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Abstract

Increases in processor performance are now expected to mainly come from an increas-
ing number of processing cores after clockspeeds reached a limit in 2005. Accompany-
ing this are demands placed on software to become highly parallel and able to scale well
to higher thread counts. Investments in time and effort on parallelising software have re-
sulted in applications that exhibit excellent performance and scalability on multisocket
CPU nodes. The Intel Xeon Phi product family aims to offer higher performance to
those existing highly parallel applications by increasing the thread count well into the
hundreds whilst allowing to keep the same programming model. This project follows
the proposition of developing a parallel application that scales well on multicore CPU
nodes with a view to achieving higher performance on an Intel Xeon Phi co-processor.

This project aims to parallelise a medical imaging application from the Western Gen-
eral Hospital in Edinburgh used to help in the prediction of radiation-induced fibrosis
for lung cancer patients after radiotherapy. We use the Intel Parallel Studio XE 2013
software development kit, utilising OpenMP for multithreading and the Intel Math Ker-
nel Library to accelerate application performance on shared memory nodes. The project
is then extended to examine the application performance on many more threads on an
Intel Xeon Phi.

By a change in the image filtering algorithm utilising Fast Fourier Transforms in addi-
tion to parallelisation, we obtain runtimes that are upto 168 times faster over the original
code. This was achieved on dual socket Intel Xeon nodes with 48 and 64GB of memory.

Running the same computational code on an Intel Xeon Phi resulted in a levelling of
performance after more than sixty threads for the largest image we could run on the co-
processor. The 8GB memory limitation prevented the running of a number of threads
required for high performance and the runtimes obtained on the Xeon Phi are higher
than that achieved on the Intel Xeon compute-nodes.
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Chapter 1

Introduction

From a 2011 PRACE survey [1], the two most popular methods to accelerate and paral-
lelise applications is by message-passing programming using MPI and by programming
with OpenMP. For distributed memory systems, using MPI is the language of choice
whereas for shared memory systems, both MPI and OpenMP can be used, though the
latter is the better choice. Both serial and parallel programs using OpenMP can be easily
developed and maintained at the same time.

These systems consist of multicore CPU processors such as Intel Xeon, AMD Opteron
or IBM PowerPC. The first two are found in today’s consumer PC market in desktops
and laptops. From 2002 onwards, more and more systems in the Top5001 consists of
these commodity CPUs by Intel and AMD, overtaking the number of systems using
proprietary processors [2]. Extracting performance out of these multicore CPUs in
parallel has been the key objective for parallel programming languages and APIs such
as MPI and OpenMP. One way to achieve this is to multi-thread applications using
OpenMP directives that enable execution on multiple cores in parallel using multiple
threads.

Overtime, technological and architectural improvements by Intel and AMD have trans-
lated to better performance of these CPUs. These can be taken advantage of by existing
multi-threaded applications in terms of higher core clockspeeds and increasing core
count. The latter now contributes a larger share of increased performance due to reach-
ing thermal limits, causing levelling of processor clockspeeds. The core count on a
shared memory node can be increased through use of multiple CPU sockets with mul-
ticore CPUs. For example, a node of 64 cores can be constructed using four AMD
Interlagos [3], each consisting of 16 cores2. For multi-threaded applications that scale
well with all 64 cores, usually one predicts that even better performance can be attained
if many more of these cores are available.

Intel’s Xeon Phi Product Family3 aims to allow parallel applications, such as those that

1http://www.top500/org
2In this case, there are 8 modules in total, each consisting of 2 independent cores.
3http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html
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are multi-threaded using OpenMP, to achieve higher performance by simply increasing
the number of available cores that run the same x86 instruction set architecture as x86
CPUs such as the Intel Xeons. An Intel Xeon Phi chip can consist of 60 cores4 for
example, each running four virtual threads giving a total thread count of 240. So any
parallel application that scales well on shared memory systems with multi-core CPUs
should be capable of attaining higher performance with upto 240 available threads.

Achieving parallel performance by using an ever increasing number of x86 cores is
in contrast to achieving parallel performance using specialised processors such as the
IBM Cell processor [4] or General Purpose Graphics Processing Units (GPGPUs) by
Nvidia and AMD5. The objective to achieving performance on these processors is to
offload many computational routines in parallel onto the floating-point units such as the
vector processing units on the Cell or the many simple numerical processing cores in
an Nvidia GPGPU. These specialised processors have helped systems to achieve the
top spot in the Top500 list. For example the Roadrunner6, consisting of Cells paired
with AMD Opterons, occupied the top spot in the June 2008 list and Titan7, a Cray
system consisting of AMD Opterons paired with Nvidia K20 GPGPUs, reached #1 on
November 2012.

Maximising parallel performance from specialised processors such as GPGPUs requires
applications to be written using native SDKs. In Nvidia’s case, one has to use the pro-
prietary SDK, CUDA, and to follow the data stream processing model suitable for the
GPGPU architecture. There is the additional burden of need to maintain two versions
of an application, one suitable for CPUs using OpenMP for example and another us-
ing CUDA. Languages and APIs such as OpenACC [5] and OpenCL [6] aim to help
parallelise applications for CPUs and GPGPUs using compiler directives, however per-
formance is often less than that achievable using native SDKs. Intel’s proposition with
the Xeon Phi allows new and existing parallel applications using MPI and/or OpenMP
that are already well tested and optimised for multicore CPUs to attain further perfor-
mance by increasing the core count whilst using the same source code.

The project demonstrates the process of attempting to parallelise and accelerate an ap-
plication using OpenMP to achieve high performance on single compute-nodes consist-
ing of multicore Intel Xeon CPUs. Afterwards, we attempt to attain higher performance
by running the same application on an Intel Xeon Phi. We use the Intel Parallel Studio
SDK product that consists of compiler, libraries, profilers and debuggers.

The application we accelerate and parallelise is from the Edinburgh Cancer Research
Center, located within the Western General Hospital in Edinburgh and is originally writ-
ten using the MATLAB numerical software package. It is used to help predict whether
lung cancer patients will suffer post-radiotherapy treatment side effects, namely radiation-
induced pneumonitis after radiotherapy treatment [7]. The application involves the

4The number can change between different product variations.
5The ATI Radeon product line is now known as AMD Radeon after the purchase of ATI Inc. by AMD

in 2006.
6http://www.lanl.gov/roadrunner, last accessed on 21-08-2013.
7http://www.olcf.ornl.gov/titan, last accessed on 21-08-2013.
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processing of image scans of the patient’s lungs using a variety of mathematical and
statistical techniques. This is a very good application candidate that can make use of
parallelisation onto many cores due to the large runtime of the program, taking even
days to complete a single processing run for a 3D image of 512x512x300 pixels [8].
The project objectives set out to achieve a runtime far lower than the original program
through parallelisation and any algorithmic techniques available.

The dissertation report is divided up as follows:

• Chapter 2 provides the background into the medical imaging application and its
aims in helping cancer patients. Emphasis on the aspect of the application that is
the most expensive computational part of the application is presented.

• Chapter 3 talks briefly about the Intel Parallel Studio 2013 product suite and the
pertinent parts of the SDK that were utilised in this project. Specifications of the
hardware used for this project are described here.

• Chapter 4 details the mathematics of the most expensive computational algorithm
of the application, namely the correlation and convolution processes. We also de-
scribe achieving the same code functionality using the maths libraries provided by
Intel in the SDK and present details of linking the developed codes to the MAT-
LAB programming environment. Parallelisation strategies are also presented.

• Chapter 5 examines the performance and scalability of our own developed rou-
tines for correlation and convolution using the Intel maths libraries. Benchmarks
on single compute-nodes consisting of Intel Xeon processors are presented. This
determines the way forward when we integrate the routines with the original ap-
plication in the MATLAB programming environment.

• Chapter 6 presents the results of improved runtimes obtained over the original
application after integration of our parallel routines for the most expensive com-
putational aspect. An analysis of the differences in the answers between our
solution and that of the original application is included. Finally, the performance
attained on the Intel Xeon Phi and a working framework involving GNU Octave
offloading work onto the Xeon Phi is shown.

• Finally, chapter 7 provides conclusions, a summary of the project and suggestions
for future work.
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Chapter 2

Image Processing & Filtering of
Medical CT Scans

The Edinburgh Cancer Research UK Center1 is a strategic research centre into preven-
tion, diagnosis and treatment of cancer, located at the Western General Hospital (WGH)
in North-West Edinburgh and is a collective research partnership between the Univer-
sity of Edinburgh, Cancer Research UK and NHS Lothián. It draws their research from
basic clinical trial programs and other theoretical endeavours.

Dr. Bill Nailon and his research team have an application available which utilises a
medical image processing code, written in the MATLAB programming language. This
code involves the application of statistical algorithms and measurements on medical CT
(computed tomography) scans from lung cancer patients. Because the runtime is of the
order of hours or even days, this code could benefit from the exploitation of larger and
faster computational resources.

This chapter provides the background to the application that we intend to help accelerate
through parallelisation. This includes an overview of the application of Gabor filtering
in medical applications which is the routine responsible for these long runtimes.

2.1 Radiation-Induced Fibrosis of Lung Cancer Patients

Lung cancer is the second most common cancer in the UK, with no clear single cause
for its occurrence although tobacco smoking is often the cited reason for amongst 9
in 10 cases [9]. For lung cancer patients, one of the common approaches to treating
lung cancer tumours in patients is by a program of radiotherapy. Unfortunately, such
treatment can have side effects, one of which is lung fibrosis induced by the involved
radiation.

1http://www.ecrc.ed.ac.uk
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Figure 2.1: Lung CT scan of two patients. Patient A suffered no side-effect after lung ra-
diotherapy treatment whilst patient B suffered lung pneumonitis. Image from B. Nailon
et al. [7].

The purpose of the project at the Western General Hospital, is to devise a predictive
scheme to determine whether radiotherapy patients will suffer radiation induced-lung
fibrosis, or properly called radiation-induced pneumonitis, which can affect the perfor-
mance of the lung organs due to the related damage to surrounding healthy tissue from
the radiation used in the treatment, usually to patients with advanced stages of lung
cancer. This prediction is done on patient scans from a CT scanner where an image
dataset is constructed from many image planes to form a 3D image. This occurs during
the treatment planning stage where a program is devised and constructed for the patient
ready to undergo radiotherapy treatment. Past work to predict radiation induced fibrosis
has mainly focused on the analysis of 2D images [10]. The novelty of this research is
the extension of the analysis into three dimension.

2.1.1 Application overview

In essence, the analysis involves mathematical and statistical methods on patient CT
images to generate feature values that help determine if such patient will suffer from
post-radiation illness. It is known that visual inspection of images is not possible due
it indistinguishable features hence the need to perform detailed mathematical analysis
on the image, represented in numerical form when treated as input into a processing
function in MATLAB. A CT scan pair is shown in Fig. 2.1 from the Hospital’s research
work where two patient scans look similar yet one suffered from pneumonitis whilst the
other did not.

The mathematical features performed on such CT scan images, after conversion to a
gray-scale numerical form, are:

• 3D First-Order-Statistics

• 3D GTSDM
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• Haralick Features

• 3D GLRLM

• 3D Gabor filtering

• 3D GLSZM

These are techniques to generate texture feature values on CT scan images and are all
accumulated into a feature vector of values as a result of applying these algorithms

⎛
⎜⎜⎜⎜⎝

FOS feature values
GTSDM feature values
GLRLM feature values
Gabor feature values

GLSZM feature values

⎞
⎟⎟⎟⎟⎠ (2.1)

These are then used in a trained classifier system that can ultimately predict whether a
patient, from its CT scans, will suffer from post-induced fibrosis based on the generated
statistics in Eq. featureMatrix.

2.2 Gabor filtering in medical image processing

From previous preparation work [8], the process of filtering a 3D image using a 3D
Gabor filter is the most computational expensive process within the original program,
as much as 98% in one case analysed. This section covers the subject of the role of
Gabor filtering.

Gabor filtering summarily involves the mathematical convolution of a Gabor filter ker-
nel together with another matrix dataset. In this application example, that dataset is the
gray-scale 3D medical CT image scan represented as a double-type 3D array of num-
bers representing a gray-scale intensity value. Gabor image filtering is known to mimic
the perception of what the human eye visualises and the result of images filtered with
Gabor filter kernels are highlighted areas that are in the same orientation as the filter
kernel wave vector. Examples of image edge detection by convolution of the images
with a Gabor filter are demonstrated by a web application by N. Petkov and M.B. Wiel-
ing of the University of Groningen [11]. One of their examples is shown here in Fig.
2.2 where the convolution of the left image with a Gabor filter with the wave vector
oriented vertically highlights the features in that same orientation.

The medical application here involves the use of Gabor filtering on the gray-scale image
in 3D. After subsequent intermediate calculations, including a convolution2 with the
related Gaussian filter, the end result is a single feature value, belonging to a frequency
and a unique pair of angles that were used to construct the Gabor filter kernel. With

2The MATLAB code uses the correlation, which is equivalent to the convolution with the filter rotated
appropriately.

6



Figure 2.2: Right image is the result of convoluting the left image with a Gabor filter
with its wave vector orientated vertically. Image from [11].

a range of frequencies and angles to try, this results in a number of feature values that
are part of a wide-ranging features vector as laid out in (2.1). This vector goes on
to subsequent processing by a system setup with a classifier scheme to help predict if
a patient will suffer post-treatment illness. The raw data used for this is the features
vector, including within it the values related to the Gabor filtering calculations, together
with patient-specific clinical parameters. This describes one use of Gabor filtering in a
medical context, where texture feature statistics generated by applying the filter to gray-
scale medical image data are subsequently used to predict the onset of radiation-induced
fibrosis in lung cancer patients [7].

Other examples of Gabor filtering applications include its use in liver disease classifi-
cation [12], for evaluating the performance of an algorithm involved in some aspect of
medical image analysis [13] and to track heart images [14].

For the case of liver disease discrimination [12], a similar methodology is employed in-
volving the use of Gabor filters to classify image scans of patient liver images according
to the disease type exhibited. The similar problem exists where different liver diseases
do not exhibit distinct visual features from patient scans in order for human radiologists
to tell the difference between liver disease types and so a more accurate scheme is to
extract features from the images using the convolution of those images with a filter bank
consisting of a set of Gabor filter parameters to generate a feature vector like the lung
project here and use a classifier, trained with sample liver vector data, to classify the
images based on the feature values calculated.

Another use of 3D Gabor filtering is its use to evaluate and tune the performance of
spatial normalisation algorithms, which are used in quantifying and measuring variance
between, for example, a normal image of a brain scan and a noisy scan of the same
brain organ [13].

Finally, another example is the use of a Gabor filter bank to track image characteristics
of 3D MRI heart patient images [14]. Specifically, 3D Gabor wavelets (in essence
Gabor filter kernels with particular frequency, orientation and bandwidth parameters)
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are used to track lines or planes in 3D heart images scanned using MRI.

Hence in summary, medical imaging analysis involving Gabor filters involve two main
stages to extract image texture features from such images:

• Convolute the medical image with a set of Gabor filters of differing frequencies,
angles and bandwidth.

• Sum up the energy value matrix derived from the result of the convolution, which
is the output/response of the Gabor filter with its wavelet in a particular frequency,
orientation and bandwidth. This single sum is the local feature value of the image.

A Gabor filter bank will provide a feature vector consisting of values, each value cor-
responding to a particular combination of frequency, orientation and bandwidth in the
bank. This is the general scheme employed in this lung-pneumonitis prediction appli-
cation described here and the liver disease classification study [12].

In the grand scheme of things, texture feature extraction through convolution with Ga-
bor filter banks constructs one part of the feature vector tied to a medical image scan that
is delivered to a classifier, whose purpose is to use its classification scheme to discrim-
inate against different features. These classifiers are referred to as support vector ma-
chines (SVM) because they are loaded with training data in the form of sample feature
vectors corresponding to different image classifications such as example feature vectors
for images known to have that particular feature. In this case a lung that is susceptible
to pneumonitis or a liver image with a particular disease will have known examples of
feature vectors that are used. It is the responsibility of this SVM to determine if the
feature vector of a given patient CT scan is one that will result in one outcome or an-
other. In this case, either pneumonitis will occur or not. In the case of liver disease, this
particular liver scan has this particular liver disease (e.g. cyst, hepatoma and cavernous
hemangioma). How well these classifiers perform their job are usually measured using
the receiver operating characteristic (ROC), where the area under an ROC measures the
classifier’s accuracy.

2.3 Benefits of application parallelisation to WGH’s re-
search

The aim of this project is to accelerate the original MATLAB program through use of the
Intel Parallel SDK to speed up the time-to-results. Clearly from previous preparation
work, the time taken to calculate the feature values related to the Gabor filtering can
immensely benefit from parallel computation as the existing Gabor filtering takes in the
order of hours to process, or in the case of the largest data sample provided, even days.

We aim to provide the following benefits to WGH’s application code:

• Equivalent functionality of Gabor filtering application through use of the Intel
Math Kernel Library equivalent routines.
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• Utilise parallel programming techniques to make use of available multi-core re-
sources to achieve speed-up.

• Implementation of Gabor filtering routines onto Intel Xeon CPUs.

• Provide prototype demonstrations on native compiled programs to provide an idea
of native performance over MATLAB code.

• Enable the existing MATLAB code to use our developed routines in C through
MATLAB’s MEX framework.

• Implementation of Gabor filtering routines offloaded onto Intel Xeon Phi co-
processors.

The success of our project will be evaluated based on the following criteria:

• Serial performance is better over the original MATLAB application’s perfor-
mance.

• The execution time to obtain the feature values related to the Gabor filtering part
exhibits good scalability and use of multi-core resources.

• The answers provided by our solution are correct within an acceptable tolerance.

If these two high-priority criteria can be satisfied within the timeframe of this project,
this then provides a good starting stage for future work in this medical application area,
such as performance optimisations to reduce time-to-results further.

Our project focuses on acceleration of the Gabor filtering application part of the appli-
cation with the simple objective of providing the feature values related to Gabor filtering
in a faster time. It is beyond the scope of this project to look at the other feature value
calculations arising from the other methods such as FOS and GLRLM as previous work
has shown that the Gabor filtering application is the most dominant part [8]. This would
be left for future work to accelerate the calculation of the other statistical methods if our
project results in the time related to the Gabor feature calculations are comparable to
the other calculations. An aspect our project does not cover is whether the answers our
solution provides a different prediction on whether a particular image will suffer from
pneumonitis compared to the original program.

2.4 Chapter summary

An overview of the background research in predicting radiation-induced pneumonitis is
provided and an overview of Gabor filtering and its role in medical image processing is
provided. Finally, we state the benefits that our project hope to provide by accelerating
and parallelising the original MATLAB application provided by Bill Nailon’s research
team at the Western General Hospital.
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Chapter 3

The Intel Parallel Framework, SDK
and Hardware Details

In this chapter, the Intel SDK product is introduced together with an overview of the
different parallel programming methods available on offer. We also describe the com-
pute hardware available at EPCC that we used these programming tools on. This in-
cludes the compute-nodes consisting of Intel Xeon CPUs and the new Intel Xeon Phi
co-processors.

3.1 Intel Parallel Studio XE 2013

Intel provides a convenient SDK to take advantage of the advent of multicore CPU hard-
ware in order to leverage the availability of CPU cores. For the foreseeable future, the
trend of increasing core count is likely to continue along with continuance of CMOS
process shrinkage from current 22nm to 14nm technology and increased power effi-
ciency as demonstrated by consumer reviews of the Haswell-based CPUs1. For single
or small groups of developers with shared-memory machine architectures, Intel offers
a software package suite Intel Parallel Studio 2013, consisting of C/C++ and Fortran
compilers, debugging and profiling programs called Inspector and VTune respectively.
The alternative package on offer is the Cluster Studio, which is targeted towards larger
organisations with distributed systems. Cluster Studio provide Intel’s MPI libraries and
development headers suitable for these distributed HPC systems. Intel Parallel Studio
is the only SDK product that Intel offers under a non-commercial license to developers.
For the systems at EPCC, a single seat license for Intel Cluster Studio XE is installed
on one of the compute nodes (named phi) and has the required support for Intel’s Xeon
Phi co-processor.

1http://www.anandtech.com/show/6355/intels-haswell-architecture, last accessed 21-08-2013.
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x86 non-Intel compatibility

The Intel compilers compile code into binaries that run on Intel processors running the
x86 instruction set architecture. It is then technically possible to run such generated
binaries on AMD processors which are x86 compatible, however they may not run
optimally due to differences such as

• Intel SSE4.1/4.2 vs. AMD SSE4a

• Intel Xeon multicores vs. AMD modules with shared FPU

This is made aware to users and developers by Intel’s often quoted optimisation no-
tice disclaimer [15]. Although a performance evaluation on AMD systems would be
interesting, in this project we only focus on compute-nodes consisting of Intel Xeon
CPUs.

3.1.1 Intel Math Kernel Library

For common mathematical processing, Intel offers within the SDK the Intel Math Ker-
nel Library (MKL), containing common functions such as LAPACK for linear algebra,
FFT for Fourier Transforms. Another capability offered with MKL is parallelisation
of routines by automatic multithreading, hence a developer may choose to develop a
single-threaded version of the code and choose automatic parallelisation by compilation
with the flag -mkl=parallel. For this project involving convolution and correlation,
Intel provides functions in their Vector Statistical Library which require the creation of
convolution/correlation tasks which are to be executed. In this project, we also explore
the MKL API to provide the equivalent functionality as MATLAB’s imfilter func-
tion does in returning the convolution that is the same size as the original image data.

3.1.2 Exploiting single and multicore CPU performance

To extract performance from multicore hardware requires parallel programming meth-
ods. There are two ways to make full use of to gain performance from multiple CPU
cores:

• Vectorisation: Modern CPUs contain vector processing units able to perform
arithmetic operations on multiple numbers on the same clock cycle using Single
Instruction Multiple Data (SIMD) instructions. For example Streaming SIMD
Extension-2 (SSE2) vector units can operate on vectors containing 2 double-
precision numbers (128-bit SIMD width as they are known). On Intel Sandy
Bridge-based CPUs, the width was increased to 256-bits so that these vectors
operated on can store upto 4 double-precision values. On the Intel Xeon Phi
co-processor, their performance gains are through their 512-bit vector units by
processing vectors containing upto 8 double values.
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Before attempting to speed up applications through parallelisation, it is desirable
that code is utilising these SIMD units and being able to parallelise floating-point
operations through use of these vector units. If compiled code is not vectorised,
an order of magnitude of performance is lost when running on a single CPU core.
This becomes important when attempting to accelerate applications on the Xeon
Phi as a single Xeon Phi core has a slower clock frequency than an Intel Xeon
and only 1/8 of the potential processing speed is used as not all available lanes on
the 512-bit vector unit are utilised.

• Parallelisation (on shared memory systems): The second part of application
performance is speedup gained through application multithreading so that many
CPU cores can be utilised. The Intel SDK offers a few methods to achieve this,
though this is not exclusive to Intel compilers:

– OpenMP This is a standard parallel programming API primarily based on
the fork-join parallel paradigm. The methodology is based on the addition
of compiler directives therefore it has the advantage of easily maintaining a
single source file for both single and multithreaded application with a com-
piler switch that either processes the pragma directive statements or treats
them as comments. OpenMP is at version 4 as of writing [16].

This is the parallelisation mechanism used in this project as it suits the C lan-
guage we use here. The parallelisation strategies we employ in this project,
based on the fork-join model, make OpenMP a suitable choice for us to
multi-thread our application.

– Threading Building Blocks This is based on a C++ template library where
a developer extends one of these templates to code what a thread should
do with a given piece of data. An example of its use is in the calculation
of the Mandelbrot set for different areas of the complex plane where a task
scheduler distributes blocks of the plane to different running threads. This
parallel paradigm appears to be better suited to task based parallelism where,
for example, distinct tasks based on the different domain chunks distributed
are taken and worked on. The Threading Building Blocks (TBB) parallel
paradigm is supported by the Intel compilers through the compile flag -tbb
though it is not an Intel exclusive method and the technology is open-source
and functional on 3rd party compilers2. It is even possible to use it for
Android smartphone application development. Intel maintains commercial
support for TBB whilst open source versions are available for anyone to use
freely.

Because the primary language for project was decided to be C, this C++
based method was discounted.

– Cilk Plus This provides language extensions to C and C++ that are suit-
able for applications that use data decomposition or taskfarm-based parallel

2Intel TBB website - http://threadingbuildingblocks.org, last accessed on 21-08-2013.
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methods3. One of the attractive features is its array syntax similar to ar-
ray notation in Fortran or MATLAB, allowing developers to easily express
vector operations on data that the compiler can map onto SIMD vector units.

Because the computational routines is to be provided by Intel MKL library
functions, we do not see using Cilk Plus as suitable for this project.

3.2 Hardware

On the hardware side, we have the availability of multicore CPUs on multisocket sys-
tems providing a capable hardware platform for HPC applications at the node-level. The
scope of this project is to focus the application at the node-level and not consider dis-
tributed memory systems such as connected cluster implementations. At EPCC there
are two nodes, named fermi-0 and phi, that were mainly used for this project, both
dual-socket Intel Xeon systems with large memory banks. fermi-0 has MATLAB avail-
able and was extensively used to prototype, test and verify our application with WGH’s
MATLAB code. The phi node is equipped with newer Sandy Bridge-based Intel Xeons,
more available memory and two Intel Xeon Phi co-processor cards4 connected using
PCIe.

3.2.1 Specifications

Table 3.1 details the hardware specifications5 of the fermi-0 and phi compute nodes.

fermi-0 phi
CPUs Two Intel Xeon X5650 Two Intel Xeon E5-2650
CPU Frequency (TurboBoost) 2.67GHz (3.06GHz) 2.00GHz (2.80GHz)
Core count 12 (6 cores each) 16 (8 cores each)
Thread count 24 (2 per core) 16∗ (1 per core)
Level 3 cache 12MB 20MB
Single Thread performance 1,357 marks 1,192 marks
Max Memory Bandwidth 32GB/s 51.2 GB/s
Total Node Memory Capacity 48GB 64GB

Table 3.1: Hardware specifications of the compute-nodes.

*Although the Intel product website states that each core runs two threads, it appears
disabled on the phi node. This is confirmed by the relevant output near the end:

3Intel Cilk Plus website - http://www.cilkplus.org, last accessed on 21-08-2013.
4Product Model 5110P.
5Sources: Intel Product Information website (http://ark.intel.com), CPU Benchmarks by PassMark

Software (http://www.cpubenchmark.net)
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On fermi-0 node: On phi node:

$ cat /proc/cpuinfo $ cat /proc/cpuinfo
.... ....

processor : 23 processor : 15
.... ....

physical id : 1 physical id : 1
siblings : 12 siblings : 8
core id : 10 core id : 7
cpu cores : 6 cpu cores : 8

.... ....

.... ....

where we see that on the second CPU (phy. id = 1), there are 8 cores but only 8 threads
(siblings = 8). On the fermi-0 node where each core runs 2 threads, the siblings value is
twice that of CPU cores.

3.2.2 The Intel Xeon Phi co-processor

This is Intel’s competitive product aimed for high performance and scientific computing
based on their Many-Integrated-Core (MIC) processor architecture6. The form factor
we use is the 5110P model (Fig. 3.1) with the Intel Xeon Phi co-processor, consisting
of 60 cores, paired with 8GB of GDDR5 on-board memory. Although this can fit into
a board with a PCIe slot, this cannot be slotted into a desktop PC due the lack of an
active fan and the board needs to satisfy compatibility requirement, as we found out
when attempting to install the product onto an AMD system.

Intel’s product provides upto 240 threads of execution from a single chip. The thread
count can be increased further by installation of multiple Xeon Phi cards on a single
node. Parallel applications are expected to use all available threads in order to hide
memory access latencies inherent in an in-order core design.

Intel labels the Xeon Phi as a co-processor due to the capability to share some of all
of the parallel workload of the same executing program across Xeons and Xeon Phis
installed on a node. This can be achieved either by offload compiler directives or by
using MPI with processes on both the node frontend (CPUs) and the backend (Xeon
Phis). In either case, Intel’s proposition allows the software development process to
maintain a single version of the program source code that is able to be compiled for
different targets as schematically shown in Fig. 3.2.

Technically, the Intel Xeon Phi is seen as 240 virtual x86 CPU cores on a single PC
hence the term many-core. The thinking is that any parallel applications optimised that
scales well on multicore CPU nodes should in theory also scale well for 240 virtual
cores and many more.

6http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-
many-integrated-core-architecture.html
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Figure 3.1: The Intel Xeon Phi 5110P product installed on phi at EPCC.

C source file
icc compiler

icc compiler + (mmic flag)

16 x86 CPU cores

240 x86 threads

Figure 3.2: The software development process enabling the same code to target different
CPU hardware.
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Each Xeon Phi core is a P54C revision of the original Pentium core with three important
additions:

• A 512-bit SIMD vector unit. The Xeon Phi attains its performance by be-
ing able to process vector calculations with a vector unit that is able to hold 8
double-precision numbers. To achieve high performance, an application must
utilise these vector units. Additionally, the Xeon Phi cores are capable of fused-
multiply-add (FMA) operations in the same clock cycle. Hence the quoted peak
performance of approximately 1TFlop double-precision from Intel’s product pages
is derived from:

(1052.63 MHz)× (60 cores)× (8 SIMD-DP ops × 2 FMA /cycle) (3.1)

• 64-bit addressing capability. The old Pentium core which originally had 32-bit
has been upgraded to 64-bit to address more than 4GB of memory, making it
more suitable to large-scale scientific and numerical applications.

• Multi-threading. Each core runs 4 virtual threads. Its purpose is to hide the
access latencies inherent in an in-order CPU design so that the core’s scheduler
can switch amongst the threads to keep the core busy with work. It is important
that parallel applications make use of all possible threads. Furthermore, running
a single thread on each core would only utilise half of the core’s maximum Flop
performance [17]. Due to the intended use of the hardware i.e. running paral-
lel applications using all possible threads, the core’s scheduler expects to switch
amongst more than one running thread. With only one thread to choose, every
other clock cycle is wasted due to the scheduler unable to switch to a second run-
ning thread. Therefore, applications must expose enough concurrency to run on
at least two threads per core, making a total of at least 120 threads in order to
possible make full use of the core’s capabilities.

Figure 3.37 shows the architectural similarities between Intel Xeons and Intel Xeon
Phis when viewed as a node-level system. Some interesting comparisons between a
traditional x86-SMP node of multicore CPUs and the 240 virtual cores on the PCIe
card:

• Cache coherency mechanism. Both x86 CPUs and the cores on the Xeon Phi
contain L1 and L2 caches, with Intel Xeons extending to a larger L3 cache. Both
types of processors maintain cache-coherency amongst all available cores under a
variant of the MESI protocol [18]. Whilst x86 CPUs tend to use a snooping based
protocol, the Xeon Phi uses a directory-based protocol consisting of distributed
tag directories that are evenly spread along the ring bus interconnect.

• Memory access On CPU nodes, each CPU has an on-die memory controller
which links the CPU to main memory. For the Xeon Phi, all 60 cores are linked

7Intel Xeon diagram is based on the Sandy Bridge EP block diagram - https://computing.llnl.gov/
tutorials/linux_clusters/images/sandyBridgeEP.400pix.jpg, last accessed 21-08-2013.

16



using a bi-directional ring-bus with GDDR5 memory controllers at regular loca-
tions on the ring for data transfers from main memory to the core’s cache. In the
Intel Xeon Phi’s case, memory access is symmetric whilst for multisocket sys-
tems, each CPU is directly connected to separate memory banks in a cc-NUMA
fashion.

• Operating System Both CPU types are capable of running an operating system.
Whilst x86 nodes typically run an off-the-shelf GNU/Linux, the Xeon Phi runs
a customised version of GNU/Linux named Manycore Platform Software Stack8

(MPSS). Access to a command-line on the Xeon Phi is achieved by secure-shell
connection from the hosting node.

The programmability of the Intel Xeon Phi follows the same process as for targeting
a traditional x86-SMP node, making use of vectorisation units and exposing as much
parallelism as possible.

In this project, our interest is running our developed code on Intel Xeon Phi hardware
after development, testing and extracting parallel performance on a traditional x86-SMP
node of Intel Xeons with between 12 and 16 available cores. The Intel MKL library
functionality is supported on the Xeon Phi from version v.11 available on the EPCC
phi node. Developing a working framework where the GNU Octave [19] programming
environment offloads work onto the Intel Xeon Phi is explored in addition to running
native compiled versions of the existing source code on the Xeon Phi itself. We do not
explore work distribution amongst more than one Xeon Phi co-processor.

3.3 Chapter summary

We have introduced the Intel SDK to be used to accelerate and parallelise the medical
application, of which the provided C compiler and the Intel Math Kernel Library are
to be used. The different parallel methods for shared-memory systems were introduced
and that OpenMP was the choice for this project. The hardware details of the two
shared-memory nodes to be used were presented. Finally, the Xeon Phi was introduced
along with a brief look at the architectural similarities to a dual CPU shared memory
system.

8Intel Manycore Platform Software Stack (MPSS) - http://software.intel.com/en-us/articles/intel-
manycore-platform-software-stack-mpss, last accessed 21-08-2013.
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Figure 3.3: Architectural similarities between an Intel Xeon system and an Intel Xeon
Phi product. Images based on Xeon and Xeon Phi [20] architecture diagrams.

18



Chapter 4

Convolution/Correlation:
Implementation Details and
Parallelisation

This chapter covers the convolution and correlation algorithm that is used in the most
expensive part of the medical application program. The two methods in which it can
be computed, either directly or through use of Fourier Transforms, is mentioned. The
next sections show the implementation of these algorithms using the MKL library from
the Intel SDK and to provide equivalent functionality of the implementation used in
MATLAB. This includes a brief overview of interfacing native C programs with the
MATLAB computing environment. Finally we describe the two main parallelisation
strategies used in this project.

4.1 The Convolution/Correlation

The three-dimensional discrete convolution of a matrix A with another, B, is calculated
from the mathematical formula1 (4.1).

C(i, j, k) =
∞∑

m=−∞

∞∑
n=−∞

∞∑
p=−∞

A(m,n, p)B(i−m, j − n, k − p) (4.1)

Matrix A is labelled as the data and B as the filter kernel. The correlation is a similar
calculation2 for two matrices (4.2)

Ccorr(i, j, k) =
∞∑

m=−∞

∞∑
n=−∞

∞∑
p=−∞

A(m,n, p)B(m+ i, n + j, p+ k) (4.2)

1Using MATLAB’s definition - http://www.mathworks.co.uk/help/matlab/ref/conv2.html, last ac-
cessed 16-08-2013

2We assume the data is real-valued.
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where one needs to transform the filter kernel B appropriately and apply the same con-
volution formula to obtain the correlation. Hence for much of this chapter, we cover the
details of the convolution which are similar for the correlation.

The indices are practically taken to be finite and the truncation point will depend on the
type of convolution desired. Suppose the data A is of size (N1, N2, N3) and the filter B
has size (K1, K2, K3). Then the two types of convolution we are interested in are:

• Full convolution: the matrix size of C is (N1+K1−1, N2+K2−1, N3+K3−1).

• Same convolution: the central part of the full convolution is returned for C and
is the same size as the input data A. The start of the central convolution is deter-
mined by the size of the filter. However this starting point can be chosen arbitrar-
ily and both MATLAB and GNU Octave (v3.6.4) start at indices

(�K1/2�, �K2/2�, �K3/2�) + (1, 1, 1) (4.3)

of the full convolution.

In both cases, data points that fall outside the domain of A are assumed to be
zero.

The convolution can be thought of as the filter sliding around the input data. Figures
4.1 and 4.2 show this concept in 2D but can easily be visualised for 3 dimensions3.

Figure 4.1 shows obtaining the full convolution of a matrix A (data in the figure) of size
with N = 5 in each dimension and a filter B of length K = 3 likewise with the matrix
entries specified in the figure. The convolution is the multiplication of each matrix
element that overlap each other and then all summed together into the appropriate entry.
So the first matrix index at the top-left of the full convolution, C(1, 1), only involves
one pair of overlapping elements. So C(1, 1) = 1× 17. Similarly,

C(1, 7) = 1× 15 (4.4)

C(2, 2) = −8× 17 + 24 + 23 + 5 = −84 (4.5)

Figure 4.2 illustrates obtaining the same convolution using the same input data as in Fig.
4.1 but we illustrate with two different sized filters to show how the central convolution
is obtained. The starting index for the same convolution can be used to determine the
center of the filter. This center point overlaps the first entry of the data and is where the
first entry of the convolution is stored.

Figure 4.3 illustrates rotating and reflecting the filter to obtain the correlation by convo-
luting the data with this transformed filter.

The medical imaging application uses correlation of the ‘same’ size as the image data.
The Intel MKL libraries for computing the convolution/correlation return the full an-
swer but offer a way to set the starting index of the answer. We describe obtaining
equivalent functionality between them in section 4.2.1.

3These figures are inspired by the diagrams from an Nvidia whitepaper on FFT-based 2D convolutions
[21].
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17   24    1     8     15  

23    5     7    14    16  

 4     6    13   20    22  

10   12    19   21    3  

11   18    25    2     9  

 

1     1     1

1    -8     1

1     1     1

17

DATA

FULL CONVOLUTION

FILTER

15 K = 3

N = 5

N+K - 1 = 7

filter sliding

Figure 4.1: Illustration of the full convolution for a data of size (5,5) with a filter of size
(3,3). The full convolution size is therefore (7,7).
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17   41   42   33    24   23   15 

 

1     1     1

1    -8     1

1     1     1

FILTER OF SIZE [3,3]

40  -84 -139  50   -11  -82   31 

44  -128  55   35   -10  -49   53 

37   24   45    0    -45 -102  41 

25  -29   10   -35  -55   50   34 

21  -48   -67 -128  61  -46   12 

11    29   54    45   36   11    9  

FILTER CENTER = (2,2)

SAME CONVOLUTION STARTS HERE 
 = fioor((3,3)/2) + (1,1) 
 = fioor((1.5,1.5)) + (1,1) = (2,2)

FIRST ELEMENT CALCULATION
AT THE TOP LEFT
 = -8*17 + 24 + 23 + 5
 = -84

17   24    1     8     15  

23    5     7    14    16  

 4     6    13   20    22  

10   12    19   21    3  

11   18    25    2     9  

FULL CONVOLUTION

1     1     1     1

1    -4    -4     1

1     1     1     1

1    -4    -4     1

FILTER OF SIZE [4,4]

FILTER CENTER = (2,2)

SAME CONVOLUTION STARTS HERE 
 = fioor((4,4)/2) + (1,1) 
 = fioor((2,2)) + (1,1) = (3,3)

17   24    1     8     15  

23    5     7    14    16  

 4     6    13   20    22  

10   12    19   21    3  

11   18    25    2     9  

FIRST ELEMENT CALCULATION
AT THE TOP LEFT
 = -4*17 - 4*24 + 1
    -4*23 - 4*5 + 7 + 4 +6 +13
 = -245

17   41    42   50   

40  -16  -128 -26   

44  -121 -245 -43     

54   -34  -49   49   

Figure 4.2: Illustration of the same convolution for a data of size (5,5) with filters of
size (3,3) and (4,4).
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1     2     3

4            6

7     8     9
rotate along axis
        to get
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13         15
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9     8     7

6     5      4

3     2     1

18   17   16

15  14   13

12   11   10

 FRONT VIEW

 BACK VIEW

7     8     9

4     5     6

1     2     3

16   17   18

13  14   15

10   11   12

refiect in vertical
   plane to get

2D case
 FRONT VIEW

 BACK VIEW

Figure 4.3: Illustration of rotating the filter and applying the same convolution algo-
rithm (4.1) to obtain the correlation in (4.2).

4.1.1 Convolution/Correlation by Fourier Transforms

The use of Fourier transforms can be used to compute the convolution by the circular
convolution theorem [22]. Both the data and filter are transformed into new matrices
as shown in Fig. 4.4. To obtain the same convolution from the circular convolution,
the filter is shifted so that its center corresponds with the first element of the ‘same’
convolution.

Suppose that A and B are the new data structures in Fig. 4.4 on the bottom left and
right respectively. Then applying the formula (4.6) returns the circular convolution
of the same size where it is assumed that A and B are periodic (imagine copies of
themselves tiled together end to end in all directions). The formula involves computing
the element-wise product of their Fourier transforms followed by an inverse Fourier
transform of the result.

A ∗B = F−1(F(A) · F(B)) (4.6)

Because of the way the filter kernel was transformed in Fig. 4.4, the ‘same’ convolution
is the answer obtained with the zero padding stripped off.

Because the convolution by Fourier transforms is based on mathematical theorems, this
is not an approximation to achieving the convolution. Hence any numerical differences
will be due to the limited numerical precision on computers.
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FILTER of 4x4 size
with center marked
and the right and down
halo depths marked. Corners
are numbered.

DATA of 6x6 size

R

D

Data padded with zeros as shown:

New DATA of 
8x8 size

Filter is shifted and expanded as shown:

1 2

3 4

4

1

3

2

New FILTER of
8x8 size

Zeros

Zeros

R

D

Figure 4.4: Illustration of the required padding of the data and the filter for the purpose
of calculating the ‘same’ convolution using the circular convolution theorem, based on
[21, Fig.1].

4.1.2 Complexity Comparision

Directly computing (4.1) with anN 3 datasize and aK3 filter kernel is of orderO(N3K3).
From our preparation study [8], this can take hours or even days on a single modern pro-
cessor.

By using the Fourier transform method, one can take advantage of Fast Fourier Trans-
form routines (FFTs) to reduce the computational complexity. For an N 3 datasize and
a K3 filter kernel, typically the padded size of both the data and filter is P = N +K/2
in each dimension so the complexity using FFTs is of order O(P 3 log3 P ). In addition,
the pointwise multiplication of the Fourier transforms adds O(P 3). The data and filter
kernel size need to be sufficiently large such that using FFTs is faster than computing
the convolution directly [22, Fig. 7].
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4.1.3 The Gabor Filter

The filter used in the original MATLAB code is a Gaussian kernel modulated by a sinu-
soidal function. We provide the details here because one of our parallelisation strategies
will involve creating the filter kernel within the native C program. The formulation is
found in other works [12, 13] and we detail what the original MATLAB code uses,
which closely follows the formulation by [14].

The Gabor filter h is mathematically defined to be

h(x,x′) = g(x′)s(x) (4.7)

where g is the Gaussian function and s is the modulated sinusoidal envelope function.
They are defined as:

g(x′) =
exp(− 1

2σ2 [x
′2 + y′2 + z′2])

2π
3
2σ3

(4.8)

s(x) = exp(2πi[Ux+ V y +Wz]) (4.9)

where x′ is the rotated coordinate system:
⎛
⎝x

′

y′

z′

⎞
⎠ = Rz ×Rxy ×

⎛
⎝xy
z

⎞
⎠ (4.10)

=

⎛
⎝1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

⎞
⎠

⎛
⎝cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

⎞
⎠

⎛
⎝xy
z

⎞
⎠ (4.11)

with ψ and φ the yaw and roll angles respectively as depicted in Fig. 4.54. The vector
[U, V,W ] are the components of the frequency F :

F =
√
U2 + V 2 +W 2 (4.12)

U = V tanφ (4.13)

V =
F√

(1 + tan2 φ)(1 + tan2 ψ)
(4.14)

W =
√
U2 + V 2 tanψ (4.15)

Some publications use a minus sign in the exponential for s however, it can be proven
that both formulations are equivalent and we settle with the formation used in the orig-
inal MATLAB program. The σ term is defined as

σ =

√
1

2
ln(2)

(2B + 1)

(2B − 1)πFλ
(4.16)

4A code mistake in the original MATLAB program was spotted where y ′ was incorrectly defined.
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F
(F, ψ, φ)

Figure 4.5: The co-ordinate system showing the relation between the yaw (ψ) and roll
(φ) angles and the frequency F .

which gives a symmetric Gaussian envelope due to the use of a single σ parameter
instead of 3 separate ones shown in other publications. B is a bandwidth parameter
whilst λ is a parameter taken to be 1 in the code.

In the original MATLAB program, the Gabor filter is created using a discretised mesh
of the x space, going from −3σ to 3σ in each of the 3 coordinates. The number of
points is dependent on the frequency F chosen so a higher number of points is taken
for higher frequencies to capture the fast moving behaviour of the envelope.

4.2 The VSLConv/VSLCorr routines in Intel MKL

This section presents the relevant MKL routines to perform convolution and correla-
tions. Further details of the API are provided by Intel’s MKL manual [23].

The routines for calculating convolutions and correlations are provided by the Vector
Statistical Library. The programming involves the creation of what are called task ob-
jects which are initialised with optional parameters, such as which algorithm to compute
the convolution, and are executed later on, storing the result in pointers to arrays.

A basic skeleton of a typical code for a 3D convolution is as follows:

#include <mkl.h>
#include <mkl_vsl.h>

...
int status = 0;
double *A, *B, *C;
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MKL_INT shapeOfA[3], shapeOfB[3], shapeOfC[3], rank = 3;
...
... // Code to initialise matrices
...
/* Create a convolution task type */
VSLConvTaskPtr convTask;

/* Create a convolution task with specified parameters */
status = vsldConvNewTask(&convTask, algorithm, rank,

shapeOfA, shapeOfB, shapeOfC);
(check status)

/* Execute the convolution task */
status = vsldConvExec(convTask, A, NULL, B, NULL, C, NULL);

/* Delete task when done */
status = vslConvDeleteTask(&convTask);
...

The main points of the above code is

• A convolution task object is declared and is initialised and created with the task
creation routine vsldConvNewTask appropriate for double-type matrices. There
are separate creation routines for complex number and single precision types.

• Computing the convolution directly or by using FFTs can be set by passing one
of these as the algorithm:

– VSL_CONV_MODE_DIRECT

– VSL_CONV_MODE_FFT

• The rank is set to 3 for a 3D convolution and expects the shape of the pointer
arrays to contain 3 entries. For example, a regular 3D array of length n would
pass in a 3-length array [n, n, n].

• After creation, the task is executed and returning the answer to the third pointer
array C. An option exists to set the stride length whilst accessing array elements.

• Specifying the shape of the array C to be [N +K − 1, N +K − 1, N +K − 1]
for an array A of size N3 and filter B of size K3 returns the full convolution in C.

• The task object should be deleted to free up any internal memory after use.

• The status should be checked each time for any error codes returned.

To define a correlation task instead, the names used in the code snippet above simply
substitute instances of Conv with Corr. The following lines return equivalent answers
for array C:

vsldConvExec(convTask, A, NULL, B, NULL, C, NULL);
vsldCorrExec(corrTask, Br, NULL, A, NULL, C, NULL);

where Br is the rotated and reflected filter kernel of B as shown in section 4.1.
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shapeOfC = [4,2]
shapeOfC = [6,5]FULL CONVOLUTION 7x7

17   41   42   33    24   23   15 

40  -84 -139  50   -11  -82   31 

44  -128  55   35   -10  -49   53 

37   24   45    0    -45 -102  41 

25  -29   10   -35  -55   50   34 

21  -48   -67 -128  61  -46   12 
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Default behaviour Using vslConvSetStart with
 [2,2]

shapeOfC = [4,2]

Figure 4.6: Shows the effect of specifying an offset of [2,2] and not specifying an offset
at all. The 2D case is illustrated.

4.2.1 Obtaining the ‘same’ convolution

Obtaining the ‘same’ convolution from the full convolution that is returned by the task
object requires us to set the starting index of the convolution answer in the task object.
Figure 4.6 illustrates the convolution task object’s default behaviour on the left-hand
side. So specifying the shape of the answer returns the convolution of the specified size
but starting at the top-left point of the full convolution.

To specify the same central convolution that MATLAB returns, we can set the starting
point where the convolution task object starts in the full convolution. The code to
achieve this is:

MKL_INT offset[3];
... // Specify the offsets

status = vslConvSetStart(corrTask, offset);

in the 3D case. Figure 4.6 shows the effect, in 2D, of passing [2,2] as the offset so that
the starting point is now 2 entries further down the full convolution answer. The offset
is determined from the size of the filter kernel in the same was as MATLAB does for
the starting point of the central convolution. The shape of the answer C is simply the
same as the shape of the original matrix A.

For correlation tasks, the offset is specified differently in order to return the ‘same’
convolution because the matrices are swapped in the function arguments. The offset
how far off from the filter center we want to start the answer from. In the project source
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code, it is calculated to be

offset[i] = Ki/2 + 1−Ki;

in each of the three dimensions i.

The native C codes found in the source code directory for this project that perform the
correlation and convolution are

• imfilter3D_MKL.c: convolution code using VSLConv functions, equivalent to
MATLAB’s imfilter with the ‘conv’ option.

• imfilter3Dcorr_MKL.c: correlation code using VSLCorr functions, equivalent to
MATLAB’s imfilter.

4.2.2 Task object reuse

The MKL library offers versions of the convolution and correlation routines that allow
reuse of the task objects. For example, a task object can be used with different filters
on the same input data. This potentially offers advantages where much of the internal
setup for that same input data has been done and the execution can potentially reuse any
intermediate calculations. This is especially useful when the mode of operation is FFT
mode where the Fourier transform of the input data does not have to be computed on
every execution if the same task object can be reused.

The difference in the skeleton code compared to the previous one is

...

...

/* Create a reusable convolution task with specified parameters */
status = vsldConvNewTaskX(&convTask, algorithm, rank,

shapeOfA, shapeOfB, shapeOfC,
A, NULL);

/* Execute the convolution task */
status = vsldConvExecX(convTask, B, NULL, C, NULL);

...

...

The function is named with an X-suffix and the input data array A is now part of the
task creation process. Upon execution, this can be invoked many times with different
filter kernels B.

We use this in one of our parallelisation strategies where different Gabor filter parame-
ters generate different filter kernels but operate on the same image data. Hence we hope
to gain additional performance through this strategy of task object reuse.
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4.3 MATLAB MEX Framework

Using the Intel SDK requires our code to be C-based, whereas the original code pro-
vided by Western General Hospital runs under the MATLAB numerical programming
environment. To provide MATLAB with access to these C-based routines, MATLAB
provides an API allowing the MATLAB runtime environment to call compiled C code,
namely the MEX framework [24].

A C program requires a function named mexFunction that will be called by the
MATLAB. The template body is

#include <mex.h>

void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])

{
...

}

where MATLAB passes any function arguments provided by the user into the mexFunc-
tion using the prhs pointer array. The C code has the option to return results back into
MATLAB using the plhs pointer array.

To compile with the Intel compilers, the following command line and associated com-
pile flags are used:

// Compiling source code
icc -I/usr/local/MATLAB/R2012a/extern/include -fPIC -O3 -openmp \

-mkl=sequential -c -o object.o source.c

// Linking to create MEX binary
icpc -mkl=sequential -lmkl_rt -shared -o myProgram.mex object.o

Highlights of the above commands:

• The extension is .mex or .mexa64 for 64-bit systems such as fermi-0.

• The include files are the MATLAB header files located in the MATLAB installa-
tion directory.

• Code must be compiled as a Position-Independent-Executable. MATLAB com-
plains and refuses to compile otherwise.

• Linking with MKL runtime library by the -lmkl_rt flag allows use of the MKL
functions. The -mkl flag can either use the sequential or parallel version of the
MKL libraries.

• The shared flag is necessary for some static linking necessary in order for MAT-
LAB to correctly identify and invoke the routines from the MKL libraries. With-
out this flag can result in a segmentation fault and abnormal termination of the
MATLAB runtime environment.
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• The ability to thread an application with OpenMP for MATLAB to use is possible.

We conclude that we can successfully link developed C code, compiled using Intel
compilers, with the MATLAB runtime environment. This is despite no stated support
for such compilers by MathWorks Inc for Linux5.

4.3.1 GNU Octave

MATLAB is a commercial product that requires valid licenses to run and operate legally.
To simulate the use of MATLAB on the phi compute-node with faster Intel Xeon CPUs
and the Intel Xeon Phi co-processors, we use the Octave6 programming environment
that is mostly MATLAB-syntax compatible [19]. This allows us to test interfacing with
the Intel Xeon Phis available on the phi node whereas they are not available on the
fermi-0 node where MATLAB is installed.

The method to generating MEX files that Octave can use is the same method as de-
scribed previously for MATLAB. The differences are

• The header files are located in the Octave include directory e.g.

/usr/include/octave-3.4.3/octave

on the phi node.

• The -lmkl_avx link flag is required for Octave in order for MKL to function
whilst using the AVX vector units on the CPUs.

4.4 Parallelisation

The section will look at two main parallelisation strategies using OpenMP. The first one
involves distributing the data to be convoluted/correlated into subdomains on different
threads. The second distributes the Gabor filter parameters and each thread calculates a
feature value. This involves convoluting the entire data with the particular Gabor filter
generated by those parameters.

4.5 Parallelisation by Domain Decomposition of Input
Data

The convolution algorithm is highly parallelisable in terms of independent domain de-
composition where no boundary data needs to be communicated amongst threads during

5Supported and Compatible Compilers - Release 2013a - http://www.mathworks.co.uk/support/ com-
pilers/R2013a/index.html?sec=glnxa64

6The full name is GNU Octave but we refer to it as Octave for convenience.
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computation.

This parallel strategy allows us to provide a replacement function for the MATLAB
imfilter routine with an equivalent one that distributes the data onto multiple threads.
Hence this strategy is ‘function substitution’ and the function takes the input data, filter
and the number of threads to use to perform the convolution.

4.5.1 Parallel Strategy Outline

An overview of the parallel algorithm is described below and Fig. 4.8 shows an example
of the strategy using four threads on a 9-by-9 dataset with a 4-by-4 filter.

Step 1: Arrange Threads into a 3D Grid

The first step is to arrange the running OpenMP threads into a 3D Cartesian grid in a
dynamic fashion. This allows individual threads, knowing where they are in the grid, to
correctly copy out the relevant part of the data to be worked on.

There exists such a function in MPI implementations that can automatically create a
3D Cartesian Grid, given a total number of threads running as an input parameter. It
can also produce grids automatically if supplied with a predetermined dimension in the
supplied output grid array. We use the source code of this thread arrangement func-
tionality from the OpenMPI project [25] and modified to adapt to our multi-threaded
implementation. The source code is re-distributable in source and binary forms under
the New BSD license hence we are permitted to use and modify the code freely for our
project7.

Step 2: Divide the domain into independent subdomains

After forming the threads into a Cartesian Grid, the relevant portion of the input data is
divided amongst the threads according to their position in the grid and copied into the
thread’s private memory.

We have developed over the course of the project two dividing strategies for dealing
with cases where the data length does not divide equally amongst the threads. Figure
4.7 shows the two methods used for an example of dividing data of length 13 amongst
4 threads. We first developed the method of on the bottom that over-divides such that
the last thread receives the remainder which is less than the other. However this results
in situations where this thread can receive no work, thus under-utilising the number of
threads available. Hence the method shown on the top under-divides and the last thread
will receive the remainder on top of its existing work.

7The source code in our project source code directory is called dims_create.c, downloaded from
http://svn.open-mpi.org/svn/ompi/branches/v1.7/ompi/mpi/c/dims_create.c
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LENGTH = 13

Thread 1 Thread 2 Thread 3 Thread 4

Thread 1 Thread 2 Thread 3 4

Figure 4.7: Illustration of the division of a 13-length dataset onto 4 threads in two
different ways.

To ensure that the convolution is computed corrected when all subdomains are com-
bined together, each thread must also carve out relevant halo data around its own input
data, depending on the size of the filter kernel. If the subdomain is on the boundary, the
MKL routine assumes a zero boundary and no halo data needs to be appended on such
boundary.

Step 3: Each Thread Performs The Convolution

Each thread hold a private copy of the filter and performs the same convolution on
their respective subdomains, making use of any halo data when the filter moves outside
the subdomain. The code that each thread executes follows the outline code in section
4.2 but using correlation tasks instead to match the original hospital code performing
the correlation in MATLAB. Each thread finally writes to a shared array containing
the constructed ‘same’ convolution for the whole data. Knowing where to write in the
shared array is determined using the same method to work out which part of input data
to copy from.

4.5.2 OpenMP

OpenMP is used to generate the multiple threads that work on independent subdomains
of the data to be convoluted or correlated.

The pseudo-code outline is as follows:

#pragma omp parallel default(none) \
shared data(Input Data, Filter, Convolution Answer,

vector-tuples indicating the array shapes,
Dimensions of Cartesian grid for threads)

{
// Each thread works out its position in the Cartesian grid
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Four threads arranged in a grid:

1             2

3             4

Data of size 9x9 is divided amongst threads
according to their position in the grid.

Halo depth is determined by L, R, U and D in the filter diagram.

L R
U

D

Filter of size (4,4) with depths
marked out from the center.

Thread 1:
 size 4x4
(6x6 with halo)

Thread 2:
 size 4x5
(6x6 with halo)

Thread 3:
 size 5x4
(6x6 with halo)

Thread 4:
 size 5x5
(6x6 with halo)

R L

D D

U

R L

U

Figure 4.8: Example of the division of a 9-by-9 dataset amongst 4 threads and convo-
luting with a 4-by-4 filter.
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...
// Each thread allocates private memory space using MKL malloc

routine for its subdomain, for a private copy of filter
and for the ‘same’ convolution of its subdomain.
...

// Each thread copies out the relevant subdomain of the data
according to their position in the Cartesian grid

...
// Each thread creates, sets up and executes VSLConv task objects

for their subdomain with the filter
...

// Each thread copies their private answer to the shared
Convolution answer in the correct place

...
// Clean up code such as freeing arrays and VSLConv task objects

}

Thread Safety and Error checking

Each thread in the parallel loop allocates memory using the MKL allocation functions
and each creates, executes and deletes the convolution task objects. The test framework
developed and the accuracy of the answers returned indicates that the Intel MKL func-
tions are thread-safe. This is confirmed on Intel’s website that MKL is designed and
compiled for thread safety and can be used in a threaded application8.

Because OpenMP does not allow individual threads to return from the function, each
stage is embodied in an if-else statement so that the procedure terminates if one of the
task objects returns an error status.

4.5.3 Use in MATLAB

This parallel strategy enables substituting the correlation routine in the original MAT-
LAB code with our multithreaded C-based routine utilising OpenMP and the MKL
correlation routines.

Every instance of MATLAB’s imfilter routine is replaced by our own developed
function that uses the MEX framework in order to call the relevant C code. The fol-
lowing MATLAB code shows the function replacement in the main loop body of the
original program responsible for calculating the Gabor feature vector:

for i = 1:length(F)
for j = 1:length(psi)

for k= 1:length(phi)

[h,g] = gabor(F(i),B(i),psi(j),phi(k),1);

8http://software.intel.com/en-us/articles/intel-math-kernel-library-intel-mkl-using-intel-mkl-with-
threaded-applications
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rh = real(h);
ih = imag(h);
kc = my_imfilterCorr_omp(rh,subimg,12); % Function replaced
ks = my_imfilterCorr_omp(ih,subimg,12); % Function replaced
E = sqrt(kc.*kc+ks.*ks);
E = my_imfilterCorr_omp(g,E,12); % Function replaced
features(i,j,k) = E(:)’*E(:);

end
end

end

so the MATLAB runtime calls a compiled MEX file called my_imfilterCorr_omp, pass-
ing the data, filter and the number of threads to run (12 in the example above). The
variables kc, ks and E obtain answers from the parallel C-based routines instead. So
we have replaced the original correlation routine with our own that utilises MKL to
perform the correlation instead.

4.6 Parallelisation by Task Farming

In the loop body of the original code, there are 4 separate frequencies, 6 yaw angles
and 6 roll angles, giving a total combination of 144 feature values computed for each
dataset. This taskfarm parallelisation strategy assigns each thread to calculate a feature
value associated with that particular parameter combination.

4.6.1 Parallel Strategy Outline

This parallel strategy divides the three nested loops involved:

for each frequency value F {
for each yaw angle value psi {
for each roll angle value phi {

...
( calculate correlations and the
resulting feature value )

...
}

}
}

Each available thread simply processes each iteration and returns the feature value in
the appropriate place in the features matrix. This features matrix is of the form

features(:, :, k) =

⎛
⎜⎜⎝
(F1, ψ1, φk) (F1, ψ2, φk) · · · (F1, ψ6, φk)
(F2, ψ1, φk) (F2, ψ2, φk) · · · (F2, ψ6, φk)

· · · · · · · · · · · ·
(F4, ψ1, φk) (F4, ψ2, φk) · · · (F4, ψ6, φk)

⎞
⎟⎟⎠ (4.17)
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which is a 3D matrix where Eq. (4.17) shows the k’th 2D plane and the third dimension
is for each combination with roll angle φk.

4.6.2 Serial Code Outline

Provided is an overview in pseudo-code of the native program run by a single thread:

void generate_Gabor_features (input data and its shape,
filter kernel,
Gabor filter parameters [F,phi,psi],
features vector)

{
...
For each frequency F {

...
Determine the resolution of the filter kernels
Generate convolution task objects
...
For each yaw angle psi {

For each roll angle phi {
...
1. Generate the Gabor and Gaussian filter kernels

(suitable for convolution)
2. Execute the convolution task objects with the Gabor filter
3. Calculate the energy matrix from the real

and imaginary answers
4. Convolute the energy matrix with the Gaussian filter
5. Compute the Gabor feature value from the convoluted

energy matrix and write into the features vector
}

}
}
// The feature vector contains all 144 Gabor feature values of
// the data.

}

The above code shows how much of the Gabor feature calculation code is migrated from
MATLAB to a native C program. We expect this code to perform faster as a result.

We use the convolution routines instead of correlation because one of the taskfarm
parallelisation methods allows us to reuse the task objects for each frequency value
rather than creating and destroying it in each loop iteration.

The filter resolution is dependent on the frequency value F . If the frequency is higher,
the mesh resolution is finer in order to capture the behaviour. Table 4.1 states the mesh
resolution of the filter kernels for the four frequencies used in the original imaging
program.
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F value Filter kernel meshsize
25 14× 14× 14
50 17× 17× 17
75 17× 17× 17
100 24× 24× 24

Table 4.1: The filter kernel sizes for the four different frequency values.

4.6.3 OpenMP Parallelisation of Angle Parameters

We use the for collapse(2) OpenMP directive on the two innerloops involving
the angles, shown in the pseudo-code outline below:

...
#pragma omp parallel default(none) \

shared data(Input Data and its shape,
Gabor filter parameters [F,phi,psi],
Gabor feature vector of values)

reduction(+:ErrorCode)
{

For each frequency F {
...
Determine the resolution of the filter kernels
Generate reusable convolution task object for

convolution with the Gabor filter
Generate convolution task object for

convolution with the Gaussian filter
...

#pragma omp for collapse(2)
For each yaw angle psi {

For each roll angle phi {
...
Each thread writes the calculated feature value to

the shared vector
...

}
}

}
}

The above code distribute the 36 different angle parameter pairs to available threads
which then individually calculate the associated Gabor feature value and writes to the
Gabor feature vector that will be returned to the MATLAB program at the end of the
function. The reduction clause checks that no error codes are returned.

After determining the resolution of the filter kernel, a reusable convolution task object
can be used instead of the regular version as outlined in section 4.2.2 for additional
performance.

Despite the reduction of task availability from 144 to 36, this is the taskfarm parallel
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strategy we use for the fermi-0 and phi nodes which have core numbers between 12 to
16 due to the ability to reuse one of the convolution task objects.

4.6.4 OpenMP Parallelisation of All Parameters

To increase the concurrency suitable for many more threads, we can use the collapse
directive on all three nested loops:

#pragma omp for collapse(3)
For each frequency F {

For each yaw angle value psi {
For each roll angle value phi {

...

so all 144 parameter combinations are available concurrently instead of just 36. This
parallelisation scheme is better for when running more than 36 threads and this is at-
tempted on the Intel Xeon Phi co-processor.

4.6.5 Use in MATLAB

This parallel strategy enables migrating much of the Gabor feature vector calculation
from MATLAB to our multithreaded C-based routine .

The following MATLAB code shows that the features vector is now calculated by a
MEX function that utilises the taskfarm parallel method utilising OpenMP and the MKL
convolution routines.

function [ features ] = gabor_3d_features( subimg )

%Gabor filter in 3d using 36 angles and 4 frequencies
F = 25:25:100;
B = [1.3,1,1,0.7];
psi = (-60:30:90)/360*2*pi;
phi = (-60:30:90)/360*2*pi;

% Call MEX function
features = gabor_3d_features_omp_mex(subimg,F,B,psi,phi,12);

features = (features(:))’;

end

so the MATLAB runtime calls a compiled MEX file called my_imfilterCorr_omp, pass-
ing the data, filter and the number of threads to run (12 in the example above). The
variables kc, ks and E obtain answers from the parallel C-based routines instead. So
we have replaced the original correlation routine with our own that utilises MKL to
perform the correlation instead.
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4.7 Chapter summary

In this chapter, we have stated the discrete convolution and correlation of two 3D matri-
ces, one being the data and the other called a filter kernel. We covered the the full and
same convolution and how Fourier transforms can be used to compute the convolution
with less complexity with FFT implementations.

We have covered how to use the relevant Intel MKL functions to perform convolu-
tion and correlation calculations and how MATLAB can use our developed codes in C
through the MEX framework.

Finally, we show two ways of parallelising the calculation, either by data decomposition
or by taskfarming the different parameter combinations. The first method provides a
replacement function for the original imaging code, whilst the second migrates much
of the calculation of the Gabor feature vector from MATLAB to native C programs.
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Chapter 5

Algorithm Benchmarks & Scalability

In this chapter we will look at the performance on our computational routines written
in C that performs the correlation of two matrices using the Intel MKL libraries and
using OpenMP to perform parallelisation by data decomposition. This examines the
individual correlation calculations, as opposed to looking at the performance of the
whole image application program.

The purpose of this is to test the scalability of one of our parallel strategies that divide
the 3D data into smaller subcube domains and to assess its performance when applying
the correlation directly and using FFTs. Both modes of correlation are offered by the
Intel MKL library as described in the previous chapter. The work in this chapter also
aims to provide an idea of expected performance when these native C routines are used
with the original MATLAB program.

5.0.1 Summary of Methodology

The correlation of 3D medical image data together with a 3D filter kernel is in essence
the correlation of 2 double-type 3D arrays. Hence for the benchmarking work in this
chapter, we have developed and used a native C program that randomly generates an
array for both the filter and the kernel so this would simulate the correlation of the real
medical data and Gabor filter kernel. This then calls the main function that performs the
correlation, passing in the necessary arguments that include those 2 randomly-generated
arrays and the number of threads to use. Hence the C program essentially simulates
what a compiled MEX file would do, which would call the same function that performs
the correlation. The time taken to perform the calculation is determined by using the
OpenMP function call that gets the wall clock time omp_get_wtime() and placed
before and after the function call that performs the correlation.

Because of our use of OpenMP, we ensure that thread placement on all benchmarking
runs are consistent by setting an environment variable KMP AFFINITY to ‘scatter’.
This scheme round-robins the thread allocation so that consecutive threads alternate
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between the 2 sockets and amongst separate cores1. This ensures efficient resource
utilisation possible amongst all running threads so the scheme ensures that, whenever
possible, a thread has the resource of a whole CPU core.

To get a better idea of scalability, we run the C program on the phi compute-node with
the Intel Xeons. This has 16 physical CPU cores available than the fermi-0 compute-
node which has only 12 physical cores. So we are able to examine the scalability upto
16 threads.

Throughout the benchmarking work done in this chapter, we have kept the size of the
kernel filter the same whilst the image sizes change and the number of threads varies.
We chose a 3D filter size of 143 points as this is one of the three filter kernel sizes in the
real application.

5.1 Benchmarking Correlations in DIRECT mode

We will first at the performance of calculating the correlation formula directly on the
16 Intel Xeon CPU cores on the phi compute-node.

Figure 5.1 shows the variation in times to compute a correlation against the number of
available threads for different data sizes2. Repeating the benchmark program provides
close identical times so this enables us to quote a single benchmark run. Table 5.1
provides numerical times corresponding to Fig. 5.1 for a select number of threads.

Input Data Size with 143 filter kernel (Time in seconds)
# of Threads (642 × 37) (1282 × 75) (2562 × 150) (5122 × 300)

1 0.359 2.845 24.244 198.316
2 0.177 1.399 11.257 92.117
4 0.081 0.684 5.690 46.382
8 0.045 0.383 3.153 25.673

11 0.071 0.401 2.484 20.251
13 0.085 0.464 2.716 17.618
16 0.025 0.204 1.665 13.512

Table 5.1: Time taken to correlate a data of specified size with the fixed size filter kernel
for a select number of threads. The mode of operation of the MKL correlation function
is set to compute it directly.

We see that for a single thread, the execution time grows exponentially as the input
data size doubles. This can be seen by the approximate equal spacing on the log plot

1Thread Affinity Interface (Linux* and Windows*) - http://software.intel.com/sites/products/
documentation/studio/composer/en-us/2011Update/compiler_c/optaps/common/optaps_openmp_thread
_affinity.htm, last accessed 21-08-2013.

2As a shorthand, the number in the labels in all the figures represent the data size by its first dimension.
The actual data size can be found in the tables.
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Figure 5.1: Graph showing the execution times of a single correlation with a 143 filter
kernel against the number of running threads on the phi compute-node.

in Fig. 5.1 between each data size which doubles in each dimension. Figures 5.2 and
5.3 show the corresponding speed-up and parallel efficiency graphs respectively. Both
these graphs conclude that the parallel strategy of dividing the input data into smaller
subdomains amongst threads is very scalable on at least the Intel Xeon CPUs on the phi
compute-node. However, what is noticeable is the drop in performance at thread counts
11 and 13. A closer investigation into this reveals a significant difference between the
minimum and maximum subdomain size amongst threads in Table 5.2. This leads to
one or more threads having to do a larger amount of work than the rest and thus time
is wasted upon waiting for these threads to finish processing their chunk. All threads
are synchronised at the end of the OpenMP parallel region, so the abnormal increase in
runtime is because of waiting for those threads that are still working on their data. Hence

Datasize (642 × 37) Datasize (1282 × 75)
# of Threads Min. Chunk Max. Chunk Min. Chunk Max. Chunk

11 (5,64,37) (14,64,37) (11,128,75) (18,128,75)
13 (4,64,37) (16,64,37) (9,128,75) (20,128,75)

Table 5.2: The largest and smallest data chunk assigned to any thread when running the
benchmark to produce Fig. 5.2.

this is the reason we see a sudden drop in performance. As the data size increases, the
impact becomes less as more time is spent in computation. We have decided not to alter
the decomposition algorithm to improve on this as we see the typical usage scenario
where an even number of threads is chosen and ensures that an evenly balanced domain
decomposition happens. To better illustrate the scaling performance, we present the
speed-up and parallel efficiency graphs where we do not include the thread counts that
produce imbalanced decompositions and the scaling picture appears better. Furthermore
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Figure 5.2: Speed-up obtained against the number of threads for Fig. 5.1.

Figure 5.3: Graph showing the parallel efficiency obtained against the number of
threads for Fig. 5.1.
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Figure 5.4: Graph showing speed-up against the number of threads for Fig. 5.1. Com-
pared to Fig. 5.2, this omits the thread counts that result in imbalanced workloads
amongst threads.

Figure 5.5: Graph showing the parallel efficiency against the number of threads for
Fig. 5.1. Compared to Fig. 5.3, this omits the thread counts that result in imbalanced
workloads amongst threads.

45



on these speed-up and efficiency graphs:

• For the first few threads, we see some super-linear speedup due to threads making
use of additional on-chip cache as the second CPU on the node is employed and
the possibility of using spare memory-bandwidth capacity that may not be fully
used by one thread only.

• Near the end of the thread count, parallel efficiency deviates away from 1 due to
some overheads of:

– Initialising and setting up the OpenMP runtime environment.

– Synchronisation overhead where the calculation does not complete until the
last thread finishes. Even if the threads have a even workload, there will
be the possibility of overheads such as OS noise or context-switching that
causes a thread to take longer than expected.

– Memory cache sharing amongst threads.

We conclude that our implementation of a parallel correlation function using Intel MKL
routines together with OpenMP scales well relative to the performance of a single
thread. This is as long as the thread count is such that the data division amongst them
results in an evenly balanced workload.

5.2 Benchmarking Correlations in FFT mode

The alternative way to compute the correlation is to use Fast Fourier Transforms and it
has been shown earlier that the convolution/correlation through the use of FFTs can dra-
matically reduce the runtime due to reduced computational complexity. In this section,
we present the results of benchmarking the same function obtained by simply changing
the mode of operation of the MKL function call to use FFTs instead.

Figure 5.6 shows the performance of the same parallel implementation as for the direct
correlation calculations in the previous section, along with numerical runtimes in Ta-
ble 5.3 for a select number of threads. This time we only show thread counts with a
balanced workload.

By comparing the single thread times between Tables 5.1 and 5.3, the FFT method is
faster than direct computation directly by a factor between 11 and 17, depending on
the data size. This comes despite a drop in parallel scaling (Fig. 5.7) and efficiency
(Fig. 5.8) due to how FFT algorithms perform for different data sizes. FFT algorithms
favour certain data array lengths and we do not use any form of padding to achieve
optimisation [21][26]. The nature of these parallel scaling and efficiency results are due
to:

• The FFT scaling against data size, even for a single core, is not linear [27]. The
peaks and troughs in Fig. 5.7 can be due to a thread taking longer to complete
due to performance differences on different sized subdomains.
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Figure 5.6: Graph showing the execution times of a single correlation with a 143 filter
kernel against the number of running threads on the phi compute-node. This is the same
benchmark run as Fig. 5.1 but the algorithm uses the Fast Fourier Transform method.

Input Data Size with 143 filter kernel (Time in secs)
# of Threads (642 × 37) (1282 × 75) (2562 × 150) (5122 × 300)

1 0.032 (11.2) 0.164 (17.3) 1.726 (14.0) 13.760 (14.4)
2 0.028 0.098 1.088 7.885
4 0.012 0.050 0.617 4.485
8 0.010 0.036 0.336 2.348

16 0.007 0.028 0.217 1.531

Table 5.3: Time taken to correlate a data of specified size with a fixed size filter kernel
for a selected number of threads. The mode of operation of the MKL correlation func-
tion is set to use FFTs. For a single thread, the speed-up over its counterpart in Table
5.1 is given in brackets.

• The lower parallel efficiency than the one for direct correlation indicates that
FFT performance on decreasing data sizes becomes lower. For example, with 16
threads, the data division results in the smallest subcubes to each thread and more
threads working on even smaller datasets do not result in a markedly increase in
performance over 12 threads.

5.2.1 Correlation using multi-threaded MKL

Offered by the Intel MKL library is parallelisation of the correlation tasks using internal
threading, achieved by compiling with the -mkl=parallel flag. This benefit is only
offered when using FFT mode. This subsection shows the the performance obtained by
benchmarking the serial version of our code compiled with the multi-threaded version
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Figure 5.7: Speed-up against the number of threads for the correlation in FFT mode.

Figure 5.8: Parallel efficiency against the number of threads for the correlation in FFT
mode.
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Figure 5.9: Graph showing the parallel efficiency of using multi-threaded MKL libraries
and our parallel implementation.

of MKL.

Figure 5.9 compares the parallel efficiency with our manual data decomposition scheme
for all 4 data sizes. We achieve a better efficiency metric for the largest data sizes,
therefore making our parallelisation efforts worthwhile. However, this comes at the
cost of a larger memory footprint due to each thread creating their own correlation
tasks objects. For small data sizes, MKL offers better efficiency due to the overheads
of our OpenMP data decomposition.

5.3 Error Analysis

This section shows the correctness of our OpenMP parallel implementation. For this
analysis, we use our codes developed for GNU Octave due to its easier programming
environment for fast development.

The code consists of Octave generating random 3D matrices for the data and filter and
passing them to a compiled MEX file which in turn calls our parallel correlation code.
The answer is compared to that generated by our serial version of the correlation code.

The relative error is calculated as

max

( |A(i, j, k)−Ac(i, j, k)|
Ac(i, j, k)

)
∀i, j, k (5.1)

where Ac is the answer from our serial code.

Figure 5.10 shows the relative errors obtained for different numbers of threads and data
sizes. The order is of 10−15 which is the limit of double precision and for 1 thread, the
exact same answer as the serial code is produced.
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Figure 5.10: Graph showing the relative errors against the number of threads for differ-
ent data sizes. The relative error is calculated from Eq. (5.1).

5.4 Chapter conclusions

The benchmarks have shown that computing the correlation using FFTs is many times
faster than by direct computation. Hence the work in the next chapter just focuses on
using the FFT mode for the convolution/correlation task objects involved.

When using FFT mode, we get reasonable scaling. The performance of using multi-
threaded MKL that offers automatic parallelisation closely matches or outperforms our
OpenMP scheme for the 2 smallest data sizes but we appear to achieve better perfor-
mance for larger data sizes.

An error analysis concludes that our parallel code performs correctly on any number of
threads and there appear to be no issues of thread-safety for different threads allocating
their own memory space or executing correlation/convolution tasks in parallel.

As part of the next chapter, we replace the single function in the original MATLAB
program responsible for correlation with the function benchmarked here and establish
the overall performance gains as a result.
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Chapter 6

Acceleration of original Imaging
Application

This chapter presents the runtimes we are able to obtain or estimate by integrating our
parallel C programs into the original MATLAB code. In the case of the compute-node
containing the Intel Xeon Phi co-processors but without the MATLAB runtime, we es-
timate the theoretical gains possible by benchmarking the core computational routine
using GNU Octave. This is unlike the previous chapter that only looked at the perfor-
mance of convolution and correlations routines in isolation.

6.1 Performance of original MATLAB code on fermi0

We first look at the performance of the original MATLAB code from the hospital on the
fermi0 compute-node so we have a base time to build on for the rest of the chapter. This
is done by timing how long it takes to calculate the Gabor feature vector of values only.
Then this will be added on to the time it takes for MATLAB to perform the rest of the
other texture feature calculations, giving us a total time for the whole original code that
we intend to speed-up through parallelisation.

We used the method of inserting the MATLAB timer commands tic and toc around
the Gabor filter function to avoid the added overhead of the in-built MATLAB profiler.

6.1.1 Gabor feature vector calculation

We time the execution of the Gabor feature calculation only for the original MATLAB
code. All the three loops iterate over the three parameters of:

[4 frequencies F, 6 yaw angles φ, 6 roll angles ψ] (6.1)

51



on the smallest dataset of (64x64x37) size are run through. But, as we have discovered
in a preliminary study [8] that the larger data sizes can take hours or days to complete,
we only run one angle combination pair for each frequency instead of all 36 and estimate
the time taken by multiplying the time by 36. Each frequency is used in this estimate due
to the different filter kernel sizes it generates, so the estimate is as accurate as possible
by timing an angle pair for each frequency parameter. The timings are tabulated in
Table 6.1.

Image Size (642 × 37) (1282 × 75) (2562 × 150) (5122 × 300)
Runtime 774s 6090s (est.) 50249s (est.) 423150s (est.)

Table 6.1: Runtimes of processing the Gabor features vector by the original MATLAB
code.

By timing the whole MATLAB program code but skipping over the Gabor feature cal-
culation, the results are in Table 6.2.

Image Size (642 × 37) (1282 × 75) (2562 × 150) (5122 × 300)
Runtime 5.06s 24.8s 198.1s 1552.6s

Table 6.2: Numerical runtimes of the original MATLAB code without the processing
of the Gabor feature values.

6.1.2 Total Program Runtime

We establish the runtime of the entire MATLAB program by adding the Gabor feature
calculation times in Table 6.1 to the time taken to calculate the other texture features.

Hence the total runtimes of the original MATLAB code on fermi-0 for all four data sizes
are summarised in Table 6.3 and illustrated in Fig. 6.1 by plotting the total runtime
against the total number of pixels of the image.

Image size Other Calc. (s) Gabor Calc. (s) Total Time (s)
(642 × 37) (151552 pixels) 5.06 774 779
(1282 × 75) (1228800 pixels) 24.8 6090 6094
(2562 × 150) (9830400 pixels) 198.1 50249 50447
(5122 × 300) (78643200 pixels) 1552.6 423150 424700

Table 6.3: Runtimes of the original MATLAB program. Separate times are shown to
calculate the Gabor feature vector and the other texture features to illustrate the Gabor
feature calculations being the most expensive part of the program, which we target for
parallelisation.
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Figure 6.1: Log plot of the total runtime of the original MATLAB image processing
program against the number of pixels of the input image data.

These figures confirm that the calculation of the Gabor feature values, involving the
correlation, of the images is the most expensive part which we have targeted for paral-
lelisation in the next sections of this chapter. We also conclude that MATLAB’s filtering
routine computes the correlation directly, rather than through use of FFTs which will
become clear later on in this chapter.

6.2 Accelerating the MATLAB program

This section will show the reduction in runtimes we are able to achieve using the original
MATLAB program. By replacing the computationally expensive routines within the
MATLAB code with functions that call native C compiled code, we provide the benefit
of using the Intel MKL routines instead as well as performance through parallelisation.
The next two subsections will look at the runtimes obtained through two different ways:

• Replacing the single MATLAB function responsible for correlation between two
matrices with an equivalent function utilising the Intel MKL with multicore par-
allelisation.

• Replacing most of the Gabor feature calculation code with a equivalent code in C
that computes and returns the feature vector to the original MATLAB program.

6.2.1 Results by Function Substitution in MATLAB

This looks at the gains in performance by simply replacing the MATLAB routine imfilter
with a MEX function that equivalently computes the correlation using the Intel VSLCorr
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routines in C. This method of function substitution offers a simple way to accelerate the
existing MATLAB code as the user simply changes any instances of imfilterwhilst
continuing to use MATLAB programming for other code or logic as desired.

Using this acceleration strategy, Table 6.4 shows two runtimes obtained by running the
calculation twice separately. Generally, there is a reduction in runtime with additional
threads, except for the smallest dataset. Immediately, the times compared to the orig-
inal are an order of magnitude lower due to the Intel MKL correlation routines using
FFTs to perform the filtering on the image data which is of less complexity than direct
calculation of the correlation formula.

Input Data Size (Times in seconds)
# of Threads (642 × 37) (1282 × 75) (2562 × 150) (5122 × 300)

1 13.19, 13.13 105.64, 104.68 805.81 (802.40 est.) (7972.67, 7970.83 est.)
2 10.10, 10.10 66.74, 65.84 530.53, 529.90 (4433.44, 4429.48 est.)
3 10.69, 10.33 60.49, 59.79 371.16, 370.40 (2997.45, 2995.01 est.)
4 8.27, 8.20 43.63, 41.45 331.44, 329.34 (2488.39, 2487.62 est.)
6 8.58, 8.29 41.22, 39.74 250.32, 249.61 (1765.95, 1764.84 est.)
9 10.78, 10.22 50.99, 47.44 243.09, 237.61 (1412.81, 1404.18 est.)

12 11.04, 9.54 32.30, 30.26 196.50, 194.07 1296.26 (1295.83 est.)

Table 6.4: Runtimes of processing the Gabor features vector by function substitution of
the MATLAB routine with a MEX function that calls equivalent Intel MKL routines.
For long runtimes, the estimation method we used for the original code in section 6.1
applies here.

Two other interesting metrics are the parallel speed-up and efficiency of the results in
Table 6.4 which are shown in Figs. 6.2 and 6.3 respectively. From these graphs, we
comment that for small data sets it is not worth parallelising due to the correlation in
FFT mode can complete on the order of milliseconds and so we see poor performance
on many threads. Generally, as the data size becomes larger, efficient use of cores im-
proves. We believe the levelling off of performance is due to the internal FFT algorithm
preferring larger datasets to work on and here the subdomains become smaller with
increasing number of threads.

Table 6.5 shows the estimate for the whole MATLAB program for a selected number
of threads by adding on the time for the non-Gabor related calculations in Table 6.2 to
the times in Table 6.4, using the longest time of each pair. The number in brackets is
the speed-up over the total runtime of the original MATLAB program in Table 6.3 and
Figs. 6.4 and 6.5 illustrates the share of the Gabor feature calculations with the runtime
of the other texture calculations when using 12 threads. This shows that the reduction
in runtime through the change in the algorithm to use FFTs in addition to parallelisation
becomes the less dominant calculation component for larger images.
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Figure 6.2: Graph showing the speed-up metric of this parallel strategy for the 4 differ-
ent image sizes. The longest time obtained in Table 6.4 is used.

Figure 6.3: Graph showing the parallel efficiency metric of Fig. 6.2 for the 4 different
image sizes.
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Figure 6.4: Barchart showing the runtime share between the Gabor feature calculations
and the rest of the other texture calculations for the two smallest image datasets. The
times are for the case using 12 threads.

Figure 6.5: Barchart showing the runtime share between the Gabor feature calculations
and the rest of the other texture calculations for the two largest image datasets. The
times are for the case using 12 threads.

56



Input Data Size (Time in seconds)
# of Threads (642 × 37) (1282 × 75) (2562 × 150) (5122 × 300)

1 18.25 (42.7) 130.44 (46.7) 1003.91 (50.3) 9525.27 (44.6)
4 13.33 (58.4) 68.43 (89.1) 529.54 (95.3) 4040.99 (105.1)

12 16.10 (48.4) 57.10 (106.7) 394.6 (127.8) 2848.86 (149.1)

Table 6.5: Runtimes of the entire MATLAB program by adding the non-Gabor runtimes
with the reduced runtimes in Table 6.4 for 1, 4 and 12 threads (using the time obtained
on the left). The total runtime of the original program in Table 6.3 is reduced by a factor
of the number in brackets.

Multi-threaded MKL Performance

By compiling the serial version of the code for the replacement function with the par-
allel MKL flag, we can test the performance of the automatic parallelisation capability
offered by the library. When the single thread creates and then executes the correlation
task objects, the MKL library employs multi-threading internally.

Again, the MATLAB imfilter routine is substituted with a MEX function that calls
our serial version of the correlation code, where the underlying code that creates and
executes MKL correlation task objects has no OpenMP directives.

Table 6.6 shows the times obtained when using the multi-threaded version of the MKL
library. We try to make use of all 24 threads available on the fermi-0 compute-node
by calling the MKL function mkl_set_num_threads(24). The results show that for very
small image data, enabling automatic parallelisation is preferable to manual paralleli-
sation by data decomposition. This is probably due to the small calculation time for
each thread and thus the overhead of 12 threads synchronising their results at the end is
larger than MKL’s internal threading routine. For larger datasets, our parallel scheme
matches or outperforms the automatic parallelisation where data distribution of smaller
(but not too small) subcube data to threads seems to exhibit better performance.

Input Data Size (Times in seconds)
# of Threads (642 × 37) (1282 × 75) (2562 × 150) (5122 × 300)

24 5.86, 5.49 32.75, 32.61 213.60, 213.48 1674.4
Ratio of the time for 12
threads in Table 6.4 to 1.88, 1.74 0.99, 0.93 0.92, 0.91 0.77

the time here

Table 6.6: Runtime of Gabor feature calculation routine that is compiled with the multi-
threaded version of the Intel MKL library. Times are obtained by running twice except
for the largest dataset. The ratio indicates whether the performance of multi-threaded
MKL is faster or slower than our parallel method.
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6.2.2 Numerical Error Analysis

Having achieved a large reduction in total runtime over the original program by a factor
of upto 149, checking the numerical accuracy of our parallel solution is also required.
In this subsection, the Gabor feature values are compared against the original MATLAB
data for the 64x64x37 data size sample.

Figures 6.6 and 6.7 show the absolute and relative error differences between the output
of our parallel solution and the original MATLAB program. The absolute error is of
the order O(1021), however the relative error is of order O(10−14), which is close to
the limit of double-type numerical precision on computers (16 significant figures). For
further illustration, the maximum and minimum values for both our solution and the
original code is in Table 6.7 using the ‘long e’ format option within MATLAB. In this

Function Minimum Feature Value Maximum Feature Value
MATLAB 9.369675706004886× 1029 7.329071119659973× 1036

Intel MKL 9.369675706004892× 1029 7.329071119659978× 1036

Table 6.7: The maximum and minimum Gabor feature values generated by the original
MATLAB program and our parallel solution. The full double-precision number format
is shown for comparison.

table, the last one or two decimal places are different hence the uncertainty goes from
beyond 16 to 14 significant figures when comparing answers with the original output of
the hospital imaging program. It remains to be seen if this leads to a different qualitative
outcome in terms of ultimately predicting post-treatment side effects for lung cancer
patients. But a discussion with the code providers indicated that this would not have an
effect. So we do not expect the performance improvements to compromise the results
generated by the code.

6.2.3 Results by Taskfarm Parallelism

This subsection presents the runtimes obtained using the second of the two parallel
strategies. This strategy involves replacing much of the original Gabor feature cal-
culation MATLAB code with a MEX function that will take the frequency and angle
parameters in expression (6.1) and the input data. Hence the main body consisting of 3
loops in the original code is migrated to a native C programs and returns the 144-length
vector of Gabor feature values to the MATLAB environment. Hence this strategy is
called the taskfarm parallel strategy as this mainly involves many CPU cores calculat-
ing a Gabor feature value for a particular parameter combination. For the rest of this
chapter, we will simply refer to this as the taskfarm method as a shorthand way.

The results presented here are for the code that distributes the 36 different angle pairs
to individual CPU cores. Due to only 12 cores available on fermi-0, this divides evenly
into the 36 tasks. The code is able to take advantage of correlation task object reuse
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Figure 6.6: Plot of the absolute error between the 144-length Gabor feature vector
generated by our parallel solution in section 6.2.1 (using 12 threads) and the original
MATLAB program for the 64x64x37 sample image data.
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Figure 6.7: Plot of the relative error between the 144-length Gabor feature vector gen-
erated by our parallel solution in section 6.2.1 (using 12 threads) and the original MAT-
LAB program for the 64x64x37 sample image data.
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as shown in section 4.6.3 where the task correlates for different filters with different
angles before the task object is destroyed and a new one created for the next frequency
parameter. The choice of thread numbers are based on the fact that they divide nicely
into the 36 available tasks related to the 2 sets of 6 angles in expression (6.1) so that
maximum thread concurrency is maintained.

Table 6.8 shows two runtimes to calculate just the Gabor feature vector using this par-
allel method by running the calculation twice, except for the largest dataset where the
runtimes are long. After twelve threads, the serial code without OpenMP compiler di-
rectives is compiled with the multi-threaded MKL library and executed with all 24 avail-
able threads, 12 of which are virtual threads in simultaneous multi-threading (SMT).
The times obtained are shown on the last row of Table 6.8.

Here the general trend is a reduction in the time-to-solution as more cores become avail-
able to process Gabor feature values at the same time. Unfortunately, this method of
each thread creating separate correlation tasks for themselves has a large memory foot-
print, such that the 48GB of system memory on the fermi-0 compute node is insufficient
for 12 cores. Using the serial code compiled with the multi-threaded MKL library pro-
vided a workaround, allowing to process the largest image, however performance is less
than that obtained for 9 threads using our parallel method.

Input Data Size (Times in seconds)
# of Threads (642 × 37) (1282 × 75) (2562 × 150) (5122 × 300)

1 12.34, 12.20 104.06, 101.86 772.53, 772.48 (7795.44, 7787.05 est.)
2 7.35, 6.99 53.07, 52.90 398.72, 396.72 4011.62
3 4.92, 4.90 36.26, 36.08 273.91, 272.70 2716.42
4 4.04, 4.01 28.18, 28.18 209.68, 209.49 2087.46
6 3.06, 3.05 17.79, 19.76 149.88, 149.37 1456.17
9 2.71, 2.81 20.00, 20.09 147.36, 144.23 1044.88

12 2.05, 2.03 13.88, 13.71 102.61, 102.06 Not enough memory
24* 6.06, 5.69 33.88, 33.25 223.41, 223.39 1755

Table 6.8: Runtimes of processing the Gabor features vector by distributing the different
angle parameters to different threads and returning the Gabor feature value associated
with that particular parameter combination. *Serial code is used with MKL performing
internal multi-threading with 24 threads.

Figures 6.8 and 6.9 give the parallel speed-up and efficiency for this taskfarm parallel
strategy, using the longer times in Table 6.8. Compared to the metrics of the first parallel
strategy in Figs. 6.2 and 6.3, this taskfarm strategy exhibits better performance metrics
for all four data sizes. This strategy suits smaller datasets so that each thread works on
the whole data for a particular generated Gabor filter, rather than further dividing the
small dataset into even smaller pieces of data amongst the threads.

By comparing Table 6.8 with the Gabor feature calculation times obtained in Table 6.4
where only a single function substitution is performed, the following differences are
observed:
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Figure 6.8: Graph showing the speed-up metric of this parallel strategy for the 4 differ-
ent image sizes. Table 6.8 is used with the left-hand most times among the ranges.

Figure 6.9: Graph showing the parallel efficiency metric of Fig. 6.8 for the 4 different
image sizes.
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• For single thread performance, the taskfarm method has higher performance as
expected due to the bulk of the work now done with a compiled C program.
This includes the three nested loops with the main inner-loop body containing
the generation of the Gabor filter kernel and intermediate calculations. These
calculations perform faster as expected.

• For the smallest dataset, 64x64x37, the taskfarm method continues to improve
beyond 4 threads. This is due to the lower overhead of getting separate cores to
perform correlation on the whole data, which already takes milliseconds to do
on a dataset this size. This is in addition to improvements where the logic and
computation is performed in a compiled C program rather than within MATLAB.

• Comparing the performance with 12 threads, the taskfarm method achieves the
faster time. However, this is at the expense of using a larger memory footprint
to calculate the Gabor features in parallel. In addition, these task objects return
answers in separate memory arrays, so the MKL VSLCorr library does not pro-
duce an in-place solution where the answer replaces the original input data. As
the correlation produces a complex-array, twice the storage is required.

• Despite being unable to run this scheme with all 12 available cores, the runtime
obtained for nine threads is faster than using 12 threads with the function substitu-
tion method. This concludes that, at the cost of higher memory use, the taskfarm
parallelisation method exhibits higher parallel efficiency. This is due to the possi-
bility that, in the first parallel method where data decomposition into subdomains
for different threads occur, the internal FFT routine may perform slower. This
is due to the particular block size of the subcube of data that each thread get.
FFT algorithms prefer data blocks of a certain size and optimisation tips include
padding the data to a certain size. In addition, FFTs tend to perform slower on
smaller datasizes whereas they prefer working on larger datablocks [27].

• Finally, compiling and linking the C codes with the multithreaded MKL library
provides a workaround for the memory limitation as all 12 cores running 2 threads
were able to complete the calculation successfully. However, its performance is
equivalent to our taskfarm method using between 3 and 4 threads.

Finally, we summarise the best case performance obtained using this parallelisation
method by showing the total MATLAB program runtime. Table 6.9 shows the share in
runtimes between Gabor feature calculation and the other calculations. This shows the
results using 12 threads except for the largest data size where only 9 threads will run.
Figures 6.10 and 6.11 provides an illustration of the share of the total runtime.

Compared to using the first parallel strategy, all image size cases have reduced runtimes
to the point that they account for less than half of the total MATLAB runtime, leav-
ing potential future optimisations to target other calculation routines such as Haralick
features. In the first strategy, only the larger two data sets achieved this, seen in Fig.
6.5.
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Figure 6.10: Barchart showing the runtime share between the Gabor feature calculations
and the rest of the other texture calculations for the two smallest image datasets in Table
6.9.

Figure 6.11: Barchart showing the runtime share between the Gabor feature calculations
and the rest of the other texture calculations for the two largest image datasets in Table
6.9.
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Image size Other Calc. Gabor Filtering Total Time
64x64x37 5.06s 2.05s 7.11s (109.6)

128x128x75 24.8s 13.88s 38.68s (157.5)
256x256x150 198.1s 102.61s 300.71s (167.8)
512x512x300 1552.6s 1044.88s (on 9 threads) 2597.48 (163.5)

Table 6.9: Table showing the share of the runtime in seconds between the Gabor and
non-Gabor related feature calculations. The number in brackets is the reduction factor
achieved on the total runtime of the original MATLAB program in Table 6.3.

6.2.4 Numerical Error Analysis

Following the same methodology that we did for the first parallel strategy, we check
the accuracy of our answer for the 144-length Gabor feature vector against the original
MATLAB data for the 64 datasize sample. The number of threads we used is 12 as we
did in the analysis for the first parallel strategy. The absolute and relative errors of the
144-feature vector are shown in Figs. 6.12 and 6.13 respectively.

The same conclusions as for the first parallel strategy applies in this case but the nu-
merical difference here is a further two decimal places. We can see that the absolute
error is of the order O(1023) and the relative error order is O(10−12). Table 6.10 shows
the maximum and minimum value of the calculated Gabor feature vector for both this
parallel method and the original MATLAB program.

Function Minimum Feature Value Maximum Feature Value
MATLAB 9.369675706004886× 1029 7.329071119659973× 1036

Intel MKL 9.369675706000266× 1029 7.329071119659139× 1036

Table 6.10: The maximum and minimum Gabor feature values (in full double-precision
format) generated by the original MATLAB program and our taskfarm parallel solution.

This table shows that the numerical difference between the answers is now two more
decimal places than in the first analysis in Table 6.7, so the margin of uncertainty com-
pared to the original MATLAB program is now from 16 to 12 significant figures. Again,
it remains to be seen if this affects the qualitative outcome of the whole medical objec-
tive in predicting the occurrence of pneumonitis for patients.

6.2.5 Section summary and conclusions

We summarise the work done with the original MATLAB program with the the en-
hancements we have done to accelerate and parallelise the most computational part of
the program:

• Two parallel schemes were used to achieve speed-up. One provided the conve-
nience of replacing the single MATLAB routine with an alternative that called
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Figure 6.12: Plot of the absolute error between the 144-length Gabor feature vector
generated by our parallel solution in section 6.2.3 (using 12 threads) and the original
MATLAB program for the 64x64x37 sample image data.
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Figure 6.13: Plot of the relative error between the 144-length Gabor feature vector
generated by our parallel solution in section 6.2.3 (using 12 threads) and the original
MATLAB program for the 64x64x37 sample image data.
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Figure 6.14: Log plot of the total runtime of the entire MATLAB program. This com-
pares the original code with the enhancements using the MKL libraries under the two
different strategies discussed.

equivalent routines in the Intel MKL library, the other was a taskfarm paralleli-
sation strategy where more of the computation was moved to the external C pro-
gram.

• We have successfully reduced the runtime of the original MATLAB program and
achieved speed-up of between 42.7 and 167.8 depending on the data size worked
on and the number of threads used. Figure 6.14 shows the times of the original
MATLAB program against the number of image pixels together with the total run-
times for the two parallel strategies. This concludes that the original MATLAB
code was performing the 3D correlation directly which is of a higher complexity
than FFTs and hence leads to a poorer performance.

• With the very large speed-ups achieved, the numerical errors between the original
answer and answers produced from both parallel schemes show that they work
correctly due to the small relative error. The answer differs beyond 13 significant
figures in the worst case and 15 in the best case.

• Both parallel schemes have good parallel speed-up and efficiency metrics, except
when using the smallest data size with the first parallel scheme. In that case, the
multi-threaded capability of the Intel MKL library provides better runtimes but
for other datasizes, our own parallel schemes provide better performance.

• The taskfarm parallel scheme provides a lower runtime than the other one for the
largest data size at the cost of a large memory footprint, where only nine threads
can run successfully.
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6.3 Performance Metrics using CPUs on the phi node

In this section, the best case results for both parallel schemes will be summarised. In
addition, we will show the lack of concurrency of the taskfarm scheme and demonstrate
running an alternative that distributes all 144 parameter combinations in parallel. A
profile of the taskfarm parallel is briefly mentioned.

6.3.1 Results of both parallel schemes

Due to MATLAB unavailable on this compute-node, the runtime results were obtained
by running the Gabor feature calculation part using GNU Octave.

Input Data Size (Time in seconds)
# of Threads (642 × 37) (1282 × 75) (2562 × 150) (5122 × 300)

1 10.022 (9.66) 83.792 (82.5) 669.778 (671) 6858.83 (6815)
2 7.968 (7.24) 52.316 (46.4) 424.523 (423) 3884.45 (3889)
4 6.744 (6.10) 34.236 (29.2) 291.163 (287) 2318.53 (2312)
8 7.295 (6.61) 27.385 (23.0) 216.393 (212) 1451.52 (1450)

16 7.666 (7.07) 28.583 (22.0) 162.690 (158) 1103.47 (1100)
16* 4.47s 26.98s 217.13s 1761.21s

Table 6.11: Time taken to calculate all 144 Gabor feature values by function substitution
in Octave on the phi node using the CPUs, obtained by individually timing the code
that computes the Gabor feature vector. For the two largest data sizes, the times in
brackets are estimated from computing 4 Gabor feature values. For the smallest 2 sizes,
the bracket times are obtained as part of a benchmarking code. *Code compiled with
multi-threaded MKL library.

Table 6.11 shows the runtimes of the first parallelisation strategy obtained in the follow-
ing ways. All the runtimes quoted without brackets are obtained by running code that
sets the number of threads to use and then times the calculation of the Gabor feature
vector. Hence a program is run with the following pseudo-code inside:

set number of threads N
...

t1 = start-time
for each Gabor filter parameter (F,psi,phi)
{

...
calculate-correlation(data, filter(F,psi,phi), number of threads N)
...
Gabor feature(F,psi,phi) = final result
...

}
t2 = end-time
time-taken = t2-t1

67



print time to screen
end program

For the smallest 2 datasets 64x64x37 and 128x128x75, the runtimes in brackets are
obtained as part of a benchmarking code where the Gabor feature vector is calculated
within a loop body that increments the number of threads to use from 1 to 16:

for each N from 1 to 16 // Loop over the number of
{ // threads sequentially

...
t1 = start-time
for each Gabor filter parameter (F,psi,phi)
{

...
calculate-correlation( data, filter(F,psi,phi),

number of threads N)
...

Gabor feature(F,psi,phi) = final result
...

}
t2 = end-time
time-taken = t2-t1
print time to screen

...
}
end program

This was to investigate any difference between obtaining times using a benchmarking
loop and running the calculation code individually. We discovered that the difference
in runtimes can be a few seconds for the (1282 × 75) data size. But for the largest 2
datasets, the difference is insignificant. Instead, the alternative time in brackets in Table
6.11 is an estimate by calculating 4 feature values only and scaling it by 36.

For the second parallel strategy of taskfarming the 36 Gabor angle parameters to differ-
ent threads described in section 4.6.3, the runtimes are in Table 6.12 where the times
in brackets are obtained as part of a looping benchmark run. We do not run with all 16
available cores (except when using multi-threaded MKL) due to a lack of concurrency
in the parallel scheme which is illustrated in the next section.

In both parallel schemes, the performance of the multi-threaded library is included that
uses all 16 available cores. We obtain the runtime by specifying the MKL library to use
16 threads and time the Gabor feature vector calculation. The result is the last row in
Tables 6.11 and 6.12.

The conclusions from the benchmarks on this compute-node are similar to those for the
performance on fermi-0 due to similar hardware but with faster CPUs, which can be
seen by comparing the single thread runtimes. In addition:

• With 64GB of memory available, the taskfarm parallelisation strategy was able
to run on 12 threads.
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Input Data Size (Time in seconds)
# of Threads (642 × 37) (1282 × 75) (2562 × 150) (5122 × 300)

1 8.62s (8.47s) 76.94s (77.24s) 595.82s (591.34s) (6243.45s)
2 4.64s (4.08s) 38.50s (38.65s) 294.66s (291.26s) 3110.78s (3103.48s)
3 3.52s (3.04s) 26.74s (26.56s) 198.95s (198.08s) 2097.35s (2103.55s)
4 2.76s (2.35s) 20.15s (20.22s) 150.60s (149.25s) 1582.35s (1579.38s)
6 2.14s (1.73s) 14.31s (14.18s) 104.84s (104.43s) 1100.39s (1100.55s)
9 1.71s (1.40s) 10.61s (10.51s) 77.92s (77.60s) 820.92s (819.28s)

12 1.46s (1.14s) 8.56s (8.43s) 61.85s (61.54s) 640.26s (646.36s)
16* 3.77s 23.88s 177.30s 1457.26s

Table 6.12: Time taken to calculate all 144 Gabor feature values using the taskfarm
parallel strategy using Octave on the phi node using the CPUs. The times in brackets
are obtained from a single benchmarking code, the other times are obtained by timing
the Gabor feature calculation code each time with a specified number of threads and a
data input. *Code is compiled with the multi-threaded MKL library.

• A variation exists in obtaining runtimes individually and from a benchmarking
code that reruns the Gabor feature calculation after incrementing the number of
threads. This variation tends to be insignificant for cases with large data sizes.

6.3.2 Concurrency Analysis of Taskfarm Parallel method

We use the Intel VTune performance profiling tool provided by the Intel SDK to ex-
amine the concurrency of the taskfarm parallel strategy when 16 threads are used. For
this purpose, we use a C program that calls the Gabor feature calculation with a ran-
dom (2562 × 150) array and the same Gabor filter parameters (6.1) used by the original
program.

We run on the phi node:

$ amplxe-cl -collect concurrency \
bin/gabor_3d_features_native_omp36_RUN

where amplxe-cl is the VTune profiler program without the GUI, the second argu-
ment asks to profile the program concurrency and the last argument is the C program.
The following summary is provided:

Summary
-------
Average Concurrency: 12.919
Elapsed Time: 64.933
CPU Time: 828.239
Wait Time: 193.840
CPU Usage: 12.501

where we see that only about the equivalent of 12.9 cores were fully utilised. This is
due to 16 not dividing into the 36 available tasks. Finally, Fig. 6.15 from the VTune
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Figure 6.15: Concurrency graphic shown by the Intel VTune profiler. The profiled C
program calculates the Gabor features vector using the taskfarm parallel strategy with
16 cores.

GUI shows the problem where at distinct stages, 4 threads continue to work whilst
there are no more tasks to distribute to the others. This is the reason why upto 12 cores
are selected when using the taskfarm parallelisation method. This suits the fermi-0
compute-node where only 12 real cores are available but 4 cores are spared on the phi
frontend-node where 16 are available.

6.3.3 Code Hotspot Analysis of Taskfarm Parallel method

By compiling with the debug -g flag, the VTune profiler can provide a basic code
hotspots analysis of the same C program that we used for concurrency analysis. We run
the program with a smaller data size and use a single thread. With a total runtime of
108.53 seconds1, Fig. 6.16 shows the share of that runtime in various shared object files.
This shows that nearly all the runtime involves the shared object libmkl_avx.so
hence the bulk of the runtime is spent by the MKL library executing the convolution
tasks.

Finally, Fig. 6.17 displays the CPU timings of the source code of the underlying func-
tion to calculate the Gabor features vector. This shows that the time taken to calculate
intermediate results such as the computation of the energy norm and calculating the Ga-
bor feature value at the end is of the order of milliseconds compared to the total runtime
of about 108 seconds.

1The VTune profiler analysis was done on a laptop with an Intel Core i5-2467M at 1.6GHz. A copy
of the Intel SDK was used under a non-commercial licence.
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Figure 6.16: Time spent in various shared objects. Our Gabor feature calculation code
only takes 1.2s.

Figure 6.17: Gabor feature calculation source code together with the hotspot informa-
tion.
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Figure 6.18: Comparison of speed-up between the two modified taskfarming parallel
methods. One uses the NOWAIT clause whilst the other distributes all 144 Gabor filter
parameters concurrently.

6.3.4 Increasing Concurrency of Taskfarm method

Given that our original taskfarm strategy suffered from reduced concurrency if the num-
ber of threads do not divide exactly into the 36 angle combinations available for each
frequency, we try increasing the concurrency by:

• Adding nowait to the OpenMP directive #pragma omp for collapse(2)
so any waiting threads can immediately proceed to the next frequency parameter.

• Taskfarming all 144 combinations of (6.1) in parallel, described in section 4.6.4

Figure 6.18 shows the result of attemping these two suggestions on a 1282 × 75 array.
Using nowait has no effect on the concurrency and the step behaviour is still obtained.
Both schemes achieve 77.1 seconds for a single thread but the second method is only
able to outperform the best time of the first one by 0.14 seconds and requiring 16 threads
to achieve this. However, this is predicted to scale better beyond 36 threads.

6.4 Performance on Intel Xeon Phi

With many x86 cores available on the Intel Xeon Phi, we investigate the performance
and scaling of both taskfarming parallel schemes described in sections 4.6.3 and 4.6.4,
beyond the 12 or 16 threads available on the CPUs.

For this work, we use native C programs to execute the calculation of the Gabor feature
vector using a randomly generated 3D array of double-precision numbers for the data
but the Gabor feature parameters in 6.1 remain the same. Compilation for the Xeon Phi
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is achieved with the -mmic flag and the binaries are uploaded and executed on the card
itself. To ensure use of separate cores by separate threads, the thread affinity scheme is
set to scatter.

Finally, we demonstrate Octave calling MEX files that offload computations onto the
Xeon Phi co-processors.

6.4.1 Taskfarming the 36 angle parameters

The concurrency of this parallel strategy is 36 so we test the performance using the
Xeon Phi upto 36 cores. Similarly to what we did with the Xeon CPUs on the phi node
in subsection 6.3.1, we obtain the runtimes first by using a benchmarking code that in-
crements the number of threads in a loop and timing the calculation in the loop body.
After obtaining the speed-up performance this way, we time the calculation code indi-
vidually on a select number of threads in order to compare and confirm the benchmark
estimation. We refer to this as a ‘cold-start’ so that the times obtained are not affected by
any warm-up effects when timing the calculation in a loop body.Figure 6.19 shows the
speed-up performance upto and including 36 threads. The jump in performance from
35 to 36 threads is expected where all threads work on all 36 available combinations
per frequency parameter. For the larger dataset, the difference between the speed-up ob-
tained by the two timing methods is minimal but the smaller dataset exhibits a ceiling in
performance when running and timing the Gabor feature calculation code individually
for 18 and 36 threads. This could indicate that the few Gabor feature calculations that
each thread does is fast enough such that other overheads such as cold-cache misses and
initial data movement now dominate the runtime.

Table 6.13 quotes the times to calculate the feature vector for 1 and 36 threads. By
comparing with the times obtained with the Xeons, the best performance obtained on
the Xeon Phi is less than that obtained on the Xeon CPUs due to lack of concurrency
in the parallel method. In addition, we are unable to run the larger datasets due to
insufficient memory. For example, an array of size (2562 × 150) was limited to 9
threads in our experiments on the Xeon Phi.

# of Threads (642 × 37) (1282 × 75)
1 92.85s 993.60s

36 3.10s (7.76s) 33.23s (34.05s)

Table 6.13: Calculation times for the Intel Xeon Phi for 1 and 36 running threads for
the 2 data sizes used. The times in brackets are the ‘cold-start’ times.

6.4.2 Taskfarming all 144 parameters concurrently

Figure 6.20 shows the speed-up performance on the Xeon Phi upto 144 threads using
this parallel method described in subsection 4.6.4. Similarly with the previous taskfarm
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Figure 6.19: Speed-up performance on the Xeon Phi using the parallel strategy of dis-
tributing the 36 different angle parameters. Times were obtained in two different ways
(looping benchmark vs. individual ‘cold-start’ runs) and the sizes of the datasets used
are shown in brackets.

parallel method, the benchmarking runs overestimate the performance of the Gabor
feature calculation where a user would run the code just once to calculate the features
for a single image. Table 6.14 provides metrics for the best times obtained under the
‘cold-start’ method for both data sets.

Image Size Best time (s) # of Threads Speed-up Par. Efficiency
(642 × 37) 5.12 33 18.0 0.55
(1282 × 75) 21.55 54 40.5 0.75

Table 6.14: Metrics for the best times obtained on the Xeon Phi using the parallel
strategy of distributing all 144 parameters concurrently under the ‘cold-start’ method.

Highlights of this work in this subsection are:

• For both data sizes, distributing all 144 parameters increases the scalability of the
calculation. However, both cases level off after a number of threads that is much
lower than 144. The smallest data size attains maximum performance after about
33 threads. For the larger data, levelling off occurs after about 60 threads which
equals the core count. This would indicate a saturation in memory bandwidth
because all the internal buffers used for memory requests are in use when all 60
cores are used to maximize memory bandwidth [17].

• The 8GB of on-board memory is insufficient with the (1282 × 75) data beyond
80 threads.

• The best times obtained on the Xeon Phi are slower than what is possible on the
Xeon CPUs.

74



Figure 6.20: Speed-up performance on the Xeon Phi using the parallel strategy of dis-
tributing all 144 parameters concurrently. Times were obtained in the same way as for
Fig. 6.19.

• The application is not able to fully utilise the computational performance of the
Xeon Phi due to the application unable to scale to at least 120 threads. Each core
is expected to run at least two threads to maximize floating point performance
[17].

6.4.3 Using Multi-Threaded MKL

To overcome the limit of available on-board memory, we can use the multi-threaded
version of MKL to automatically parallelise the calculation when the convolution task
objects are executed. The serial code outlined in section 4.6.2 is compiled with the
parallel MKL libraries and the times obtained on the Xeon Phi are in Table 6.15.

# of Threads (642 × 37) (1282 × 75) (2562 × 150) (5122 × 300)
60 25.7287s 146.077s 1064.71s 8177.06s

120 19.8848s 114.736s 1035.24s 7739.33s
180 19.1939s 119.266s 1009.95s 7625.41s
240 19.944s 118.885s 1019.5s 7650.44s

Table 6.15: Runtime of the Gabor feature calculation on the Intel Xeon Phi using multi-
threaded MKL on upto 240 threads.

Comparing with the single thread times in Table 6.13, some speed-up is offered by the
MKL library. All four data sizes were possible to run, however performance is worse
than a single thread on the host CPU in Table 6.11.
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6.4.4 Offloading from Octave

A working setup is demonstrated where Octave calls a MEX file that attempts to offload
the calculation of the Gabor feature vector onto a Xeon Phi co-processor.

The offloading capability is provided by offload pragmas inserted into the source code
in the same fashion as OpenMP directives. These include controlling the data flow
between the host and co-processor to provide optimisation opportunities for copying
data.

The offload directives within the code responsible for Gabor feature calculation is:

/* Begin offload onto the Xeon Phi */
#pragma offload target (mic) \

in(frequency :length(# of frequencies)) \
in(yaw angle :length(# of yaw angles)) \
in(roll angle:length(# of roll angles)) \
in(Data :length(size of Data)) \
in(shape of Data:length(3)) \
inout(Gabor feature vector:length(total of

parameters combinations))
{

Set number of OpenMP threads

(OpenMP directives)
{

code to calculate Gabor feature vector
}

}

so the data to be convoluted, its shape and the feature parameters are copied onto the
card and the Gabor feature vector is passed in and out at the end (though this could
be optimised by creating the vector on the card itself). When a calculation is currently
offloaded onto the co-processor, a line similar to the one below appears in the output of
top running on the card through an ssh command-line:

5361 3442 micuser S 1318m 17.1 9142.2 /tmp/coi_procs/1/5361/offload_main

To enforce scatter placement of threads when jobs are offloaded, the following environ-
ment variables ensure that the Xeon Phi uses the scatter placement:

$ export MIC_ENV_PREFIX = MIC
$ export MIC_KMP_AFFINITY = scatter

Figure 6.21 shows the calculation times by offloading and by native execution on the
card itself. Because the data size to transfer is at most under 10MB, this does not affect
the runtime significantly and we come across an occasion of the offload run outperform-
ing the native run.

Below is an example offload report for the case of 9 threads on a (1282×75)-sized data
(export OFFLOAD_REPORT=2):
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Figure 6.21: Gabor feature vector calculation on both the Xeon Phi natively and on
Octave offloading the calculation onto the card.

[Offload] [MIC 0] [File] src/gabor_3d_features_native_xphi.c
[Offload] [MIC 0] [Line] 44
[Offload] [MIC 0] [Tag] Tag 0
[Offload] [HOST] [Tag 0] [CPU Time] 108.267035(seconds)
[Offload] [MIC 0] [Tag 0] [CPU->MIC Data] 9831744 (bytes)
[Offload] [MIC 0] [Tag 0] [MIC Time] 104.765726(seconds)
[Offload] [MIC 0] [Tag 0] [MIC->CPU Data] 1160 (bytes)

so the calculation completes on the card in 108 seconds which is faster than a native
time of 117s on one occasion.

To summarise, we have shown here a setup where it is possible to offload computations
onto the Xeon Phi from the Octave programming environment. However, the calcu-
lations on the card itself remain to be optimised as the performance attainable is still
below what is possible on a multicore CPU node.

6.5 Chapter summary

We have demonstrated performance improvements over the original MATLAB applica-
tion by linking the MATLAB code to C functions that use the MKL library and OpenMP
for parallelisation.

Two parallel strategies were employed to achieve such speed-up. The first one is di-
viding the data to be correlated into smaller, equal subdomains amongst the running
threads. The second involves each thread performing the equivalent convolution on the
whole data for particular combinations of parameters for the filter kernel.

The original MATLAB application computed the correlation of the data and filters by
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direct computation of the correlation formula. Through use of the equivalent routines in
the MKL libraries using FFTs in addition to parallelisation, we have achieved a speed-
up of between 42 and 168 times over the original application. The second parallel
strategy provided the lowest runtimes but was found to have a large memory footprint
such that the largest data example was unable to run on all available cores.

Due to a lack of concurrency in the second parallel strategy, we developed a modified
version to expose more available parallelism and explored the scalability of both ver-
sions on an Intel Xeon Phi with many more cores available. The speed-up performance
was not sufficient to make full use of the card’s capabilities and the runtimes obtained
were longer than what was achieved on the multi-core CPU nodes.

Finally, we demonstrated a working framework where GNU Octave is able to offload
the computations onto a Xeon Phi co-processor. This shows the possibility of using
optimised code for the Xeon Phi from the Octave programming environment in the
future.
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Chapter 7

Summary and Conclusions

The project’s aims were to accelerate a medical imaging application provided by West-
ern General Hospital. This application helps to predict the onset of lung-pneumonitis
in lung cancer patients after radiotherapy treatment. This is achieved by calculating
statistical and numerical features of the textures on the CT scan images of the patient’s
lungs. This calculated texture data is fed into a system that predicts whether the patient
will suffer the illness.

The application is originally written in MATLAB that calculates the texture features of
three-dimensional image data. A preliminary study was carried out to determine the
most expensive computational routines of the program and concluded that the texture
feature calculations involving the correlation of the data with the Gabor and Gaussian
filters employed an algorithm of computational complexity that had O(N 3K3) scaling.

The project’s focus was to accelerate the application using the Intel Parallel Studio
suite of tools that can make use of multicore CPU hardware and many-core CPU co-
processors using the same code developed in C. Due to the different programming lan-
guages employed between the Intel SDK and the original application in MATLAB,
the most expensive computational routine required porting over to C code that was then
callable by the application running in MATLAB. The project was successful in develop-
ing C code using OpenMP for multi-threading and Intel MKL routines for computation
that can be utilised by the MATLAB programming environment.

We developed C functions using the Intel Math Kernel Libraries that provided correla-
tion and convolution results equivalent to those returned by MATLAB. These routines
by MKL can either compute the result by directly applying the correlation/convolution
formula directly or by using Fast Fourier Transform algorithms.

We have found that, by using the MKL routines in FFT mode, a speed-up over the
original application was already possible before any parallelisation was employed. The
results show that the original application could be speeded up between 42 and 50 times
on single threads simply by switching to FFTs algorithms that have less computational
complexity than by computing the correlation formula directly.
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For parallelisation onto multicore CPUs, we used OpenMP to multi-thread the com-
putational routines involving Gabor feature texture calculation. Two parallel strategies
were employed:

• Parallelisation of the correlation routine alone by dividing the data into equal
subdomains onto different threads.

• Taskfarming the different Gabor filter parameters involved in the Gabor feature
texture calculation onto multiple threads. Each thread computes the Gabor fea-
ture texture value on the whole data for a particular combination of the given
parameters.

Form the benchmarking results on the first parallel strategy, the speed-up attained on
multi-core CPUs showed good scaling on with parallel efficiency not dropping below
0.85 for evenly distributed workloads. This is for computing the correlation directly
(with a fixed filter size) and was found to be 11 to 14 times slower than by using FFTs
in single threaded runs, depending on the data size. When using FFT mode, the parallel
efficiency drops to 0.5 for the largest two data sizes tested but for the smallest ones, the
performance levels off after a few threads due to the correlation calculation completing
in the order of milliseconds for single threads.

By applying both parallelisation strategies on the original MATLAB application, we
have successfully reduced the runtime of the original application even further through
the use of multicore CPUs on compute-nodes. The fastest runtimes were achieved using
the taskfarming parallelisation method due to much of the intermediate calculations
performed in C rather than in MATLAB. In general, improved runtimes were such that
the Gabor feature calculation part of the total runtime is less than half. In terms of the
order of the runtime compared to that for the original code:

• For the two smallest data sizes (64-64-47 & 128-128-75), we reduce the runtime
to the order of a few second instead of hundreds of seconds.

• For the next size (256-256-150), we achieve runtimes of the order of minutes
instead of hours.

• For the largest size (512-512-300), the computation takes between 10 and 20
minutes instead of days.

The best case for the improvement in application runtime on the node which has MAT-
LAB installed is a 168 speed-up over the original time using all 12 cores on a data of
size (256-256-150). However, one drawback is the large memory footprint to achieve
this which is on the order of gigabytes. It was not possible to use all available CPU
cores when computing the texture features of the largest data sample due to 48GB be-
ing insufficient.

Using the first parallelisation strategy resulted in slightly lower performance than the
second one. But, because the single correlation routine is replaced, this maintains the
programming flexibility of being able to easily modify other code in MATLAB that does
not involve the correlation of the data, such as the intermediate calculations involved in
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between the correlation calls.

Compared to the two parallel strategies developed, the performance of the multi-threaded
MKL library is better for the two smallest data sizes tested. But we obtain better per-
formance for the larger two sizes.

With the application speed-up obtained, the error analysis between our solutions and
the original indicates a maximum relative error of order O(10−12) amongst all the cal-
culated Gabor feature values, which compares reasonably well to the double-precision
limit on computers which is 16 significant figures. But the absolute difference is of
the order O(1023) and it remains to be seen if these differences in values results in a
different qualitative outcome.

By using the Intel VTune profiler on the code using the taskfarming parallel strategy but
running with one thread, we conclude that the majority of the runtime is spent within the
MKL library routines calculating the convolution or correlation. In the case presented,
1.2 seconds was spent in other parts of the function as opposed to 104 seconds in the
MKL shared library object performing calculations using the AVX vector unit on the
CPU. However, a concurrency analysis indicates that for a certain number of threads,
one or more are idle for periods of time due to an uneven distribution of available work.
In this case, only a total of 36 tasks are concurrently available and we have demonstrated
that with 16 running threads, four threads will idle after everyone completes two tasks
each.

The concurrency of the taskfarming method was increased by making all 144 Gabor
filter parameter combinations available at the same time for threads to take, as opposed
to the 36 different pairs of angles only. This version did not help in increasing perfor-
mance on the CPUs due to this version unable to reuse the task objects because one of
the Gabor filter parameters can change the size of the filter - task objects can be reused
with different filters if they are the same size. Despite this, the scaling of this version
indicates that this would be suitable for many more processing cores than the 12 or 16
cores available on the fermi-0 or phi compute-nodes.

Both versions of the taskfarm parallel strategy were then tested on the Intel Xeon Phi
co-processor to investigate the scalability beyond the 16 processor cores available. The
8GB of on-board memory was a problem such that only the two smallest data sizes can
be realistically tested. But even with these images, the speed-up measured shows that, in
general, the performance levels off before reaching the maximum concurrency possible.
The one exception is the case of the larger size of the two using the first version with a
maximum possible concurrency of 36, where the speed-up and parallel efficiency were
29.1 and 0.81 respectively using 36 threads. But in all cases, the runtime to calculate
the Gabor feature values were longer than those achieved on the CPUs on the compute-
nodes. This leads to the conclusion that the convolution and correlation routines in the
MKL library do not provide performance as optimised as that for regular CPUs.

Using the multi-threaded MKL library allows a workaround of the on-board memory
limit on the Intel Xeon Phi package. However, performance is no better than a single
Xeon CPU in most cases. This shows that a manual parallel implementation is required
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to achieve optimal performance

The levelling of the speed-up on the Xeon Phi concludes that the strategy of each thread
computing the convolution on the same data with different filters leads to a performance
saturation beyond a certain number of threads. In one case, the performance starts
decreasing after 60 threads are used, indicating a memory bandwidth saturation as all
60 cores are in use (using the scatter thread placement scheme), thus using all available
internal memory buffers of the many-core chip.

Finally, we have shown the feasibility of GNU Octave calling compiled C functions that
offload onto the Xeon Phi. Hence any future code development for optimal performance
on the Xeon Phi can be taken advantage of from the Octave programming interface and
likely so in the case of MATLAB.

Final Words

We have successfully accelerated the original medical imaging application in MAT-
LAB by linking with it with code developed using the Intel SDK and parallelised using
OpenMP. The reduction in runtimes achieved over the original application were sub-
stantial due to the ability of the called functions to perform the convolution and corre-
lation using FFT algorithms.

Application speed-up was successful on multi-core CPUs. However, running the same
code on the Xeon Phi co-processor resulted in less performance being obtained than that
for Xeon CPUs and the on-board memory limited the size of the data to be processed.

7.1 Future Work

On a high level view, the two main areas of improvement are a reduction of memory
usage and increasing performance on the Intel Xeon Phi co-processor.

The following list now looks at particular areas for future work:

• Use of FFT libraries Instead of using the convolution and correlation routines
from Intel MKL in FFT mode, one can use a variety of FFT libraries directly
to develop a parallel convolution solver. This would be useful for an alternative
implementation of the Gabor feature calculations, especially tuned for the Xeon
Phi as the correlation algorithms involved can be optimised to suit the Xeon Phi
architecture. This would be similar to past work where a FFT-based routine was
developed specifically for use by PowerPC processors on an IBM Blue Gene [28].

• Further Mathematical/Algorithmic Improvements Currently, calculating a Ga-
bor feature value involves correlations of the real and imaginary parts of the Ga-
bor filter separately. We should investigate using the complex versions of the cor-
relation routines where we correlate the real image data with the complex Gabor
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filter kernel and the subsequent intermediate calculations can be done on this new
result. One of the intermediate calculations is an energy matrix and we should in-
vestigate if it is possible to perform this calculation in the Fourier domain to save
the need for a Fourier and an inverse Fourier transform stage. Finally, modifying
the workflow to use in-place FFTs can help reduce memory usage as intermediate
calculations are stored in-place.

• Use of Other Compilers and Libraries The project exclusively used the Intel
compilers and MKL libraries, which limits its use on other systems as the Intel
SDK is not free and users may be willing to trade some performance for the
benefit of free compilers and libraries. Examples would be use of GCC and free
convolution/correlation libraries to increase portability.

• Different Domain Decompositions Instead of dividing the data into equal sub-
domains, we look at alternatives such as pencil and slab that may be more suitable
for the FFT algorithm that the convolution routines use internally. Alternatively,
specific subdomain lengths, including the possibly of padding with zeros, can be
investigated such that the lengths are suitable for FFT algorithms.

• Multi-node use After any improvements in the program’s memory footprint, the
taskfarming scheme developed here can be extended so a subset of the Gabor filter
parameters can be distributed amongst nodes using a suitable framework such
as message-passing programming. Alternatively, multi Xeon Phi co-processors
or worksharing amongst Xeon processors and Xeon Phi co-processors could be
investigated after developing code for optimal performance on the Intel Xeon Phi.

The first two items described above have enough scope to improve the two main areas
needing improvement, namely high memory usage and performance on the Intel Xeon
Phi. The fourth item would help optimise the general performance of FFT algorithms.
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Appendix A

Known Software Issues

A.1 Testing errata on different GNU Octave versions

The testing scripts developed to run on Octave will only work with version v3.6.4 of
Octave: the starting point for the ‘same’ convolution/correlation is the same as on MAT-
LAB R2012a. For the earlier version of Octave v3.4.3, installed on the phi node, the
‘same’ convolution starts at a different position so the tests checking for equivalent
convolution/correlation answers between Octave and our MKL-based routines will fail.
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