitions are the same as the Benchmark_Tag program, such as the send

buffers, receiver buffers, output arrays etc. However, the Benchmark_comm program has some

special variables. Firstly, there is an array of communicators with size equal to the number of

messages per data package. Secondly, in order to create many communicators, a function of

MPI_Comm_dup should be employed here. This routine duplicates an existing communicator

with all its cached information. Further to this, a new communicator with the same group of

processes but with a new context is applied [8]. This routine provides an effective way to build the

many private communicators needed by the Comm Algorithm. Furthermore, the number of

communicators can be decided by the user and specified by input parameters. This improves the

efficiency of the program as only the number of communicators needed by the algorithm is created.

Thirdly, as before, all the print statements are put at the end to ensure that timing would not suffer

interference.

The InOrderComms and ReverseOrderComms communication patterns are similar to the

InOrderTags and ReverseOrderTags patterns, except that the InOrdreComms and

ReverseOrderComms patterns employ communicators to force the order of matching for messages

between two nodes.

The sending algorithm for both InOrderComms and ReverseOrderComms patterns can be

represented as the following pseudo-code:

MPI_Barrier (MPI_COMM_WORLD)

FOR c = 1 TO n

 MPI_Isend (sbuf[c], …, comm[c], …request[c]);

END FOR

MPI_Waitall (requests)

FOR c = 1 TO n

MPI_Irecv (rbuf[c], …, comm[c], …request[c]);

END FOR

MPI_Waitall (requests)

25

The receiving algorithm for InOrderComms pattern can be represented as the following

pseudo-code:

IF (order == inorder)

FOR c = 1 TO n

 MPI_Irecv (rbuf[c], …, comm[c], …request[c]);

END FOR

MPI_Waitall (requests)

FOR c = 1 TO n

MPI_Isend (sbuf[c], …, comm[c], …request[c]);

 END FOR

MPI_Waitall (requests)

END IF

The receiving algorithm for ReverseOrderComms pattern can be represented as the following

pseudo-code:

IF (order == reverseorder)

FOR c = n-1 TO 0

 MPI_Irecv (rbuf[c], …, comm[c], …request[c]);

END FOR

MPI_Waitall (requests)

FOR c = n-1 TO 0

MPI_Isend (sbuf[c], …, comm[c], …request[c]);

END FOR

MPI_Waitall (requests)

END IF

The variables and subroutines here are almost the same as those in Tag Algorithm, so they are

omitted here. The core part of the InOrderTags code that are the “for” loops which are illustrated

as an example below to show the implementation of the pseudo-code.

 if (order == 0){

 for(iter=0;iter<numiter;iter++) {

 Int1[rep*numiter+iter]= MPI_Wtime();

 if(rank == 0){

26

 for(n=0; n<nummess; n++) {

 MPI_Isend(&sbuf[n*length],length,MPI_DOUBLE,1,0,comm[n],&r[n]);

 }

 MPI_Waitall((int)nummess,r,status);

 for(n=0; n<nummess; n++) {

 MPI_Irecv(&rbuf[n*length],length,MPI_DOUBLE,1,0,comm[n],&r[n]);

 }

 MPI_Waitall((int)nummess,r,status);

 }

 if (rank == 1){

 for(n=0; n<nummess; n++){

 MPI_Irecv(&rbuf[n*length],length,MPI_DOUBLE,0,0,comm[n],&r[n]);

 }

 MPI_Waitall((int)nummess,r,status);

 for(n=0; n<nummess; n++){

 MPI_Isend(&sbuf[n*length],length,MPI_DOUBLE,0,0,comm[n],&r[n]);

 }

 MPI_Waitall((int)nummess,r,status);

 }

 Int2[rep*numiter+iter]= MPI_Wtime();

 } //end of for loop

 order = 1;

 }

3.2.2 Mathematic Model for Comm Algorithm

It is possible to implement an MPI library so that each communicator has its own set of message

queues but it is also possible that all communicators share a single set of message queues. This

work can distinguish between these possible implementations of an MPI library by measuring the

matching time. In both InOrder and ReverseOrder patterns, for a certain number of messages (n)

the time (𝐼𝑇𝑂𝑛 or 𝑅𝑇𝑂𝑛) for an iteration consists of two parts. The first part is the latency (L) for

all the time of sending envelope, calling subroutine, pipeline latency and successful message

matching. The times for InOrderComms and ReverseOrderComms are the same. The second part

is the actual time (S) for transfer a data package which increases with the number of messages

growth.

On one hand, if each communicator has its own set of message queues, there is no unsuccessful

matching, so the formulas for Comm Algorithm should are as following:

For InOrder Communication: 𝐼𝑂𝑇(𝑛) = 𝐿 + 𝑛 𝑆 ⑤

 For ReverseOrder Communication: 𝑅𝑂𝑇(𝑛) = 𝐿 + 𝑛 𝑆 ⑥

27

The graph of IOT and ROT values should be linear and proportionate to n, and the difference

between them can fluctuate around zero or a constant. In theory, the performance and efficiency

of the Comm Algorithm should be better than Tag Algorithm. As every communicator offers a

single queue of the unique messagse in the communicator on both nodes, only 1 successful match

will be launched and no unsuccessful matching needed to be proceeded. For n messages,

InOrderTags should proceed n times successful matching while the ReverseOrderTags should

proceed another
n(n−1)

2
 times unsuccessful matching. For the performance point of view, this

behavior is not efficient. By comparison, both InOrderComms and ReverseOrderComms should

only require n matches for n messages because each message exists in its own communicator.

Hence, irrespective of InOrder or ReverseOrder receiving, each message just requires 1 time to

find its communicator. The disadvantage of the Comm Algorithm is that it is not a memory

friendly program because it consumes lots of memory to store the communicators and the process

of invoking communicators may also cost time.

On the other hand, if there is only one set of message queues, the ReverseOrder needs to perform

extra
n(n−1)

2
 times unsuccessful matching (M). The formulas can be written as:

For InOrder Communication: IOT(n) = L + n S ①

For ReverseOrder Communication: ROT(n) = L + n S +
n(n−1)

2
 M ②

The overall performance of this situation is similar to Tag Algorithm. The values of IOT are

proportion to n, the graph of IOT should also be linear, whereas the values of ROT are proportion

to n2 and the graph should be a parabola. As well as, the total difference (IOT-ROT) for a data

package with the fixed size of messages is a parabola.

3.2.3 Compilation and Implementation

Given that the compilation and implementation processes for the Benchmark_comm program are

exactly the same as the Benchmark_tag program. So they are omitted here.

3.2.4 Data Analysis Strategy for Comm Algorithm

There are also two kinds of analysis as referred to in the Introduction section above, direct results

analysis and in-depth analysis for the Comm Algorithm. These are explained in more depth below.

3.2.4.1 Direct Results Analysis

If each communicator has its own set of message queues, the time of InOrder (IOT) and

28

ReverseOrder (ROT) within a certain size of the Comm Algorithm should be linear depending on

to the number of messages (No of Mess) and ROT should not be greater than IOT because each

message has its own queue in its communicator. Otherwise, if the curve of IOT is a straight line

but ROT values is tending to an parabolic line and is always higher than IOT, the assumption is

that there is only one set of message queues.

3.2.4.2 In-depth Analysis

This section needs to calculate the difference between IOT and ROT. The findings can fluctuate

around zero which stands for every communicator do create a unique queue for the single message

in it and no extra unsuccessful matching needs to be forced in ReverseOrder pattern. The

InOrderComms and ReverseOrderComms patterns overall performance is reviewed. The

difference when it is identified, could also be a constant which means there is some additional

latency such as network latency and longer waiting time in the ReverseOrder pattern. This is still

allowable because it can prove the assumption and the mathematic model is correct and the

communicator provides every message a separated queue, but the performance of InOrder patter is

better than ReverseOrder pattern. However, if the results cannot fit with the above situation, it

means there is only one set of message queues.

4. Machine Configuration and Program Outcomes

The supercomputing technology in the United Kingdom has reached the world advanced level. In

2013 International Supercomputing conference in Leipzig announced the newest Top 500

Supercomputer list, and five British supercomputers place in the top 50. To be more specific,

DiRAC - Blue Gene/Q, ranks 23rd [1] , which is developed by the University of Edinburgh;

HECToR - Cray XE6 maintained by University of Edinburgh places 41st in the new list [1]; and

two Power 775 supercomputers are separately in the 44th and 45th place which managed by

ECMWF (European Centre for Medium-Range Weather Forecasts) [1]. It means that the

development prospect of the High Performance Computing technology in the United Kingdom is

quite broad and optimistic. Hence, this project aims to investigate the performance of the UK

advanced machines. Four of the most powerful HPC facilities are chosen to perform the

micro-benchmark suite. These machines include the Blue Gene/Q, HECToR, INDY (Industry

machine of EPCC) and ECDF (compute component of Edinburgh Compute and Data Facility),

and another machine used for experiment called Morar (computing clusters used for MSc teaching

in EPCC).

This chapter describes the hardware architecture and software of the four HPC facilities at first,

followed by illustrating the outcomes of the benchmark programs. All the results will be showed

29

in the direct results table, then choose some kinds of figures to present the result more clearly. A

couple of kinds of figures can be used to describe the trend of the IOT and ROT changes within a

same size. The Direct Results figures such as Figure11 show the direct results’ trend in graph. The

Diff figures illustrate how the gap between IOT and ROT changes with the number of messages

increases. The Matching Time figures are drawn with the values of the matching time per message

within the same message size. The most important figure is Final Result figure which states the

matching time per message across all orders of magnitudes of the messages size, which is the

expected value of this project.

4.1 Blue Gene/Q

In 2004, IBM launched a project named Blue Gene Project which is designed to develop the most

powerful, most energy efficient and low power consumption supercomputers in the world. Up to

now, there are three generations of supercomputers have been created, Blue Gene/L, Blue Gene/P

and Blue Gene/Q.

4.1.1 Machine Configuration

The third generation in the Blue Gene series, Blue Gene/Q, is available online in 2012 which is

the most power and space efficient supercomputer in the world. Blue Gene/Q is the latest

supercomputer in UK which was well placed in the rankings at 24 of the worldwide Top500 list. It

is a distributed collection of computers around the United Kingdom that supporting calculations

world widely in particle physics, in astrophysics and other fields [2].

The Blue Gene/Q system employed in this project is DiRAC Blue Gene/Q installation. This

equipment is a part of UK’s DiRAC facility which is the integrated supercomputing facility for

theoretical modelling and HPC-based research in particle physics, astronomy and cosmology,

areas in which the UK is world-leading [10]. The DiRAC Blue Gene/Q is a joint development

with DiRAC, University of Edinburgh and IBM.

The Blue Gene/Q facility consists of 6144 compute nodes and 98,304 cores in total. These 6144

nodes can be divided into two partitions bgqfe2 and bgqfe4. The bgqfe2 with 4096 nodes provides

access to PreGA (pre General Availability) and bgqfe4 with 2048 nodes connected to GA partition

(General Availability). Only the PreGA partition is available for the most users. The peak

performance can achieve 1.26 PFlop/s.

30

Figure 5 Hardware architecture of Blue Gene/Q

Figure 5 shows that each node has 16 cores Powerpc64 (Power ISA v2.0.6) A2 processor for

application processes and an extra core take charge of operating system and interrupt handling

functions. The chip die in the node only consumes 55W at the clock speed of 1.6 GHz. This

processor is able to support many programming model such as POSIX, MPI, and OpenMP by

using different compilers. The Powerpc64 A2 processor is capable of enhancing throughput by

processing multiple independent threads (up to 64 threads on each node) simultaneously. The

floating point unit in Blue Gene/Q is 4 wide double precision SIMD (single instruction multiple

data) vector extensions (QPX). It conduced to 204.8 GFlop/s peak floating point performance of

the chip.

Furthermore, the memory system is also a noteworthy feature of Blue Gene/Q. Firstly, each core

has a 16 KB Level 1 data cache and 16 KB L1 instruction cache and many features of L1 cache

can be specific by the user. In addition, this architecture has a sophisticated L1 prefetching, 16

stream and list-based prefetching. It augments the traditional stream prefetching and improves the

single thread performance. Secondly, every node contains a 32 MB globally shared Level 2

eDRAM cache and the minimum bi-section bandwidth is 563 GB/s. Also, a 16GB DDR3 memory

controller with a bandwidth of 42.6 GB/s exist in the chip.

The interconnect in Blue Gene/Q is a 40GB/s five-dimensional torus architecture. All the

chip-to-chip communications in the 5D torus interconnect by 10 network links and each link has a

peak bandwidth of 2GB/s send and 2GB/s receive. The bandwidth of communication between the

2 nearest neighbors in the 5D torus is around 1.75 GB/s per link. The shortest hardware latency

31

when a node communicates with the nearest neighbor is about 80 ns and the longest latency for

the farthest neighbor is about 3𝜇s. Another link is dedicated to I/O with a bandwidth of t 2.0 GB/s.

Blue Gene/Q Dirac 1equiped with a 200 TB high performance parallel file system named GPFS

(General Parallel File System) while the Dirac 2 mounts a 1000 TB GPFS system.

4.1.2 Program Outcomes

4.1.2.1 Outcomes of Tag Algorithm

Table 1 is the results for transferring an 80 bytes data by using Tag Algorithm on the Blue Gene/Q.

Figure 6 shows how the IOT and ROT changes with number of message growth. It is easy to find

that ROT is always slightly bigger or approximately equal to IOT. The trend of IOT is an almost

straight line while the trend of ROT is an approximate parabola line. Figure 7 describes how Diff

changes with the number of messages increases. The Diff values turn out to be a parabolic line

because more messages have force to match. It is also fit with the equation ③ in section 3.1.2.

Figure 8 consists of the values of Matching time, they wave slightly around 0.0223857, which

means the matching time is a constant.

Size

(bytes)
No. of Mess

IOT

(s)

ROT

(s)

Diff

(s)

Matching

time (µs)

80

1 0.000010 0.000010 0.000000

 10 0.000039 0.000040 0.000001 0.0222222

20 0.000074 0.000078 0.000004 0.0210526

30 0.000110 0.000120 0.000010 0.0229885

40 0.000149 0.000167 0.000018 0.0230769

50 0.000188 0.000216 0.000028 0.0228571

60 0.000228 0.000267 0.000039 0.0220339

70 0.000280 0.000331 0.000051 0.0211180

80 0.000319 0.000389 0.000070 0.0221519

90 0.000359 0.000455 0.000096 0.0239700

Average

0.0223857

Table 1: Results of 80 bytes messages transferring by Tags Algorithm on BGQ

32

Figure 6: Direct results for 80 bytes messages transferring by Tags Algorithm on BGQ

Figure 7: Diff figure of 80 bytes messages transferring by Tags Algorithm on BGQ

Figure 8: Matching time for 80 bytes messages transferring by Tags Algorithm on BGQ

0.00000

0.00010

0.00020

0.00030

0.00040

0.00050

1 10 20 30 40 50 60 70 80 90

IOT

R0T

No of Mess

Ti
m

e
 (

s)

33

Table 2 is the results for transferring 800 bytes data by using Tag Algorithm on the Blue Gene/Q

Figure 9 is the graph for IOT and ROT and Figure 10 is the Matching Time figure shows the

matching time calculated by different number of messages. The matching time is a constant with

some fluctuations.

Size

(bytes)

No. of

Mess

IOT

(s)

ROT

(s)

Diff

(s)

Matching

time (µs)

800

1 0.000017 0.000017 0.000000

10 0.000068 0.000070 0.000002 0.0444444

20 0.000128 0.000134 0.000006 0.0315789

30 0.000188 0.000205 0.000017 0.0390805

40 0.000248 0.000277 0.000029 0.0371795

50 0.000308 0.000353 0.000045 0.0367347

60 0.000369 0.000442 0.000073 0.0412429

70 0.000440 0.000579 0.000139 0.0575569

80 0.000501 0.000617 0.000116 0.0367089

90 0.000561 0.000734 0.000173 0.0431960

Average 0.0408581

Table 2: Results of 800 bytes messages transferring by Tags Algorithm on BGQ

Figure 9: Direct results for 80 bytes messages transferring by Tags Algorithm on BGQ

0.0000

0.0002

0.0004

0.0006

0.0008

1 10 20 30 40 50 60 70 80 90

IOT

R0TTi
m

e
 (

s)

34

Figure 10: Matching time for 800 bytes messages transferring by Tags Algorithm on BGQ

Table 3 is the results for transferring 8000 bytes data by using Tag Algorithm on the Blue Gene/Q.

Figure 11 is the Direct Results graph. All the results are reasonable.

Size

(bytes)

No. of

Mess

IOT

(s)

ROT

(s)

Diff

(s)

Matching

time (µs)

8000

1 0.000025 0.000026 0.000001

10 0.000093 0.000095 0.000002 0.0444444

20 0.000176 0.000182 0.000006 0.0315789

30 0.000257 0.000272 0.000015 0.0344828

40 0.000340 0.000371 0.000031 0.0397436

50 0.000417 0.000476 0.000059 0.0481633

60 0.000502 0.000594 0.000092 0.0517891

70 0.000598 0.000743 0.000145 0.0601794

80 0.000683 0.000868 0.000185 0.0585443

90 0.000757 0.000974 0.000317 0.0541823

Average 0.0470120

Table 3: Results of 8000 bytes messages transferring by Tags Algorithm on BGQ

35

Figure 11: Direct results for 8000 bytes messages transferring by Tags Algorithm on BGQ

Table 4 is the results for transferring 80000 bytes data by using Tag Algorithm on the Blue

Gene/Q and all the results are reasonable. Figure 12 is the direct results figure and Figure 13 is the

Diff graph describes the gap between IOT and ROT growth. The Diff line seems to be parabolic

whereas the dotted line which works as a linear best-fit line.

Size

(bytes)

No. of

Mess

IOT

(s)

ROT

(s)

Diff

(s)

Matching

time (µs)

80000

1 0.000066 0.000067 0.000001

10 0.000479 0.000484 0.000005 0.1111111

20 0.000941 0.000952 0.000011 0.0578947

30 0.001403 0.001419 0.000016 0.0367816

40 0.001866 0.001888 0.000022 0.0282051

50 0.002328 0.002356 0.000028 0.0228571

60 0.002791 0.002825 0.000034 0.0192090

70 0.003263 0.003304 0.000041 0.0169772

80 0.003728 0.003774 0.000046 0.0146624

90 0.004189 0.004243 0.000054 0.0134831

Average 0.0356868

Table 4: Results of 80000 bytes messages transferring by Tags Algorithm on BGQ

0.00000

0.00020

0.00040

0.00060

0.00080

0.00100

0.00120

1 10 20 30 40 50 60 70 80 90

IOT

R0T

36

Figure 12: Direct results for 80000 bytes messages transferring by Tags Algorithm on BGQ

Figure 13: Diff figure of 80000 bytes messages transferring by Tags Algorithm on BGQ

Table 5 is the results for transferring 800000 bytes data by using Tag Algorithm on the Blue

Gene/Q and Figure 14 is the Direct Results graph. All the results are reasonable. Figure 15 is the

Diff graph draws the gap between IOT and ROT growth. The Diff line is similar to a parabola after

deleting the outliners (No of Mess = 40,50 and 60). For the No of Mess = 40 data point, it is too

large which means at that time the machine is quite busy, so it should be deleted. And for the No of

Mess = 50 and 60 data point, the Diff is negative, that is impossible because the ROT should

always equal to or greater than IOT.

0.000

0.001

0.002

0.003

0.004

0.005

1 10 20 30 40 50 60 70 80 90

IOT

R0T

37

Size

(bytes)

No. of

Mess

IOT

(s)

ROT

(s)

Diff

(s)

Matching

time (µs)

800000

1 0.000471 0.000472 0.000001

10 0.004529 0.004534 0.000005 0.1074074

20 0.009054 0.009072 0.000018 0.0947368

30 0.014902 0.014896 -0.000006 -0.0145594

40 0.017967 0.018049 0.000154 0.1978632

50 0.025449 0.025372 -0.000076 -0.0624490

60 0.030076 0.030013 -0.000063 -0.0354049

70 0.034713 0.034786 0.000073 0.0302968

80 0.039363 0.039453 0.000090 0.0284810

90 0.043987 0.044037 0.000050 0.0124844

Average 0.0398729

Table 5: Results of 800000 bytes messages transferring by Tags Algorithm on BGQ

Figure 14: Direct results for 800000 bytes messages transferring by Tags Algorithm on BGQ

0.00000

0.01000

0.02000

0.03000

0.04000

0.05000

1 10 20 30 40 50 60 70 80 90

IOT

R0T

38

Figure 15: Diff figure of 800000 bytes messages transferring by Tags Algorithm on BGQ

Table 6 is the results for transferring 8000000 bytes data by using Tag Algorithm on the Blue

Gene/Q and all the results are reasonable. Figure 16 is the graph of IOT and ROT (overlapped) and

Figure 17 is the Diff graph draws the gap between IOT and ROT growth. The Diff line is similar to

a parabola after deleting the outliners (No of Mess = 20 and 40).

Size

(bytes)

No. of

Mess

IOT

(s)

ROT

(s)

Diff

(s)

Matching

time (µs)

8000000

1 0.004521 0.004522 0.000001

10 0.048558 0.048553 -0.000005 -0.1074074

20 0.094889 0.094866 -0.000023 -0.1192982

30 0.141237 0.141245 0.000007 0.0164751

40 0.187415 0.187593 0.000178 0.2277778

50 0.233983 0.234001 0.000019 0.0152381

60 0.280288 0.280309 0.000021 0.0118644

70 0.326609 0.326692 0.000083 0.0342305

80 0.373000 0.373045 0.000045 0.0143460

90 0.419215 0.419338 0.000122 0.0305035

Average 0.0137478

Table 6: Results of 8000000 bytes messages transferring by Tags Algorithm on BGQ

39

Figure 16: Direct results for 8000000 bytes messages transferring by Tags Algorithm on BGQ

Figure 17: Diff figure of 8000000 bytes messages transferring by Tags Algorithm on BGQ

Additionally, based on the mathematic model in section 3.1.2, the equations ① and ② are

helpful to resolve the values of S +M and L for InOrder pattern and S, M and L separately for

ReverseOrder pattern. L stands for the overall latency which contains the time for successful

matching, S is the actual time for sending messages and M stands for the matching time for n

messages. Table 7 demonstrates the results of these values. The values of 8000000 bytes message

are not reasonable for some machine factors, it can be ignored.

0.00

0.10

0.20

0.30

0.40

0.50

1 10 20 30 40 50 60 70 80 90

IOT

R0T

Ti
m

e
 (

s)

40

Pattern Time

(μs)

Size

(bytes)

 80 800 8000 80000 800000 8000000

InOrder

(IOT)

S+M 3.921348 6.112360 8.224719 46.325843 446.134254 4459.483146

L 6.078652 10.887640 16.775281 19.674160 24.865823

Reverse

Order

(ROT)

S 3.895954 5.928902 8.013247 46.095954 447.078613 4461.424174

M 0.028555 0.531720 0.055013 0.048555 0.055167

L 6.155491 11.317919 17.302445 20.864913 25.664740

Table 7: Components of IOT and ROT

Finally, collect the averages from the six tables and form them in Table 8. Although the numbers

fluctuate when the message size is 8000000, the other values are still reasonable. The exception

data might due to the total size of the data package is enormous, the process of transferring

messages are probably affected by machine statuses and other jobs on the machine. In order to

guarantee the accuracy of the final results, this abnormal value should be eliminated. Then

averaged reasonable values (apart from the value of size = 8000000), the final results appears that

the matching time per massage is a constant about 0.036516 microsecond for various sizes of

messages. Hence, draw a picture with the other five values in Figure 18, and the average number

is drawn as a solid line and the linear best-fit line of the five values is drawn as a dotted line. We

can find that they are very alike. It means that the matching time should be a constant no matter

the size of the message of data package. In summary, these values of the matching time per

message of Tag Algorithm are reliable, it is about 0.036516µs.

Size

(bytes)

Matching Time

(µs)

 80 0.022386

 800 0.037622

 8000 0.040858

 80000 0.035687

 800000 0.039873

 8000000 0.013748

Average 0.036516

Table 8: Message matching time on of Tag Algorithm BGQ

41

Figure 18: Massage mating time on of Tag Algorithm BGQ

It deserved to note that with the size per message increases, the line of IOT and ROT is highly

overlapped with each other (i.e. Figure 14 and 16). It may triggered by two reasons: on one hand,

with the size of date package increases to very huge (i.e size = 800,000 bytes), the time for

matching no longer accounted for a huge share of total time because it costs a long time to

transferring the big data package between node; on the other hand, as a long time is needed to

sending data, it is massively more likely to be interfaced by the machines status and other network

consuming jobs on the machine. That is to say, the IOT and ROT values might include a high

latency and is no longer the pure time for messages sending and matching. Thus, the results of

very huge data packages may not as accurate as appropriate data size, but the difference between

IOT and ROT remains the actual total matching time, so the high latency cannot affect the

matching time per message which is the expected result of this project. Additionally, by checking

at the original results , when total size of the data package is very big, the IOT and ROT fluctuates

heavily and even the ROT is less than the IOT sometimes

4.1.2.2 Outcomes of Comm Algorithm

In terms of Comm Algorithm, the Tables and Figures below shows the all results of Blue Gene/Q.

Table 9 contains all the results of 80 bytes messages. Both IOT and ROT rises when number of

messages and size of each message grows and the ROT is always lager than IOT. Figure 19

illustrates the IOT and ROT graph. The trend of IOT values is linear, however the ROT line seems

to be a parabola. Figure 20, Diff Figure, demonstrates that fact very clear because the difference

between IOT and ROT increases parabolically. Figure 21 shows the matching time changes with

the number of message increase when every message size is 80 bytes.

42

Size

(bytes)

No. of

Mess
IOT ROT Time Diff.

No. of

Match

80

10 0.000047 0.000048 0.000001 0.022222

20 0.000093 0.000097 0.000004 0.021052

30 0.000143 0.000151 0.000008 0.018391

40 0.000193 0.000209 0.000016 0.020512

50 0.000244 0.000268 0.000024 0.019591

60 0.000295 0.000329 0.000034 0.019209

70 0.000356 0.000402 0.000046 0.019048

80 0.000408 0.000469 0.000061 0.019304

90 0.000455 0.0005353 0.000080 0.020058

Average 0.019932

Table 9: Results of 80 bytes messages transferring by Comm Algorithm on BGQ

Figure 19: Direct results for 80 bytes messages transferring by Comm Algorithm on BGQ

Figure 20: Diff figure of 80 bytes messages transferring by Comm Algorithm on BGQ

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

1 10 20 30 40 50 60 70 80 90

IOT

ROT

No of Mess

Ti
m

e
 (

s)

43

Figure 21: Matching time for 80 bytes messages transferring by Comm Algorithm on BGQ

The remaining results of the Comm Algorithm’s outcomes included in Table 10, it also proves the

same fact as 80 bytes message, so it will not repeat here.

Size

(bytes)

No. of

Mess

IOT

(s)

ROT

(s)

Diff

(s)

Matching

Time (µs)

800

1 0.000018 0.000018 0.000000

 10 0.000078 0.000079 0.000001 0.022222

20 0.000149 0.000154 0.000005 0.026316

30 0.00022 0.000234 0.000014 0.032184

40 0.000291 0.00031 0.000019 0.024359

50 0.000363 0.000391 0.000028 0.022857

60 0.000435 0.000473 0.000038 0.021469

70 0.000518 0.000568 0.000050 0.020704

80 0.000589 0.000656 0.000067 0.021203

90 0.000661 0.000740 0.000079 0.019725

Average

0.023449

8000

1 0.000027 0.000027 0.000000

 10 0.000103 0.000103 0.000000 0.000000

20 0.000195 0.000202 0.000007 0.036842

30 0.000287 0.000304 0.000017 0.039080

40 0.00038 0.000404 0.000024 0.030769

50 0.000469 0.000503 0.000034 0.027755

60 0.000562 0.000605 0.000043 0.024294

70 0.000663 0.000716 0.000053 0.021946

80 0.000758 0.000824 0.000066 0.020886

90 0.000840 0.000920 0.000080 0.019975

Average

0.024616

44

80000

1 0.000068 0.000068 0.000000

 10 0.000485 0.000487 0.000002 0.044444

20 0.000952 0.000956 0.000004 0.021053

30 0.001419 0.00143 0.000011 0.025287

40 0.001887 0.001906 0.000019 0.024359

50 0.002356 0.002385 0.000029 0.023673

60 0.002824 0.002862 0.000038 0.021469

70 0.003301 0.00336 0.000059 0.024431

80 0.003769 0.003836 0.000067 0.021203

90 0.004238 0.004315 0.000077 0.019226

Average

0.025016

800000

1 0.000473 0.000473 0.000000

 10 0.004535 0.004538 0.000003 0.066667

20 0.00907 0.009078 0.000008 0.042105

30 0.014927 0.014943 0.000016 0.036782

40 0.020594 0.020584 -0.000010 -0.012821

50 0.025508 0.02554 0.000032 0.026122

60 0.030145 0.030124 -0.000021 -0.011864

70 0.034798 0.034879 0.000081 0.033540

80 0.039443 0.039516 0.000073 0.023101

90 0.044091 0.044172 0.000081 0.020225

0.024873

8000000

1 0.004523 0.004523 0.000000

 10 0.048595 0.048681 0.000086 1.911111

20 0.094996 0.094936 -0.000060 -0.315789

30 0.141308 0.141375 0.000067 0.154023

40 0.187616 0.187703 0.000087 0.111538

50 0.234118 0.234098 -0.000020 -0.016327

60 0.280418 0.280477 0.000059 0.033333

70 0.326844 0.32692 0.000076 0.031470

80 0.37322 0.373256 0.000036 0.011392

90 0.419550 0.419656 0.000106 0.026467

Average

0.216358

Table 10: Results of 800 to 8000000 bytes messages transferring by Comm Algorithm on BGQ

The Average values can be extracted in Table 11. We can find that the values are quite alike,

except the value of 8000000 bytes message (ignored), which means the matching time in of

Comm Algorithm will not change with different size of message. The Figure 22 is easier to

observe this fact. The averaged value can be seen as a constant.

45

Size

(bytes)

Matching Time

(µs)

 80 0.019932

 800 0.023449

 8000 0.024616

 80000 0.025016

 800000 0.024873

 8000000 0.216358

Average 0.023577

Table 11: Matching time of Comm Algorithm on BGQ

Figure 22: Massage matching time of Comm Algorithm on BGQ

It proves that the assumption that each communicator creates a unique queue for each message is

wrong, all the messages communicated in different communicators still stored in the same queue.

The time to force the matching order of messages remains involved in. Hence, the program cannot

be optimized by using different communications, and the efficiency cannot be enhanced by

multi-communicator pattern.

46

4.2 HECToR

HECToR is a parallel supercomputer which stands for the UK’s high end computing resource,

funded by the UK Research Councils [4]. It is capable of over 800,000,000,000,000 calculations

per second that serves both academia and industry field in the UK and Europe. For example,

recently the scientists come from The University of Manchester, University of Oregon and Yale

has been successfully using HECToR to simulate how dinosaurs moved [4]. The development

process of HECToR are divided into 4 phases, Phase 1 (Cray XT4), Phase 2a (Cray XT5),

Phase2b (Cray XE6) and Phase 3 (Cray XE6). This chapter mainly introduces the Cray XT4 and

Cray XE6 because Cray XT5 were modified slight based on Cray XT4.

4.2.1 HECToR Configuration

The current Phase 3 hardware configuration of HECToR is Cray XE6 system came online in Dec

2011. This system is composed of 30 cabinets and compute blades in total. There are fore compute

nodes in every blade which result in a total of 2816 compute nodes. Each node contains two

16-core AMD Opteron 2.3GHz (Interlagos) processors, so it means that there are 90,112 cores in

total. Each processor built with 32 GB main memory shared between 32 cores by using the SMP

architecture and cc-NUMA architecture, which amounts to a system total of about 90 TB. The

theoretical peak performance of Cray XE6 can reach 827 TFlop/s (Figure 23) [4].

HECToR Phase 3 utilizes Cray Gemini Interconnect whose benefits are high bandwidth, low

latency and good overlap of computation and communication. It supports 2 nodes per network

chip and each dual-socket node is interfaced to Gemini interconnect through HyperTransposrt

3.0(HT3) technology. The Gemini chip contains 10 network links to implement a 3D-torus of

processors. There are also 16 blades serves as login nodes, I/O nodes and network controllers. The

MPI point-to-point bandwidth of Gemini system is around 5 GB/s and the latency between two

nodes is about 1-1.5μs [4].

The Cray XE6 has a shared, high-performance parallel filesystem whose high-performance RAID

disks are over 1 PB. All the compute nodes can access to the disks and read and write to the

distributed parallel file system. The backup system of Cray XE6 is a NAS space but with 70 TB of

disk space to hold the user’s home directory space as well as other files.

47

Figure 23: Hardware Architecture of HECToR

A wide range of software are currently installed in HECToR Phase 3, such as operating system,

libraries, third-party applications, modules and compilers and some tools to satisfy the need of

multipurpose applications. This paragraph will introduce some major or default configurations in

this facility as well as the softwares require to be used in this project, detailed application lists and

versions can be found at the HECToR homepage [http://www.hector.ac.uk/howcan/software/].

HECToR is running a CLE operating system, and it is divided into two partitions to obtain a better

performance. A full-featured Linux distribution runs on the services nodes and login nodes. A

reduced version of Compute Node Linux (CNL) runs on all the compute nodes. There are many

different kinds of numerical, data and parallel libraries exist in HECToR. One of the most

important libraries is the Cray Scientific Computing Library which is usually loaded by default

with the appropriate PrgEnv module. This program uses cray-mpich2 library to implement the

MPI program. Various kinds of third-part applications have run successfully on the supercomputer.

For example, NWChem is used for Gas-phase Electronic Structure, Amber assist Classical

molecular simulation and so on and so forth. In terms of compilers, three kinds of compilers are

available in this facility for either Fortran or C programming, PGI, GNU and Cray compilers. It is

easy to use the Cray compiler wrappers cc or CC to compile MPI code without specifying any

headers or libraries. Eventually, some performance analysis tools also included here such as TAU

and Scalasca [4].

48

4.2.2 Programs Outcomes

This section firstly shows the results of HECToR by the tables below, and then evaluates the

performance issues by these figures. As the same facts with Blue Gene/Q, the total time for

sending a data package of either pattern for an iteration is decided by the number of messages and

size of each message.

4.2.2.1 Outcomes of Tag Algorithm

Table 12 is the results for transferring an 80 bytes data by using Tag Algorithm on the HECToR.

Figure 24 shows how the IOT and ROT changes with number of message growth. It is easy to find

that. ROT is always approximately equal to or slightly larger than IOT. The trend of IOT is an

almost straight line but the trend of ROT is an approximate parabolic line. Figure 25 describes

how Diff changes with the number of messages increases. The shape of Diff values turn out to be a

parabola because more messages have force to match. It is also fit with the equation ③ in section

3.1.2. Figure 26 includes the values of Matching time, they wave slightly around 0.011439, which

means the matching time is a constant. The matching time is high when there are 10 messages, it

dues to the total size of the data package is too small to measure, but it does not impact the

averaged value seriously.

Size

(bytes)

No. of

Mess

IOT

(s)

ROT

(s)
Diff (s)

Matching

time (µs)

80

1 0.000004 0.000005 0.000001

10 0.000013 0.000014 0.000001 0.022222

20 0.000024 0.000026 0.000002 0.010526

30 0.000033 0.000037 0.000004 0.009195

40 0.000044 0.000052 0.000008 0.010256

50 0.000054 0.000065 0.000011 0.008980

60 0.000066 0.000084 0.000018 0.010169

70 0.000079 0.000104 0.000025 0.010352

80 0.000087 0.000121 0.000034 0.010759

90 0.000100 0.000142 0.000042 0.010487

Average 0.011439

Table 12: Direct results for 80 bytes messages transferring by Tag Algorithm on HECToR

49

Figure 24: Direct results for 80 bytes messages transferring by Tag Algorithm on HECToR

Figure 25: Diff figure for 80 bytes messages transferring by Tag Algorithm on HECToR

0.00000

0.00004

0.00008

0.00012

0.00016

0.00020

1 10 20 30 40 50 60 70 80 90

I0T

R0T

Time (µs)

No of Mess

50

Figure 26: Matching time for 80 bytes messages transferring by Tag Algorithm on HECToR

As HECToR’s results share the same pattern with Blue Gene/Q, no more figures used here to

illustrate the Diff line and Matching time line for every size message. Table 13 is the results for

transferring an 800 bytes data by using Tag Algorithm on the HECToR. Figure 27 is the

corresponding direct results figure of IOT and ROT.

Size

(bytes)

No. of

Mess

IOT

(s)

ROT

(s)

Diff

(s)

Matching

time (µs)

800

1 0.000004 0.000005 0.000001

10 0.000014 0.000016 0.000002 0.044444

20 0.000030 0.000033 0.000003 0.015789

30 0.000043 0.000048 0.000005 0.011494

40 0.000056 0.000065 0.000009 0.011538

50 0.000069 0.000085 0.000016 0.013061

60 0.000082 0.000109 0.000027 0.015254

70 0.000097 0.000129 0.000032 0.013251

80 0.000110 0.000155 0.000045 0.014241

90 0.000123 0.000190 0.000067 0.016729

Average 0.017311

Table 13: Direct results for 800 bytes messages transferring by Tag Algorithm on HECToR

51

Figure 27: Direct results for 800 bytes messages transferring by Tag Algorithm on HECToR

Table 14 is the results for transferring an 8000 bytes data by using Tag Algorithm on the HECToR.

Figure 28 is the corresponding direct results figure of IOT and ROT.

Size

(bytes)

No. of

Mess

IOT

(s)

ROT

(s)

Diff

(s)

Matching

time (µs)

8000

1 0.000015 0.000016 0.000001

10 0.000050 0.000052 0.000002 0.044444

20 0.000103 0.000107 0.000004 0.021053

30 0.000141 0.000147 0.000006 0.013793

40 0.000202 0.000213 0.000011 0.014103

50 0.000237 0.000251 0.000014 0.011429

60 0.000282 0.000301 0.000019 0.010734

70 0.000324 0.000358 0.000034 0.014203

80 0.000376 0.000432 0.000056 0.017722

90 0.000443 0.000521 0.000078 0.019476

Average 0.018551

Table 14: Direct results for 8000 bytes messages transferring by Tag Algorithm on HECToR

0.00000

0.00005

0.00010

0.00015

0.00020

1 10 20 30 40 50 60 70 80 90

I0T

R0T

Time (µs)

52

Figure 28: Direct results for 8000 bytes messages transferring by Tag Algorithm on HECToR

Table 15 is the results for transferring an 80000 bytes data by using Tag Algorithm on the

HECToR. Figure 29 is the corresponding direct results figure of IOT and ROT.

Size

(bytes)

No. of

Mess

IOT

(s)

ROT

(s)
Diff (s)

Matching

time (µs)

80000

1 0.000044 0.000045 0.000001

10 0.000270 0.000272 0.000002 0.050000

20 0.000510 0.000517 0.000007 0.038596

30 0.000756 0.000769 0.000013 0.030345

40 0.001094 0.001112 0.000018 0.023504

50 0.002204 0.002239 0.000035 0.028571

60 0.002041 0.002075 0.000034 0.019128

70 0.004339 0.004312 -0.000027 -0.011062

80 0.002415 0.002421 0.000006 0.001989

90 0.003652 0.003595 -0.000056 -0.014018

Average 0.018562

Table 15: Direct results for 80000 bytes messages transferring by Tag Algorithm on HECToR

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

1 10 20 30 40 50 60 70 80 90

I0T

R0T

Time (µs)

53

Figure 29: Direct results for 80000 bytes messages transferring by Tag Algorithm on HECToR

Table 16 is the results for transferring an 800000 bytes data by using Tag Algorithm on the

HECToR. Figure 28 is the corresponding direct results figure of IOT and ROT.

Size

(bytes)

No. of

Mess

IOT

(s)

ROT

(s)
Diff (s)

Matching

time (µs)

800000

1 0.000326 0.000326 0.000000

10 0.002993 0.002996 0.000003 0.066667

20 0.006390 0.006379 -0.000011 -0.057895

30 0.011556 0.011581 0.000025 0.057471

40 0.011030 0.011072 0.000042 0.053846

50 0.014050 0.013996 -0.000054 -0.044082

60 0.019779 0.019814 0.000035 0.019774

70 0.028667 0.028570 -0.000097 -0.040166

80 0.027187 0.027356 0.000169 0.053481

90 0.033944 0.034146 0.000202 0.050437

Average 0.017726

Table 16: Direct results for 800000 bytes messages transferring by Tag Algorithm on HECToR

0.000

0.001

0.002

0.003

0.004

0.005

1 10 20 30 40 50 60 70 80 90

I0T

R0T

Time (µs)

54

Figure 30: Direct results for 800000 bytes messages transferring by Tag Algorithm on HECToR

Table 17 is the results for transferring an 8000000 bytes data by using Tag Algorithm on the

HECToR. Figure 31 is the corresponding direct results figure of IOT and ROT.

Size

(bytes)

No. of

Mess

IOT

(s)

ROT

(s)

Diff

(s)

Matching

time (µs)

8000000

1 0.002767 0.002771 0.000004

10 0.024675 0.024696 0.000021 0.466667

20 0.053338 0.053387 0.000050 0.260526

30 0.134800 0.134897 0.000096 0.221839

40 0.102637 0.102696 0.000059 0.076282

50 0.204592 0.204626 0.000034 0.027755

60 0.247394 0.247512 0.000118 0.066554

70 0.177311 0.177354 0.000043 0.017943

80 0.279823 0.279972 0.000149 0.047310

90 0.226005 0.226055 0.000050 0.012547

Average 0.133047

Table 17: Direct results for 8000000 bytes messages transferring by Tag Algorithm on HECToR

0.000

0.010

0.020

0.030

0.040

1 10 20 30 40 50 60 70 80 90

I0T

R0T

Time (µs)

55

Figure 31: Direct results for 8000000 bytes messages transferring by Tag Algorithm on HECToR

According to the analysis strategy states in Chapter 3.1.2, the final results of HECToR are showed

in the Table 18 which is the matching time per message in Tag Algorithm with the different size.

However, the results associated with large data size might be inaccurate to some degree, such as

the matching time per message with size equal to 8000000 is much smaller than the others amount

to there are some negative value of the difference between IOT and ROT exist. In order to

guarantee the accuracy of the final results, this abnormal value should be eliminated. Hence, draw

a picture with the other five values in Figure 31, and the average number is drawn as a solid line

and the trade of the five values is drawn as a dotted line. Figure 32 shows that the general trade is

still stable and seems as a constant by ignoring the effect of the outliers. Hence, the mating time

per message of HECToR is around 0.016718µs.

Size

(s)

Matching Time

per Mess (µs)

 80 0.011439

 800 0.017311

 8000 0.018551

 80000 0.018562

 800000 0.017726

 8000000 0.133047

Average 0.016718

Table 18: Message matching time for HECToR

0.00

0.05

0.10

0.15

0.20

0.25

0.30

1 10 20 30 40 50 60 70 80 90

I0T

R0T

Time (µs)

56

Figure 32: Message matching time for HECToR

Finally, according to the equations ①and ② in sections, Table 19 demonstrates various values

includes the pure time for sending a message (S), time for a message matching (M) and the

network latency (L) with the size per message changes. Again, the values of 8000000 bytes should

be ignored.

Pattern Time

(µs)

Size

(bytes)

 80 800 8000 80000 800000 8000000

InOrder
S+M 3.759494 5.987342 8.329114 46.215190 450.139241 4559.483146

L 6.240506 11.012658 16.670886 19.784810 20.860759

Reverse

Order

S 3.695954 5.878035 8.191908 46.095954 450.078613

M 0.024425 0.031792 0.048555 0.048555 0.035665 4597.500342

L 6.355491 11.158382 17.710983 20.855491 21.664740

Table 19: Confirmatory results for Tag Algorithm on HECToR

In summary, the results of HECToR prove the fact that both IOT and ROT sustained increases and

there is always a gap between them. Also, the fluctuations in IOT and ROT are becoming more

and more heavily and a few value of the difference of IOT and ROT is negative, which stands for

the data transfer process can be affected by other factors more easily.

4.2.2.2 Outcomes of Comm Algorithm

This section shows the outcomes of the Comm Algorithm programs of HECToR with multiple

lengths of messages.

Table 20 lists the direct results for 80 bytes messages of Comm Algorithm. Both IOT and ROT

increases with number of messages and size of each message grows and the ROT is always lager

57

than IOT. Figure 33 illustrates the IOT and ROT values in graph. The trend of IOT values is linear

and ROT is a parabola. Figure 34is the Diff Figure, demonstrates difference between IOT and ROT

increases parabolically. Figure 35 is the message matching time when the size of message is 80

bytes. The first two value (No of Mess = 10 and 20) is not so accurate because the total data size is

so small, but they do not make a big impact on the averaged value.

Size

(bytes)

No. of

Mess

IOT

(s)

ROT

(s)

Diff

(s)

Matching

Time (µs)

80

1 0.000004 0.000004

10 0.000014 0.000014 0.000000 0.000000

20 0.000024 0.000025 0.000001 0.003008

30 0.000034 0.000036 0.000002 0.004981

40 0.000045 0.000049 0.000005 0.005769

50 0.000056 0.000064 0.000008 0.006367

60 0.000067 0.000078 0.000011 0.005989

70 0.000081 0.000095 0.000014 0.005659

80 0.000092 0.000111 0.000019 0.005967

90 0.000111 0.000136 0.000025 0.006349

Average 0.005511

Table 20: Direct results for 80 bytes messages transferring by Comm Algorithm on HECToR

Figure 33: Direct results for 80 bytes messages transferring by Comm Algorithm on HECToR

0.00000

0.00004

0.00008

0.00012

0.00016

1 10 20 30 40 50 60 70 80 90

IOT (s)

ROT (s)

58

Figure 34: Diff figure for 80 bytes messages transferring by Tag Algorithm on HECToR

Figure 35: Matching time for 80 bytes messages transferring by Comm Algorithm on HECToR

The remaining results of the Comm Algorithm’s outcomes (size = 800 to 8000000 bytes) included

in Table 21, it also proves the same fact as 80 bytes message, so it will not repeat here. Only one

fact needs to be noticed, the results fluctuate strongly since length equals to 10000. It means the

machine is not stable and the performance cannot be guaranteed.

59

Size

(bytes)

No. of

Mess

IOT

(s)

ROT

(s)

Diff

(s)

Matching

Time (µs)

800

1 0.000005 0.000005 0.000000

10 0.000017 0.000017 0.000000 0.000000

20 0.000034 0.000035 0.000001 0.005263

30 0.000043 0.000045 0.000002 0.004598

40 0.000057 0.000061 0.000004 0.004487

50 0.000075 0.000079 0.000004 0.003265

60 0.000097 0.000110 0.000013 0.007264

70 0.000101 0.000115 0.000014 0.005797

80 0.000115 0.000141 0.000025 0.008017

90 0.000130 0.000174 0.000044 0.011028

Average 0.005524

8000

1 0.000009 0.000010 0.000000

10 0.000052 0.000051 -0.000000 0.000000

20 0.000113 0.000114 0.000001 0.003759

30 0.000170 0.000173 0.000003 0.006130

40 0.000226 0.000232 0.000006 0.007949

50 0.000321 0.000329 0.000008 0.006297

60 0.000308 0.000321 0.000013 0.007203

70 0.000363 0.000384 0.000021 0.008765

80 0.000411 0.000445 0.000034 0.010669

90 0.000579 0.000636 0.000057 0.014332

Average 0.007234

80000

1 0.000047 0.000048 0.000001

10 0.000271 0.000272 0.000002 0.000000

20 0.000500 0.000504 0.000005 0.023684

30 0.000720 0.000725 0.000005 0.011954

40 0.001376 0.001377 0.000001 0.001603

50 0.001751 0.001748 -0.000003 -0.002721

60 0.002069 0.002063 -0.000006 -0.003164

70 0.001807 0.001811 0.000005 0.001988

80 0.001952 0.001951 -0.000001 -0.000211

90 0.002172 0.002174 0.000003 0.000642

Average 0.003753

800000

1 0.000378 0.000382 0.000004

10 0.002707 0.002709 0.000003 0.000000

20 0.004790 0.004792 0.000001 0.006579

30 0.007482 0.007488 0.000006 0.013793

40 0.011686 0.011679 -0.000007 -0.008974

50 0.018536 0.018555 0.000019 0.015306

60 0.014098 0.014098 0.000000 0.000188

60

70 0.021689 0.021719 0.000029 0.012127

80 0.023061 0.023112 0.000051 0.016060

90 0.029814 0.029808 -0.000007 -0.001706

Average 0.005930

8000000

1 0.002865 0.002890 0.000025

10 0.032016 0.032008 -0.000008 0.000000

20 0.062322 0.062388 0.000066 0.348684

30 0.094084 0.094031 -0.000053 -0.122989

40 0.123546 0.123569 0.000022 0.028526

50 0.127233 0.127224 -0.000009 -0.007143

60 0.159169 0.159261 0.000092 0.051977

70 0.198715 0.198730 0.000015 0.006211

80 0.197474 0.197463 -0.000011 -0.003639

90 0.220974 0.221028 0.000053 0.013358

Average 0.034998

Table 21: Results of 800 to 8000000 bytes messages transferring by Comm Algorithm on HECToR

Finally, the matching time for each message size is collected in to Table 22. It shows that the

message matching time seems to be a constant with some fluctuations. The value with 8000000

bytes message is dramatic large, it should not be included in. In general, the matching time for this

machine is about 0.005590 microseconds. Figure 36 illustrates the different matching according to

the message size. All the values wave around 0.005590 that should be the matching time for

Comm Algorithm on HECToR.

Size

(bytes)

Matching Time

(µs)

 80 0.005511

 800 0.005524

 8000 0.007234

 80000 0.003753

 800000 0.005930

 8000000 0.034998

Average 0.005590

Table 22: Matching time of Comm Algorithm on HECToR

61

Figure 36: Massage matching time of Comm Algorithm on HECToR

4.3 INDY

4.3.1 INDY Configuration

INDY is the EPCC (Edinburgh Parallel Computing Center) Industry machine designed to meet the

on-demand access and high performance computational capabilities needs of users in both the

scientific and industrial area. INDY is a heterogeneous Linux and Windows high performance

cluster. There are two front nodes, INDY0 which is ruing SLES 11 sp1 Linux operating system is

and INDY1 which is using Windows 2008 R2 operating system. On the other hand, INDY

contains two dozen 64-core backend nodes and each node has four Opteron 6276 2.3 GHz

Interlagos processors which amount to 1536 cores in total [4]. Each core has 4 GB memory, giving

a total of 256 shared RAM memory per backend node. There are two big memory nodes in

INDY-Linux, comp000 and comp001, configured with a total of 512 GB RAM (8GB per core).

All the nods are connected with each other by a very high speed and low latency Ethernet switch

from Gnodal. Eventually, every node can be equipped with two Nvidia Tesla K20 GPU cards to

satisfied the future need of CUDA programming. The backend nodes can be accesses through both

operating systems to obtain a more efficient and stable performance [4].

In addition, INDY also works as an accelerator which provides access to some supercomputer in

UK. For instance, the most advanced supercomputers HECToR and Blue Gene/Q can be

augmented by the comprehensive on-demand and high performance accelerator as well.

62

4.3.2 Programs Outcomes of INDY-Linux

The following tables and graphs assist us to understand the overheads of messages and overall

performance of INDY-Linux. Tag Algorithm is firstly implemented on the machine and followed

by Comm Algorithm.

4.3.2.1 Outcomes of Tag Algorithm on INDY0

Table 23 is the results of sending and receiving 80 bytes data by using Tag Algorithm on the INDY.

Figure 37 shows how the IOT and ROT changes with number of message increases. ROT is always

approximately equal to or greater than IOT. The shape of IOT line is an almost straight while the

trend of ROT is a parabolic line. Figure 38 describes how Diff changes with the number of

messages grows. The shape of Diff lines turn out to be a Figure 39 covers the values of Matching

time, they wave slightly around 0.009625, which means the matching time is a constant.

Size

(bytes)

No of

Mess

IOT (s) ROT (s) Diff (s) Matching

Time (µs)

80

1 0.000001 0.000001 0.000000

10 0.000007 0.000007 0.000000

20 0.000012 0.000013 0.000001 0.007018

30 0.000019 0.000024 0.000005 0.011823

40 0.000027 0.000034 0.000007 0.008425

50 0.000034 0.000045 0.000011 0.008980

60 0.000043 0.000059 0.000016 0.009040

70 0.000049 0.000075 0.000026 0.010559

80 0.000058 0.000093 0.000035 0.010918

90 0.000066 0.000107 0.000041 0.010237

Average 0.009625

Table 23: Direct results for 80 bytes messages transferring by Tag Algorithm on INDY0

Figure 37: Direct results for 80 bytes messages transferring by Tag Algorithm on INDY0

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

1 10 20 30 40 50 60 70 80 90

IOT

ROT

No of Mess

Ti
m

e

63

Figure 38: Diff figure for 80 bytes messages transferring by Tag Algorithm on INDY0

Figure 39: Matching time for 80 bytes messages transferring by Tag Algorithm on INDY0

Table 24 lists the results for 800 bytes messages sending and receiving by Tag Algorithm on

INDY-Linux. Figure 40 describes how the IOT and ROT changes when more messages are

transferred. All the results are reasonable.

64

Size

(bytes)

No of

Mess

IOT

(s)

ROT

(s)

Diff

(s)

Matching

Time (µs)

800

1 0.000002 0.000002 0.000000

10 0.000011 0.000011 0.000000 0.000000

20 0.000022 0.000023 0.000001 0.003509

30 0.000032 0.000035 0.000003 0.006240

40 0.000043 0.000051 0.000009 0.010897

50 0.000062 0.000077 0.000015 0.012245

60 0.000072 0.000089 0.000017 0.009746

70 0.000083 0.000110 0.000027 0.011180

80 0.000092 0.000133 0.000042 0.013186

90 0.000099 0.000165 0.000066 0.016438

Average 0.009271

Table 24: Direct results for 800 bytes messages transferring by Tag Algorithm on INDY0

Figure 40: Direct results for 800 bytes messages transferring by Tag Algorithm on INDY0

Table 25 and Figure 41 demonstrate the IOT and ROT increase with the number of message grows

when the size of each message is 8000 bytes.

0.00000

0.00004

0.00008

0.00012

0.00016

0.00020

1 10 20 30 40 50 60 70 80 90

IOT

ROT

No of
Mess

Time (s)

65

Size

(bytes)

No of

Mess

IOT

(s)

ROT

(s)

Diff

(s)

Matching

Time (µs)

8000

1 0.000016 0.000016 0.000000

10 0.000119 0.000120 0.000001 0.022222

20 0.000234 0.000235 0.000001 0.007018

30 0.000361 0.000365 0.000004 0.009655

40 0.000508 0.000515 0.000007 0.008547

50 0.000589 0.000601 0.000012 0.009633

60 0.000772 0.000789 0.000017 0.009887

70 0.000885 0.000910 0.000026 0.010559

80 0.001065 0.001098 0.000033 0.010506

90 0.001061 0.001100 0.000039 0.009655

Average 0.010854

Table 25: Direct results for 8000 bytes messages transferring by Tag Algorithm on INDY0

Figure 41: Direct results for 8000 bytes messages transferring by Tag Algorithm on INDY0

Table 26 lists the results for 80000 bytes messages, some outliners can be found from the Diff

column. They should be eliminated because the ROT cannot less than IOT. Forty presents of the

values of Diff are negative means the machine is unstable enough when a number of bytes

messages transferred which is a relatively a longer time. Account for too many values are

defective, this group of data cannot be adopted. Figure 42 shows the trend of IOT and ROT.

0.00000

0.00040

0.00080

0.00120

1 10 20 30 40 50 60 70 80 90

IOT

ROT

No of
Mess

Time (s)

66

Size

(bytes)

No of

Mess

IOT (s) ROT (s) Diff (s) Matching

Time (µs)

80000

1 0.000110 0.000112 0.000001

10 0.001168 0.001171 0.000003 0.074074

20 0.001856 0.001860 0.000004 0.019737

30 0.003222 0.003220 -0.000002 -0.005255

40 0.004574 0.004566 -0.000008 -0.009890

50 0.005547 0.005536 -0.000010 -0.008513

60 0.005877 0.005878 0.000001 0.000646

70 0.007279 0.007283 0.000004 0.001656

80 0.008257 0.008254 -0.000003 -0.000995

90 0.008816 0.008824 0.000008 0.001962

Average 0.008158

Table 26: Direct results for 80000 bytes messages transferring by Tag Algorithm on INDY0

Figure 42: Direct results for 80000 bytes messages transferring by Tag Algorithm on INDY0

Table 27 and Figure 43 also state the fact that, the results are not accurate enough when a number

of 800000 bytes messages transferred. Moreover the values in Matching Time column fluctuate

dramatically, and even the average is a negative number. This also means the stability of

INDY-Linux is very poor.

0.0000

0.0020

0.0040

0.0060

0.0080

0.0100

1 10 20 30 40 50 60 70 80 90

IOT

ROT

No of
Mess

Time (s)

67

Size

(bytes)

No of

Mess

IOT (s) ROT (s) Diff (s) Matching

Time (µs)

800000

1 0.001207 0.001204 -0.000003

10 0.009752 0.009747 -0.000005 -0.114815

20 0.020822 0.020793 -0.000029 -0.151316

30 0.027925 0.027988 0.000063 0.145211

40 0.034317 0.034276 -0.000041 -0.053077

50 0.042729 0.042729 0.000000 0.000000

60 0.051255 0.051292 0.000038 0.021328

70 0.060453 0.060475 0.000023 0.009420

80 0.075238 0.075381 0.000143 0.045208

90 0.079159 0.079181 0.000023 0.005618

Average -0.010269

Table 27: Direct results for 800000 bytes messages transferring by Tag Algorithm on INDY0

Figure 43: Direct results for 800000 bytes messages transferring by Tag Algorithm on INDY0

Again, lots of defective values appear in Table 28 and Figure 44. The average value of matching

time per message results in a very big number, about 0.26 microsecond. It proves that the

INDY-Linux maybe not powerful enough to perform computations with large data set.

0.00

0.02

0.04

0.06

0.08

0.10

1 10 20 30 40 50 60 70 80 90

IOT

ROT

No of Mess

Time (s)

68

Size

(bytes)

No of

Mess

IOT (s) ROT (s) Diff (s) Matching

Time (µs)

8000000

1 0.010273 0.010261 -0.000012

10 0.088977 0.089063 0.000086 1.911111

20 0.179345 0.179336 -0.000009 -0.047368

30 0.282066 0.282135 0.000068 0.156782

40 0.355420 0.355519 0.000099 0.126282

50 0.484526 0.484646 0.000120 0.098286

60 0.539874 0.539954 0.000081 0.045537

70 0.672511 0.672485 -0.000026 -0.010683

80 0.743352 0.743554 0.000202 0.064030

90 0.805049 0.805042 -0.000007 -0.001685

Average

0.260254

Table 28: Direct results for 8000000 bytes messages transferring by Tag Algorithm on INDY0

Figure 44: Direct results for 8000000 bytes messages transferring by Tag Algorithm on INDY0

As there are twenty presents of the values are not accurate, only three groups results can be used

to calculate the averaged message matching time, the final results of message matching time is not

quite reliable .The results matching time per message of Tag Algorithm on INDY-Linux shows in

Table 29, the value of 80000,800000 and 8000000 size is unreliable so this value requires to be

deleted. The approximate value of the matching time per message might be 0.009916 µs. Figure

45 draw a picture of the message matching time. In summary, the INDY-Linux is an unstable

machine and large data set program cannot benefit from it.

0.00

0.20

0.40

0.60

0.80

1.00

1 10 20 30 40 50 60 70 80 90

IOT

ROT

No of Mess

Time (s)

69

Size

(bytes)

Matching Time

per Mess (µs)

 80 0.009625

 800 0.009271

 8000 0.010854

 80000 0.008158

 800000 -0.010269

 8000000 0.260254

Average 0.009916

Table 29: Message matching Time of Tag Algorithm on INDY0

Figure 45: Approximate value of Matching time of Tag Algorithm on HECToR

4.3.2.2 Outcomes of Comm Algorithm on INDY0

Next section associated with results of Comm Algorithm. Table 30 is the direct result table of 80

bytes message associated with Comm Algorithm on INDY- Linux. Figure 46 shows IOT and ROT

increases with number of messages grows. But the IOT is not an exactly straight line and the last

point is lower than the previous. This may be caused by the machine’s statue. Figure 47 describe

the variation trend of Diff line which is a parabola with some fluctuations. Figure 48illustrate the

averaged matching in this group which is a constant about 0.008809 microsecod.

0.000

0.002

0.004

0.006

0.008

0.010

0.012

80 800 8000

Matching
Time per
Mess

Average

M
at

ch
in

g
ti

m
e

 (
µ

s)

70

Size

(bytes)

No of

Mess

IOT

 (s)

ROT

(s)

Diff

(s)

Matching

Time (µs)

80

1 0.000001 0.000001 0.000000

 10 0.000006 0.000006 0.000000

20 0.000012 0.000013 0.000001 0.006015

30 0.000020 0.000024 0.000005 0.010509

40 0.000026 0.000035 0.000008 0.010769

50 0.000036 0.000047 0.000012 0.009388

60 0.000042 0.000060 0.000018 0.010282

70 0.000077 0.000090 0.000013 0.005569

80 0.000093 0.000118 0.000025 0.007785

90 0.000068 0.000109 0.000041 0.010154

Average

0.008809

Table 30: Direct results for 80 bytes messages transferring by Comm Algorithm on INDY0

Figure 46: Direct results for 80 bytes messages transferring by Comm Algorithm on INDY0

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

1 10 20 30 40 50 60 70 80 90

IOT

ROT

No of Mess

Time (s)

71

Figure 47: Diff figure for 80 bytes messages transferring by Comm Algorithm on INDY0

Figure 48: Matching time for 80 bytes messages transferring by Comm Algorithm on INDY0

The remaining parts of the Comm Algorithm implanted on INDY-Linux illustrates in Table 31.

The values in the first two group (size = 800 and 8000 bytes) is much smaller than the others.

Since the size of data become to 80000 and over, the time for matching increases significantly. It

may due to the memory issues. Comm Algorithm is a memory unfriendly algorithm because it

creates many communicator on the two nodes which consume the memory resources. Certainly,

there must be many other reasons which could be detected in the future.

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

1 10 20 30 40 50 60 70 80 90

Diff

No of Mess

Time (s)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

1 10 20 30 40 50 60 70 80 90

Matching
Time

Average

Matching Time (µs)

No of Mess

72

Size

(bytes)

No of

Mess

IOT

(s)

ROT

(s)

Diff

(s)

Matching

Time (µs)

8000

1 0.000015 0.000015 0.000000

10 0.000120 0.000122 0.000002 0.044444

20 0.000249 0.000250 0.000001 0.006316

30 0.000377 0.000379 0.000002 0.004598

40 0.000509 0.000514 0.000005 0.006838

50 0.000645 0.000652 0.000007 0.005714

60 0.000803 0.000812 0.000009 0.005085

70 0.000875 0.000880 0.000005 0.001863

80 0.001000 0.001005 0.000005 0.001582

90 0.001186 0.001196 0.000010 0.002372

Average 0.008757

80000

1 0.000112 0.000115 0.000002

10 0.001304 0.001309 0.000005 0.103704

20 0.002518 0.002525 0.000007 0.036842

30 0.003684 0.003692 0.000008 0.018391

40 0.004667 0.004683 0.000015 0.019872

50 0.005712 0.005730 0.000018 0.014694

60 0.006622 0.006640 0.000019 0.010452

70 0.006364 0.006385 0.000021 0.008696

80 0.008026 0.008050 0.000024 0.007489

90 0.009204 0.009240 0.000036 0.009072

Average 0.025468

800000

1 0.001212 0.001212 0.000000

10 0.009154 0.009158 0.000003 0.075556

20 0.021064 0.021102 0.000038 0.200000

30 0.030597 0.030677 0.000080 0.184674

40 0.036756 0.036903 0.000146 0.187821

50 0.049036 0.048673 -0.000363 -0.296327

60 0.049988 0.050038 0.000050 0.028249

70 0.070209 0.069707 -0.000502 -0.207690

80 0.069709 0.069762 0.000053 0.016772

90 0.076505 0.076648 0.000143 0.035643

Average 0.024966

8000000

1 0.008985 0.008987 0.000002

10 0.086059 0.086077 0.000018 0.407407

20 0.178340 0.178437 0.000097 0.513158

30 0.293806 0.294027 0.000221 0.508046

40 0.381480 0.381990 0.000510 0.653846

50 0.496478 0.497406 0.000928 0.757279

60 0.569531 0.571017 0.001487 0.839831

70 0.671736 0.674834 0.003098 1.282954

73

80 0.778934 0.785788 0.006854 2.169066

90 0.836946 0.850249 0.013303 3.321660

Average 1.161472

Table 31: Results of 800 to 8000000 bytes messages transferring by Comm Algorithm on INDY0

After collecting the averaged results in Table 30 and Table 31, Table 32 can be obtained. The final

result of matching time per message is about 0.0150592 micorsceond. The value for 8000000

bytes is too large to be unreasonable which should be deleted. Though other values are accurate,

they still come with heavy fluctuations. Hence the INDY-Linux is not suitable for Comm

Algorithm either.

Size

(bytes)

Matching Time

per Mess (µs)

 80 0.007830

 800 0.024966

 8000 0.025468

 80000 0.008757

 800000 0.008275

 8000000 1.161472

Average 0.0150592

Table 32: Message matching Time of Comm Algorithm on INDY0

4.3.3 Programs Outcomes of INDY-Windows

The program can be run successfully on INDY-Linux but it failed on INDY-Windows. The code

was successfully compiled by the Visual Studio, and the executable application can be submitted

to the backend nodes, but it failed as soon as submission completed. The compiled program can be

run at frontend, so the code proved to be correct. There might be some other reasons with the

software configuration. Because of time constraints, the tests of INDY-Windows will not be

performed in this project. Nevertheless, some of the program results running on the frontend nodes

can be quoted to show a general idea of the MPI programs with Windows operating system,

though these results do not have relative property, because it is a shared architecture on frontend

and the performance of frontend nodes are unsteady. Table 33 shows the some direct results of

Comm Algorithm on INDY-Windows.

74

No of Mess Size

(bytes)

IOT

(s)

ROT

(s)

Diff

(s)

1

80 0.000009 0.000005 -0.000005

800 0.000012 0.000008 -0.000004

8000 0.000032 0.000031 -0.000001

80000 0.000789 0.001100 0.000311

800000 0.000850 0.000859 0.000008

8000000 0.055325 0.013792 -0.041534

45

80 0.000081 0.000087 0.000007

800 0.000130 0.000134 0.000003

8000 0.001196 0.001237 0.000041

80000 0.005336 0.005110 -0.000226

800000 0.046649 0.046405 -0.000244

8000000 0.587515 0.589183 0.001667

90

80 0.000158 0.000167 0.000009

800 0.000255 0.000274 0.000019

8000 0.002358 0.002458 0.000100

80000 0.010916 0.010753 -0.000163

800000 0.092371 0.092812 0.000440

8000000 1.059923 1.044196 -0.015728

Table 33: Direct results of Comm Algorithm on INDY-Windows

4.4 ECDF

4.4.1 ECDF Configuration

The benchmark program was also compiled and executed on the high-performance compute

cluster called Eddie which is operated by ECDF. ECDF, short for Edinburgh Compute and Data

Facility, is developed and maintained by the University of Edinburgh and funded by the Science

Research Investment Fund (SRIF3) since October 2007. This facility provides flexible and ample

computing resources for individual and research community in different subject domains by

configuring with multiple languages and program integration. A number of building blocks act as

worker nodes run an industry standard Linux based operating system. Up to now, two generations

of Eddie have been unveiled, Mark 1 Cluster and Mark 2 Cluster. Since the first generation is

unavailable now, only Mark 2 Cluster will be introduced in this Chapter. More information can be

found from the ECDF homepage [5].

75

In Mark 2 Phase 1, Eddie comprises 130 IBM iDataplex DX360 M3 serves and 128 of which

contain two quad-core Intel “Westmere” E5620 processors, giving a total of 1024 CPU cores to

run the Scientific Linux 4.5 64-bit operating system. Each node has a 24 GB DDR3 RAM, a 250

GB hard disk and two gigabit network cards. Eddie is a distributed memory system machine. Each

node contains a 64 KB (32 KB for data and 32 KB for Instruction) Level 1 cache, 256 KB Level 2

cache and 12 MB shared Level 3 cache. All the worker nodes are able to communicate with each

other by Ethernet network with a 10 Gigabit network core.

The Mark 2 Phase 2 are improved slightly based on Phases 1, the number of nodes is increased to

156 and the processors in each node are changed into two six-core Intel "Westmere" E5645. Most

nodes still connected by the Gigabit Ethernet but 68 nodes A are additionally configured with

Infiniband fast and low latency interconnect.

In Mark 2 Phase 3, there are only 6 worker IBM iDataplex DX360 M4 nodes. Each node contains

two Intel "Sandy Bridge" E5-2620 six-core processors. However, each node are installed with a

64GB DDR3 RAM and a 500 GB hard disk.

Eddie uses a GPFS (General Parallel File System) storage system which is based on SAN disk

platforms. The disk platforms consists of two parts: Tier 1 storage and Tier 2 storage. The first on

is built with two IBM DS5300 systems. The disk systems use 300 GB FC disks. The Tier 2 storage

is provided by two Sun StorageTek 6540 systems which use 1000GB SATA drives. The total

storage achieves 275 TB by adding the two storage systems together. Worker nodes access to in

these two storage systems via eight IBM X3650 M3 servers, with 48GB RAM and 10GE

networking. As the users’ work directories are shared in the GPFS, all the worker nodes in Eddie

can access to all the data in the same way.

4.4.2 Programs Outcomes of ECDF

Before demonstrating the results of ECDF with tables and graphs, a fact should be pre-declared

that the original outcomes of the program show a great volatility, for example, Table 34 lists the

original results of 10 message of 80 bytes, the minimum number is 2 microsecond while the

maximum number is 228 microsecond, even the average number is 148 microsecond. It means

that the machine is remarkably unstable. The remaining results have the same situation as this

table, so ECDF proved to be not suitable for the micro-benchmark suite. It may due to the

configuration or architecture of the machine which requires to be investigated in future. This

project will not take the ECDF facility into account any more.

76

Job No IOT

(s)

ROT

(s)

2602077 0.000002 0.000002

2602078 0.000200 0.000198

2602079 0.000203 0.000188

2602080 0.000003 0.000003

2602081 0.000200 0.000196

2602082 0.000228 0.000189

2602084 0.000197 0.000196

Minimum 0.000002 0.000002

Maximum 0.000228 0.000198

Average 0.000148 0.000139

Table 34: Original Results of ECDF with 10 80 bytes messages transferring by Tag Algorithm

4.5 Morar

Morar is chosen as the testing machine to run the benchmark program to assure the robustness,

correctness and portability of these programs. It applies to parallel jobs with message-passing

interface and its working environment of the HPC system is analogous to the other machines such

as HECToR.

Morar is consists of 128 AMD Interlagos cores, they are orginised in two shared-memory boxes

(Morar1, Morar2) and each box has 64 CPUs separately. Various kinds of compilers, compiler

flags and libraries are available on this machine to help users to compile and executer the MPI

programs.

6. Performance Comparison

Based on the analysis and computational results in the last chapter, this section compares the

performance of the four machines, Blue Gene/Q, HECToR, INDY-LINUX-LINUX and ECDF

computational results.

6.1 Direct Results Comparison

77

In terms of the Tag Algorithm, some direct results of these machines are listed in Table 35. It

includes the 12 values for each machine which is divided by No of mess, multiplied by the size

(bytes) of each message. For example, 1*800 means the number of messages equal to 1 and size

per message is 80 bytes. These results shows that, HECToR is the fastest machine for this

particular benchmark algorithm with a smaller IOT of 80 bytes message ay 10 microsecond and

the smallest IOT for 720000000 bytes message is 0.226005.

However, though the implementation process, it has been found that the stability of HECToR is

not as good as Blue Gene/Q. Blue Gene/Q has a such a robust stability that every original value

within the group are almost same. The performance of Blue Gene/Q is quite optimal as well, so it

might be the most powerful supercomputers among the four HPC facilities. INDY-Linux provides

an acceptable overall performance. Because it is the best choice for a small message with the

shortest IOT 1 microsecond when transfer 80 bytes message. But when the size of data package

increases, IOT grows significantly (i.e 0.8 microsecond for 720000000 bytes message), so it not

suitable for large messages. The ECDF obtained unacceptable results, so it is not applied to this

project.

No of mess *

size (bytes)

BGQ’s IOT

(s)

HECToR’s IOT

(s)

INDY-LINUX’s

IOT (s)

1*80 0.000010 0.000004 0.000001

90*80 0.000359 0.000100 0.000066

1*800 0.000017 0.000004 0.000002

90*800 0.000561 0.000123 0.000099

1*8000 0.000025 0.000015 0.000016

90*8000 0.000757 0.000443 0.001061

1*80000 0.000066 0.000044 0.000110

90*80000 0.004189 0.003652 0.008816

1*800000 0.000471 0.000326 0.001207

90*800000 0.043987 0.033944 0.079159

1*8000000 0.004521 0.002767 0.010273

90*8000000 0.419215 0.226005 0.805049

Table 35: Direct IOT results of Tag Algorithm on three machines

6.2 Final Result Comparison

The summary Table 36 presents the final result comparison of the entire project. For Tag

Algorithm, it illustrates that the time to force the matching order of the message on HECToR is the

shortest (only 0.016718 µs), which is one of the reasons why HECToR occupied a higher speed

78

and lower latency. The matching time of BGQ (0.036516 µs) is acceptable while the

INDY-LINUX’s (0.061953 µs) value is not as satisfactory as others. For Comm Algorithm, the

Matching time of HECToR is much smaller than the others. And INDY-Linux’s result cannot be

guaranteed because the machine is unstable.

 BGQ HECToR INDY-LINUX

Matching time for

Tag Algorithm (µs)
0.036516 0.016718 0.061953

Matching time for

Comm Algorithm(µs)
0.023577 0.005590 0.0150592

Table 36: Matching time Comparison among the three machines

(using identical input parameters for each job)

79

7. Conclusion and Further Work

To conclude, this project provides a new method the evaluate some performance issues, especially

the latency and message matching time, of the four HPC facilities such as Blue Gene/Q, HECToR,

INDY and ECDF. The micro-benchmark suite has proved to be a program of high portability,

strong robustness and high reliability. Both the Tag Algorithm and Comm Algorithm programs can

be implemented successfully on all the supercomputers, adapting to both Linux and Windows

operating systems by using various compilers and script files.

The whole benchmark test has been launched hundreds of thousands times to obtain the

reasonable original data. These original data was extracted by a specific method which combines

the maximum-minimum method and the average method together to eliminate outliers, and then

further to this the direct result was extracted. Hence, the overall latency and message matching

time of these machines can be resolved by a series of calculations and analysis based on the direct

program results.

It terms of Tag Algorithm, time of InOrder pattern increases linearly when the number of

messages grows, the time of ReverseOrder pattern rises parabolically with the increasing number

of messages. The difference between InOrder and ReverseOrder communication time growth as a

parabola line when the number of messages changes. Finally, the matching time per messages

turns out as constant though some slight fluctuations exist. The results when a huge data package

is applied are not as accurate. The fluctuations may be caused by interference due to other jobs on

the machine. On the whole, the mathematic model and assumption of Tag Algorithm are correct,

and the final results are reasonable and robust.

The 'one message queue per communicator' model and assumption has been proved to be incorrect

by the Comm Algorithm results. However, the 'one message queue for all communicators' model

and assumption is consistent with the Comm Algorithm results and is therefore very likely to be

correct. The MPI implementer does not create a unique queue for the single messages in

communicator, all the messages are still stored in the same queue in some sequence. So forcing

the ordering of matching the messages still consume some time, which is similar to Tag Algorithm.

The multiple-communicators model cannot optimize the performance of MPI libraries.

Furthermore, by comparing the performance of these four machines, the Blue Gene/Q has proved

to be the most stable and powerful machine with optimal computational capabilities. HECToR is

the fastest machine but is not stable enough. INDY-Linux can transfer some small messages with a

high speed, but it is not able to scale to a large data set. ECDF is not applied to this benchmark

program because there is a great volatility in the results.

80

This project has some scope for further investigation. The failure of execution on the INDY

-Windows machine can be researched in more detail to test the MPI libraries on the Windows

operating system. The reason for the unsteady performance issues of ECDF could also be

investigated. Furthermore, some more HPC facilities might be involved with this

micro-benchmark suite.

81

Appendix

Bechmark_tag Code

#include <stdlib.h>

#include <stdio.h>

#include <mpi.h>

#define reps 5

int main(int argc, char* argv[]){

 int rank, size;

 int nummess,length,numiter;

 int rep,i,j,iter;

 int tag,extent;

 double *sbuf,*rbuf;

 double Totmess;

 MPI_Comm comm;

 MPI_Request r[100];

 MPI_Status statuses[100];

 comm = MPI_COMM_WORLD;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 // Abort if run on less than 2 processors.

 if(size < 2){

 if(rank == 0){

 printf("The code must be run on at least 2 processors.\n");

 }

 MPI_Finalize();

 exit(1);

 }

 if(argc < 3) {

 if(rank == 0){

 printf("Code requires 3 input arguments: \n The number of messages.\n The array

length.\n The number of iterations. \n");

 }

 MPI_Finalize();

82

 exit(1);

 }

 if(rank > 1){

 printf("Rank %d not participating \n",rank);

 }

 if (rank == 0) {

 nummess = atoi(argv[1]);

 length = atoi(argv[2]);

 numiter = atoi(argv[3]);

 printf("Number of messages = %d, Array length = %d , Number of iterations

= %d\n",nummess,length,numiter);

 }

 MPI_Bcast(&nummess,1,MPI_INT,0,MPI_COMM_WORLD);

 MPI_Bcast(&length,1,MPI_INT,0,MPI_COMM_WORLD);

 MPI_Bcast(&numiter,1,MPI_INT,0,MPI_COMM_WORLD);

 int element = reps*numiter;

 double Int1[reps*numiter];

 double Int2[reps*numiter];

 double Ret1[reps*numiter];

 double Ret2[reps*numiter];

 double Intime[reps*numiter];

 double Retime[reps*numiter];

 double Inarray[reps*numiter];

 double Rearray[reps*numiter];

 double Insum=0;

 double Resum=0;

 double Inava, Reava;

 // Allocate array

 sbuf= malloc(nummess*length*sizeof(double));

 rbuf= malloc(nummess*length*sizeof(double));

 if (!sbuf || !rbuf) {

 printf("Could not allocate send/recv buffers of size %d\n", length);

 MPI_Abort(MPI_COMM_WORLD, 1);

 }

83

 for(i=0;i<nummess*length;i++){

 sbuf[i] = (double)rank + 10.0;

 rbuf[i] = (double)rank + 10.0;

 }

 /*Elements location

 if (rank == 0)

 for(i=0;i<nummess*length;i+=length){

 printf("value of sbuf[%d]: %f with address %lu \n", i, (sbuf[i]), (unsigned long)(&sbuf[i]));

 printf("value of rbuf[%d]: %f with address %lu \n", i, (rbuf[i]), (unsigned long)(&rbuf[i]));

 }*/

 for (rep=0; rep<reps; rep++){

 int order=0;

 // Time the parallel execution.

 MPI_Barrier(MPI_COMM_WORLD);

 // Swap back and forth for iter times

 /************** InOrder Receive **************/

 if (order == 0){

 /************** Test **************/

 for(iter=0;iter<numiter;iter++) {

 /************** Batch **************/

Int1[rep*numiter+iter]= MPI_Wtime();

 if(rank == 0){

 for(i=0; i<nummess; i++){

 MPI_Isend(&sbuf[i*length],length,MPI_DOUBLE,1,i,comm,&r[i]);

 }

 MPI_Waitall((int)nummess,r,statuses);

 for(i=0; i<nummess; i++){

 MPI_Irecv(&rbuf[i*length],length,MPI_DOUBLE,1,i,comm,&r[i]);

 }

 MPI_Waitall((int)nummess,r,statuses);

 }

 if (rank == 1){

84

 for(i=0; i<nummess; i++){

 MPI_Irecv(&rbuf[i*length],length,MPI_DOUBLE,0,i,comm,&r[i]);

 }

 MPI_Waitall((int)nummess,r,statuses);

 for(i=0; i<nummess; i++){

 MPI_Isend(&sbuf[i*length],length,MPI_DOUBLE,0,i,comm,&r[i]);

 }

 MPI_Waitall((int)nummess,r,statuses);

 }

 Int2[rep*numiter+iter]= MPI_Wtime();

 /************* Batch End *************/

 }

 /************* Test End *************/

 order = 1;

 }

/****************************/

/************** ReverseOrder Reveive **************/

 if (order == 1){

 for(iter=0;iter<numiter;iter++){

Ret1[rep*numiter+iter] = MPI_Wtime();

 if(rank == 0){

 for(i=0; i<nummess; i++){

 MPI_Isend(&sbuf[i*length],length,MPI_DOUBLE,1,i,comm,&r[i]);

 }

 MPI_Waitall((int)nummess,r,statuses);

 for(i=0; i<nummess; i++){

 MPI_Irecv(&rbuf[i*length],length,MPI_DOUBLE,1,i,comm,&r[i]);

 }

 MPI_Waitall((int)nummess,r,statuses);

 }

 if (rank == 1){

 for(i=nummess-1;i>=0;i--){

 MPI_Irecv(&rbuf[i*length],length,MPI_DOUBLE,0,i,comm,&r[i]);

 }

 MPI_Waitall((int)nummess,r,statuses);

85

 for(i=nummess-1;i>=0;i--){

 MPI_Isend(&sbuf[i*length],length,MPI_DOUBLE,0,i,comm,&r[i]);

 }

 MPI_Waitall((int)nummess,r,statuses);

 }

 Ret2[rep*numiter+iter] = MPI_Wtime();

 }

 order = 0;

 // printf("end of RO");

 }

 /****************************/

 }

 if(rank == 0) {

 for (i=0;i<element;i++) {

 // MPI_Type_size(MPI_DOUBLE,&extent);

 // Totmess = 2.0*extent*length/1024*numiter/1024*nummess;

// printf("222222\n");

 Intime[i] = Int2[i]-Int1[i];

 Retime[i] = Ret2[i]-Ret1[i];

 Inarray[i]= Intime[i];

 Rearray[i]= Retime[i];

 // printf("\n%d I: %f\n", i, Intime[i]);

 // printf("%d R: %f \n",i, Retime[i]);

 }

 }

 /*Elements location

 if (rank == 0)

 for(i=0;i<nummess*length;i+=length){

 printf("value of sbuf[%d]: %f with address %lu \n", i, (sbuf[i]), (unsigned long)(&sbuf[i]));

 printf("value of rbuf[%d]: %f with address %lu \n", i, (rbuf[i]), (unsigned long)(&rbuf[i]));

 }*/

 if(rank == 0) {

 for (i=5;i<element;i++){

 Insum += Intime[i];

 }

 for (j=5;j<element;j++){

 Resum += Retime[j];

86

 }

 Inava = Insum/(element-5);

 Reava = Resum/(element-5);

 printf("\nNumber of messages = %d, Array length = %d ,\

Number of iterations = %d\n",nummess,length,numiter);

 printf("Insum %f\n",Insum);

 printf("Resum %f\n",Resum);

 printf("\nAverage of InOrder: Inava %f\n",Inava);

 printf("Average of ReverseOrder: Reava %f\n\n\n",Reava);

 }

 if(rank == 0) {

 for (i=0;i<element;i++) {

 printf("\n%d I: %f\n", i, Inarray[i]);

 printf("%d R: %f \n",i, Rearray[i]);

 }

 }

 free(sbuf);

 free(rbuf);

 MPI_Finalize();

}

87

Benchmark_comm Code

#include <stdlib.h>

#include <stdio.h>

#include <mpi.h>

#define reps 5

int main(int argc, char* argv[]){

 int rank, size;

 int nummess,length,numiter;

 int rep;

 int i,j,iter,n;

 int tag,extent;

 double *sbuf,*rbuf;

 double Totmess;

 MPI_Comm comm[100];

 MPI_Request r[100];

 MPI_Status status[100];

 MPI_COMM_WORLD;

 tag=0;

 MPI_Init(&argc, &argv);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 // Abort if run on less than 2 processors.

 if(size < 2){

 if(rank == 0){

 printf("The code must be run on at least 2 processors.\n");

 }

 MPI_Finalize();

 exit(1);

 }

 if(argc < 3) {

 if(rank == 0){

 printf("Code requires 3 input arguments: \n The number of messages.\n The array

length.\n The number of iterations. \n");

 }

 MPI_Finalize();

 exit(1);

 }

88

 if(rank > 1){

 printf("Rank %d not participating \n",rank);

 }

 if (rank == 0) {

 nummess = atoi(argv[1]);

 length = atoi(argv[2]);

 numiter = atoi(argv[3]);

 printf("Number of messages = %d, Array length = %d , Number of iterations

= %d\n",nummess,length,numiter);

 }

 MPI_Bcast(&nummess,1,MPI_INT,0,MPI_COMM_WORLD);

 MPI_Bcast(&length,1,MPI_INT,0,MPI_COMM_WORLD);

 MPI_Bcast(&numiter,1,MPI_INT,0,MPI_COMM_WORLD);

 int element = reps*numiter;

 double Int1[reps*numiter];

 double Int2[reps*numiter];

 double Ret1[reps*numiter];

 double Ret2[reps*numiter];

 double Intime[reps*numiter];

 double Retime[reps*numiter];

 double Inarray[reps*numiter];

 double Rearray[reps*numiter];

 double Insum=0;

 double Resum=0;

 double Inava, Reava;

 for (i=0;i<nummess+1;i++){

 MPI_Comm_dup(MPI_COMM_WORLD,&comm[i]);

 }

 // Allocate array

 sbuf= malloc(nummess*length*sizeof(double));

 rbuf= malloc(nummess*length*sizeof(double));

 if (!sbuf || !rbuf) {

 printf("Could not allocate send/recv buffers of size %d\n", length);

 MPI_Abort(MPI_COMM_WORLD, 1);

89

 }

 for(i=0;i<nummess*length;i++) {

 sbuf[i] = (double)rank + 10.0;

 rbuf[i] = (double)rank + 10.0;

 }

//////////////////////////////////

/*Elements locations

 if (rank == 0)

 for(n=0;n<nummess*length;n+=length){

 printf("value of sbuf[%d]: %f with address %lu \n", n, (sbuf[n]), (unsigned long)(&sbuf[n]));

 printf("value of rbuf[%d]: %f with address %lu \n", n, (rbuf[n]), (unsigned long)(&rbuf[n]));

 }*/

//////////////////////////////////////

 for (rep=0; rep<reps; rep++){

 int order=0;

 // Time the parallel execution.

 MPI_Barrier(MPI_COMM_WORLD);

 /************** InOrder Receive **************/

 if (order == 0){

 /************** Test **************/

 for(iter=0;iter<numiter;iter++) {

 /************** Batch **************/

Int1[rep*numiter+iter]= MPI_Wtime();

 if(rank == 0){

 for(n=0; n<nummess; n++) {

 MPI_Isend(&sbuf[n*length],length,MPI_DOUBLE,1,0,comm[n],&r[n]);

 }

 MPI_Waitall((int)nummess,r,status);

 for(n=0; n<nummess; n++) {

 MPI_Irecv(&rbuf[n*length],length,MPI_DOUBLE,1,0,comm[n],&r[n]);

 }

 MPI_Waitall((int)nummess,r,status);

 }

 if (rank == 1){

 for(n=0; n<nummess; n++){

 MPI_Irecv(&rbuf[n*length],length,MPI_DOUBLE,0,0,comm[n],&r[n]);

90

 }

 MPI_Waitall((int)nummess,r,status);

 for(n=0; n<nummess; n++){

 MPI_Isend(&sbuf[n*length],length,MPI_DOUBLE,0,0,comm[n],&r[n]);

 }

 MPI_Waitall((int)nummess,r,status);

 }

 Int2[rep*numiter+iter]= MPI_Wtime();

 /************* Batch End *************/

 } //end of for loop

 /************* Test End *************/

 // printf("end of IO");

 order = 1;

 }

 /****************************/

 /************** ReverseOrder Reveive **************/

 if (order == 1){

 for(iter=0;iter<numiter;iter++){

Ret1[rep*numiter+iter] = MPI_Wtime();

 if(rank == 0){

 for(n=0; n<nummess; n++){

 MPI_Isend(&sbuf[n*length],length,MPI_DOUBLE,1,0,comm[n],&r[n]);

 }

 MPI_Waitall((int)nummess,r,status);

 for(n=0; n<nummess; n++){

 MPI_Irecv(&rbuf[n*length],length,MPI_DOUBLE,1,0,comm[n],&r[n]);

 }

 MPI_Waitall((int)nummess,r,status);

 }

 if (rank == 1){

 for(n=nummess-1;n>=0;n--){

 MPI_Irecv(&rbuf[n*length],length,MPI_DOUBLE,0,0,comm[n],&r[n]);

 }

 MPI_Waitall((int)nummess,r,status);

 for(n=nummess-1;n>=0;n--){

 MPI_Isend(&sbuf[n*length],length,MPI_DOUBLE,0,0,comm[n],&r[n]);

 }

 MPI_Waitall((int)nummess,r,status);

91

 }

 Ret2[rep*numiter+iter] = MPI_Wtime();

 }

 order = 0;

 // printf("end of RO");

 }

 /****************************/

 }

 if(rank == 0) {

 for (i=0;i<element;i++) {

 // MPI_Type_size(MPI_DOUBLE,&extent);

 // Totmess = 2.0*extent*length/1024*numiter/1024*nummess;

// printf("222222\n");

 Intime[i] = Int2[i]-Int1[i];

 Retime[i] = Ret2[i]-Ret1[i];

 Inarray[i] = Intime[i];

 Rearray[i] = Retime[i];

 // printf("\n%d I: %f\n", i, Intime[i]);

 // printf("%d R: %f \n",i, Retime[i]);

 }

 }

 /*Elements location

 if (rank == 0)

 for(n=0;n<nummess*length;n+=length){

 printf("value of sbuf[%d]: %f with address %lu \n", n, (sbuf[n]), (unsigned long)(&sbuf[n]));

 printf("value of rbuf[%d]: %f with address %lu \n", n, (rbuf[n]), (unsigned long)(&rbuf[n]));

 }*/

 if(rank == 0) {

 for (i=5;i<element;i++){

 Insum += Intime[i];

 }

 for (j=5;j<element;j++){

 Resum += Retime[j];

 }

 Inava = Insum/(element-5);

92

 Reava = Resum/(element-5);

 printf("\nNumber of messages = %d, Array length = %d ,\

Number of iterations = %d\n",nummess,length,numiter);

 printf("Insum %f\n",Insum);

printf("Resum %f\n",Resum);

printf("\nAverage of InOrder: Inava %f\n",Inava);

printf("Average of ReverseOrder: Reava %f\n",Reava);

 }

 if(rank == 0) {

 for (i=0;i<element;i++) {

 printf("\n%d I: %f\n", i, Inarray[i]);

 printf("%d R: %f \n",i, Rearray[i]);

 }

 }

 free(sbuf);

 free(rbuf);

 for (n=0;n<nummess+1;n++) {

 MPI_Comm_free(&comm[n]);

 }

 MPI_Finalize();

}

93

Reference

[1] Top500, “Top500 List”. [Online]. Available: http://www.top500.org/lists/2012/11/. [Accessed

August 2013].

[2] P. Kogge, et.al, ExaScale Computing Study: Technology Challenges in Achieving Exascale

Systems, DARPA, 2008, [Online]. Available:    

http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/exascale_final_report_100

208.pdf. [Accessed August 2013].

[3] IBM, “ Blue Gene”, [Online], Available: https://www.dirac.ac.uk/. [Accessed August 2013]

[4] UK National Supercomputing Service, [Online], Available: http://www.hector.ac.uk/.

[Accessed August 2013]

[5] Edinburgh Parallel Computing Center, “Industry Machine Wiki”, [Online], Available:

https://www.wiki.ed.ac.uk/display/EPCCIM/Industry+Machine+Wiki [Accessed August 2013]

[6] The University of Edinburgh, “Edinburgh Compute and Data Facility”, [Online], Available:

http://www.ed.ac.uk/schools-departments/information-services/services/research-support/research-

computing/ecdf/ [Accessed April 2013]

[7] D.Holmes, "McMPI - a Managed-code Message Passing Interface Library for High

Performance Communication in C#", Edinburgh: University of Edinburgh, 2012.

[8] W. Gropp, E.wing Lusk and A. Skjellum, “Using MPI: Portable Parallel Programming with

the Message-Passing Interface”, MIT Press, 1999.

[9] Intel, "Intel MPI Benchmarks", [Online],Available:

http://software.intel.com/en-us/articles/intel-mpi-benchmarks/.[Accessed August 2013].

[10] The University of Edinburgh, “DiRAC Blue Gene/Q,”[Online], Available:

http://www.epcc.ed.ac.uk/facilities/dirac. [Accessed August 2013]

https://www.dirac.ac.uk/
http://www.epcc.ed.ac.uk/facilities/dirac

