
Investigating Pricing and Negotiation Models for
Cloud Computing

Raluca Suzana Andra

August 22, 2013

MSc in High Performance Computing
University of Edinburgh

Year of Presentation: 2013

Abstract
Negotiation models have been adopted by all types of businesses today to im-

prove company image. Cloud computing has become used more and more to the
point of being a profitable business. The providers have started to charge users for
what they use. However, the pricing model available today in cloud computing
does not support interactive negotiation. This will help to produce more profit as
well as to increase the users’ satisfaction because they will have a say in it. This
dissertation presents a new negotiation model that has been proven to satisfy both
the provider and the consumer. The provider’s satisfaction consists in maximizing
the profit and utilization, while the consumer’s satisfaction is based on the price
going to be paid.

Acknowledgements
I want to thank and show gratitude to my supervisor, Mr Neil Chue Hong for

the liberty to choose my own theme, for the continuous advise, support and trust
in my own capacities to finalize a new negotiation model that was not developed
before. I want to thank my classmates for the wonderful moments we had along the
year in High Performance Computing. I also want to thank my professors for the
passion and devotion shared with us in discovering the secrets of High Performance
Computing.

Contents

Contents i

List of Figures iii

List of Tables v

1 Introduction 1

2 Background 2

2.1 Introducing Cloud Computing and the pricing models 2

2.2 Cloud Pricing Scheme . 5

2.3 Amazon Cloud . 9

2.3.1 On-Demand Instances . 11

2.3.2 Spot Pricing Instances . 11

2.3.3 Reserved Instances . 12

2.4 Microsoft Azure . 14

2.4.1 Pay-as-you-go price . 15

2.4.2 Monthly Plans . 15

2.5 Comparing Amazon vs Microsoft Azure 15

2.5.1 Price per minute vs Price per hour 19

2.5.2 Price per second vs price per hour 22

3 Negotiation 23

3.1 Introduction to Negotiation . 24

3.2 Negotiation Mechanisms . 25

3.3 Negotiation Strategies . 27

3.4 A new negotiation model . 31

3.5 No-Contract Pricing . 33

i

4 Design 37

4.1 Fixed Pricing Model . 38

4.2 Negotiation Pricing Model . 41

4.3 No-Contract Plan Pricing Model . 44

5 Implementation 46

5.1 Command Line Menu . 46

5.2 Database . 48

5.3 Fixed Pricing Implementation . 49

5.4 Negotiation Implementation . 50

5.5 Testing for accuracy . 54

6 Analysis 56

7 Conclusion 63

A Challenges 65

B Code 66

C Figures 68

References 69

ii

List of Figures

1 The pictures shows how all three types of service models that cloud
computing provides. 4

2 How the four deployment types work and how they differ. 4

3 How much money can a user save depending on the area he is using the
resources. 11

4 This is a graph that states how the Amazon price market for spot in-
stances has changed over the last 3 months. 12

5 The graph shows the dramatical increase since Amazon has introduced
EC2 and S3. The increase can be seen year-by-year with an intense
growth curve based on the expansion and addition of new technologies. 18

6 This Figure shows the advantages of pricing per minute compared to
one from Amazon which is per hour. The pricing has been done for the
same instance from Amazon, Microsoft and Google[34]. 19

7 The pictures shows how the process of one-to-many negotiation works. 28

8 The Figure displays the basic negotiation model seen these days in cloud
computing. 30

9 The Figure displays the new negotiation model using the Yankee auction. 32

10 The Figure displays the new negotiation model using the Vickrey algo-
rithm. 33

11 The pictures shows the entity model of the database. 38

12 The pictures shows the mechanism of a fixed pricing method. 40

13 The pictures shows the negotiation mechanism proposed in this disser-
tation. 43

14 The pictures shows the no-contract API model. 45

15 This Figure shows the types of instances that our system will provide.
It provides details about each instance as well as the price. 47

16 This Figure shows the prices for each instance. 47

17 This Figure shows the help menu provided to use when calling python
main.py -h. In case the user forgets the arguments necessary to run the
program, he/she can just access the command. 48

iii

18 This Figure shows the process of choosing an instance and running it. . 50

19 This Figure shows the process that a single user is passing when bidding
a price acceptable for both the provider and the consumer. 51

20 This Figure shows the winning user and how much it will pay. 52

21 The figure shows winners of the bids. 52

22 Figure shows the allocation of resources to all users requesting an in-
stance rather than the winners for each of the instances. The profit has
been proven to be higher as we can see. 53

23 The figure shows the UML diagram of how the program was build. . . . 54

24 The figure shows that the price for a medium instance that runs for 70
minutes produces the right amount to be paid by the user. 55

25 The figure shows that the user that bid the most won the bidding process
while the others have to proceed again. The program outputs the correct
price the user is going to have to pay for his/her requirements. 55

26 The figure shows the process of negotiation with a multiple users when
the provider has enough resources to maximize the profit. 58

27 The figure shows the process of negotiation between a single user and a
provider based on limited resources. 59

28 The figure shows the process of negotiation with a multiple users when
the provider has only 10 resources left. 60

29 The figure shows that the program produces the same results every time. 68

30 The figure shows the output for a multi-user negotiation. 69

31 The figure shows the output for a simple negotiation process. 69

32 The figure shows a fixed pricing scheme output. 70

iv

List of Tables

1 The table presents the differences between the lowest price the Amazon
Spot Price can have and the On-Demand price that the users can opt to
choose. The data is based on the utilization they had on the 25th of June. 13

2 The table shows the discount that is applied for the reserved instances
based on budget. 14

3 The table shows the discount that is applied for the monthly plans pro-
vided by Microsoft. 16

4 The table shows differences in pricing for the memory intensive in-
stances on 27th of June. The Microsoft prices have been updated on
16th of April, 2013, while Amazon has left the same prices since Febru-
ary, 2013. 16

5 The table shows differences in pricing for medium standard reserved
instances from Amazon with the Monthly commitment from Microsoft. 17

6 The table concludes what it was previously described and how the prices
per minute vs per hour vary depending on the cloud provider and the
case chosen. 21

7 In the table above we have shown how the price varies based on different
providers and different pricing scheme. From this table the users can
conclude which provider to choose in terms of lowering the price. . . . 23

8 The table shows the no-contract plans for cloud that will be imple-
mented later. 37

9 The table shows our pay-as-you-go pricing based on information from
an Amazon data center. 50

10 The table shows the cases the program will produce based on the values
given. 61

v

1 Introduction

We live now in an era where technology is developing very fast. In every busi-
ness, companies are trying to overtake their rivals by providing a better product or by
lowering the prices. This way they will attract more consumers and the business will
keep growing. This is important for providers in information technology related re-
sources, where commonly customers have a high degree of choice and the resources are
relatively fungible yet non-storable. For example, mobile carriers are always trying to
change their plans to attract more customers. In the last couple of years mobile carriers
have introduced new pre-paid plans where users get certain benefits monthly without
making a long term commitment. This gives users the freedom to change providers in
case they are not happy with the plan they have. This is an advantage for the provider
because the users will not feel constrained which will make them feel like they have the
power. Investigating this, we have concluded that the price and benefits given in a plan
are one of the most important delimiting factors for consumers to choose one company,
besides reliability.

The same applies to cloud computing. Every cloud provider is trying to obtain
the highest market share and one way to do this is by trying to create different pricing
schemes like the mobile carriers are doing. Amazon, Microsoft and Google, some of
the leading providers, have decreased their charges as part of a continuous competition.
In the case of Amazon, their prices have been reduced by 12%, and Microsoft has
decreased their prices to match those from Amazon. However, there are still lots of
improvements that can be made to the cloud pricing scheme. One of them is adding
interactive negotiation to the pricing. Negotiation is becoming an important factor in
every business because it forces the providers to lower their prices in order to make the
business grow. This will allow the users to advertise the price they are willing to pay
for the resources. With time, all the providers will introduce negotiation if it proves
to be worth. Then the users can choose whoever they think provides more benefits
for them. At present, cloud computing provides similar models of pricing to mobile
carriers, except the pre-paid monthly plan with no long term commitment. Later on in
the dissertation, this will be analysed to see whether it brings benefits to the cloud or
not.

This dissertation will introduce cloud computing and its use of pricing schemes
and explain why it is important for a cloud provider to have a pricing model. Section
2 contains a case study on the two leading cloud computing providers pricing schemes,
discusses why the pricing models are needed and what models they currently provide.
After this, Section 3 includes a new negotiation mechanism that handles interactive ne-
gotiation between the consumers and the providers. It also introduces a new approach
for pricing. In Section 4, we described the design of the implementation. Section 5

1

discussed about the implementation of the new negotiation model, while section 6 in-
cludes analysis between the new model and the ones already provided by Amazon and
Microsoft. The dissertation ends with a conclusion, followed by any future work that
can be done in this area.

2 Background

Nowadays, cloud computing has become a profitable business[1] since providers
have started charging users for the resources they use by creating different pricing mod-
els. This section introduces the notion of cloud computing and how it has developed
over the past years. Later on in this section, we will describe the pricing models that
are available today as well as what makes a pricing model beneficial. The section will
conclude with a comparison between Amazon AWS’s and Microsoft Azure’s pricing.

2.1 Introducing Cloud Computing and the pricing models

Cloud Computing refers to what will happen if the applications and services will
be moved on the internet, respectively on the cloud[3]. It has been evolving very fast
over the last couple of years[2]. Nowadays, it provides elasticity as well as security
and reliability which was not very well defined when it was first introduced. In the early
age, cloud lacked elasticity, reliability and security. With time, cloud computing became
more and more popular so providers had to improve their services to attract more users.
Cloud Computing provides certain core characteristics to the user:

• Shared Infrastructure - uses a software model that is virtualized allowing sharing
of physical resources, storage as well as providing network capabilities,

• Dynamic Provisioning - the cloud provides resources based on the current needs
of the consumers. This must ensure reliability and security. Dynamic provisioning
is also known as elasticity1, which used to be an issue in the early ages of Cloud
Computing.

• Network Access - resources need to be accessed from anywhere. The Cloud han-
dles all types of applications, including the ones for mobile services.

• Managed Metering - used for monitoring and optimizing the services as well as
for billing the consumers.

1Elasticity means expansion based on the consumers demands. Allowing a provider to have an infinite
set of resources.

2

Since it is a relatively new technology, cloud computing has been seen as[4]

• The idea of having infinite resources on-demand without users making provisions
far ahead;

• Cloud providers do not need to have all the resources up front, they can increase
the number of resources when a user requests more;

• Consumers pay for resources on a short-term bases as needed, and they can release
instances once the computations are done.

Many companies are providing cloud computing services today. This dissertation
only investigates the top two leading providers as identified in [5]

• Amazon - which is the leader in cloud computing. It has offered services to the
public since 2006;

• Microsoft - is the closest competitor Amazon has at the moment. It has offered
services since 2010.

The cloud provides different service models that are targeted at various types of
consumers as presented below[6]:

• Infrastructure as a Service(IaaS) - offers physical or virtual machines, targeted
mostly at developers,

• Platform as a Service(PaaS) - provides computational resources which allows ap-
plications and services to be developed and hosted on a platform,

• Software as a Service(SaaS) - this is the application side of the cloud where the
customers have all the applications pre-installed. In this case the users do not
need to go through all the hassle of purchasing a license as long as they are using
the pre-installed applications.

Although we have described the different service models offered, we are going
to concentrate on the IaaS for the rest of the dissertation since we believe it is the most
used. Cloud computing has been expanded into four different deployment types as
shown in Figure 2, each defined by its own characteristics which satisfies every users
needs:

• Public Cloud - This type of cloud is opened for everyone. Customers can request
instances and use as much as they need. (e.g Amazon)

• Private Cloud - This is used internally in a company or organization by the em-
ployees that stores all the data inside the cloud.

3

Figure 1: The pictures shows how all three types of service models that cloud computing
provides.

• Hybrid Cloud - This is a combination of one or more clouds that remain as their
own entity but are tied together.

• Community Cloud - This type of cloud shares the infrastructure between different
organizations that have common concerns.

Figure 2: How the four deployment types work and how they differ.

For the rest of the dissertation we will just focus on developing a pricing scheme
for the public cloud. However, it can be implemented on all the other types since they
all require some sort of pricing models.

People are starting to see cloud computing as the "next wave of information
technology". It stays at the base of new business ideas because a lot of big companies

4

have started using a private cloud inside the company in order to keep all the data.
A recent study shows that in US the cloud is already used by more than half of the
businesses[7]. The research reflected that almost 54% of the companies are using either
public or private cloud while still leaving space for industry growth. Businesses have
started to adopt cloud computing because of the benefits[8] that brings them. One thing
cloud can offer is flexibility. When starting a project either the requirements, such as
network interfaces, volumes might change along the way or they might not be sufficient.

In cloud computing this is not a problem because additional requests can be added
later after the servers have been set up. Users can decide that the instance requested does
not have sufficient memory in which case they can pay a small price to get more, based
on their needs. This is one of the most important reasons companies have started using
cloud in the first place. Another important characteristic of the cloud easier disaster
recovery. Through disaster recovery, the cloud provider is entitled to resolve all the
internal issues relevant for the cloud as well as maintaining and supporting the servers.
A study has shown[9] that a company that uses cloud was able to resolve a problem
nearly four times faster than a company not using cloud. Cloud computing also saves
users a lot of time. The benefits of working on the cloud are that users do not have to do
any maintenance since it is handled by the supplier. Cloud computing has no need for
capital expenditure since it is a pay-as-you-go service that does not require any start-up
cost. It can, however, get expensive when the user requires to do large computations
over a long period of time. Another benefit provided is increased collaboration. It
makes things easier for employees inside a company to share and sync files or apps
with each other wherever they are while receiving real time criticism. In technology,
this means that the cloud can be accessed from everywhere in the world. Users can
choose to store their data on a cloud server that is different than their location, paying
the price for that region. Users today go for the more secure choices because they want
to ensure their data is protected. Last but not least, cloud computing has been proved
to be environmentally friendly. It helps decrease the energy consumption and carbon
emission by 30%[10].

2.2 Cloud Pricing Scheme

Providers also offer different pricing plans for the cloud. Later in this section,
we will talk about the pricing plan for the two cloud computing leaders, Amazon and
Microsoft. The following pricing plans can be taken into consideration[14]:

• fixed recurring pricing - the users can set up a plan where they can have the same
amount of resources every month. This is similar to the contract plans available
today in cloud computing.

5

• variable pricing by resource consumption - in this case the price can vary based
on how many resources there are used at a time. This has been adjusted for the
on-demand plan where the users are paying based on how many resources they
need.

• variable pricing by time - the price varies based on how much time the client uses
the resources for. This has been implemented in the spot pricing provided by
Amazon.

• cost multipliers - help the providers increase the price by a factor. This has not
been implemented in any of the cloud computing pricing schemes. They are
mostly used by insurance companies.

Because there is not much information about pricing models on the cloud com-
puting, we are going to discuss them from an economics point of view. Pricing can be
seen as a chargeback model which can be based on different businesses. In IT a charge-
back model is defined as a user paying for what he/she has used after usage. The model
needs to be accurate, auditable, flexible and scalable. In order to develop a model there
are some steps that need to be followed: analysing all the costs needed, identifying all
the items that need to be billed(in this case the instances provided by the cloud), finding
a pricing model by choosing different pricing options that could potentially give benefits
to the consumer without making it worse for the provider; identifying, collecting and
deploying tools to mediate the data into a billing system[13].

In this dissertation, we only considered the pricing strategy: what strategies are
currently available and how new ones can benefit both the provider and the consumer.
Clouds computing must provide a good pricing model that is beneficial for both parties.
It is sometimes hard to find a balance in which both sides agree with the price set. A
good pricing model is defined as a price that will bring no loss to neither the provider nor
the consumer. From the consumer’s point of view a better pricing model is one where
they will pay a lower price for the resources requested, while from the provider’s point
of view, they should not go beyond the lowest price that provides 0% profit for them
as well as increasing the utilization. The consumers point of view can be summarized
as the user satisfaction. By a lower price we mean that it will only include energy
consumption, cooling, support in case it is done by a third party, and possibly getting
additional resources. The pricing model that we work with for the rest of the dissertation
is described below:

price_set = energy_cost ∗ amount+ cooling + support+ profit (1)

where:

6

• energy_cost is the energy price per hour for a KW. For the purpose of this disser-
tation the energy price will be 0.07$/KW. The cost for energy is incurred whether
or not the machines are in use.

• amount refers to the energy used by a server for an hour,

• cooling refers to the price needed to cool a machine per hour. This is also incurred
regardless if the machines are in use or not.

• support relates to the price required to maintain a server. However, not all of the
cloud providers have a third party support in which case there is not cost for the
support.

• profit is everything extra that the provider can get. This will go for buying extra
machine in order to increase the utilization. The profit is increased or decreased
based on how much the consumer is willing to pay.

As mentioned above cloud computing works on a pay-as-you-go basis, allowing
the user to pay for what they use. It might not be so cheap on the long run but it will
definitely save the user a lot of headaches. Providers offer different types of hardware at
various prices because they need to maintain those machines. The costs, however, need
to be relatively small in order to attract users. No one will be interested in paying lots
of money for a long period of time if they do not have any benefits. For this reason the
providers want to keep the prices low and attract more users that will demand more and
more resources in order for them to develop a business. One way to decrease the price
as we can see in the price set above is by lowering the profit.

For this reason, cloud providers should have multiple pricing schemes from which
users can choose. This gives them the liberty to pick what they want without being
constrained. By providing users with different pricing schemes either short-term or
long-term they can decide which one suits their needs best.

Providers do not disclose too much information about their pricing scheme, ex-
cept price, duration and the instances they provide. The pricing-schemes available today
charges users based on per-minute, per-hour, six-months contract, one-year contract,
three-year contract, etc. The process is very simple. A user picks a provider from which
he/she wants to rent resources, probably based on the cheaper price or reliability. Then
the user selects an instance that will suit his/her needs based on the amount of com-
putation required and the complexity of the job. In case the system needs additional
storage or networking, the provider allows each user to add them later on. Users need
to be careful for how long the instances have been running for. For example, if the user
picks Amazon, they will be charged by the hour regardless of the fact that they only
used 1 minute or 59 minutes; but if they go with Microsoft Azure they will be charged
per minute. This makes it easier for the user because they will not have to check for

7

the time constantly. In Section 2.5.1, we will analyse if the pricing per minute is more
beneficial for the consumer rather than the pricing per hour.

The price has been set low in order to increase utilization. However, the user
does not have a say in setting the price. Current models do no provide interactive
negotiation[11], however, this is going to be one improvement that can potentially bring
benefits for both providers and consumers. Both of them can get to an agreement from
which they can both benefit. For example, setting the price that the consumer wants
without making the provider lose any money will be satisfactory for both of them. The
provider can have some price boundaries for which they can settle. If the user goes for a
price in those boundaries then the negotiation can close. However, the user will have no
knowledge of what the boundaries are, so it will be based on how much he/she is willing
to pay for resources and whether the user is willing to increase the price. Also by inter-
acting, the provider can understand better the users requirements. The pricing models
currently available can only handle basic knowledge of negotiation. The provider sets
the price for different types of instances which means that the user can choose to either
accept them or reject them. In case they reject the price, the users can go to a different
provider. The negotiation can also be done for the amount of instances. If the user needs
more instances than the provider allows, they can negotiate to come for an agreement.
For example, if a user requires 25 medium instances and the provider can only offer
20. Then the provider can give those 20 medium instances to the user and give him/her
another 5 large instances. The user will then have to pay the price for 20 medium in-
stances plus the price for 5 large instances in which case it will be more expensive. The
negotiation process described here can be good from the provider’s point of view be-
cause it will increase the utilization and the user will pay more for the other 5 instances,
while from the consumer’s point of view it will be good because it will satisfy the user’s
requirements. This is one way of doing negotiation. More about negotiation will follow
in section 3. The negotiation mechanism presented in that section provides interaction
between users and providers that will come to an agreement regarding the price. Later
on, we conduct the analysis to see how the interactive negotiation behaves based on the
pricing provided today by the clouds.

Since the dissertation tackles the pricing model for cloud providers let’s take a
deeper look into how the pricing can be differentiated. We have found out that the
pricing scheme can be either static or dynamic. In static pricing, the prices are fixed
allowing the user to pay per time interval used, requiring optimization to be done only
once. This is seen as a drawback[12]. The user has to pay for the resources used.
Resources refer to the different types of data structures active in query execution. There
are different query executions used by the cloud to fasten the query. One model of static
pricing is the pay-as-you-go model where users pay for the amount they use. In this
case users are charged when they terminate the instance. On the other hand, providers
use dynamic pricing where price is set based on a number of factors such as availability,

8

time, etc. For example, a user requesting an instance at peak time will pay less due to
the system being fully utilized. If the system has less users then the price is going to be
high[12]. One example of dynamic pricing is spot instance from Amazon. More on this
later in this section when we describe into more details what spot pricing is.

The leaders of cloud computing are in a continuous competition to overcome one
another. They are implementing new ideas for pricing in order to make it more attrac-
tive for users. For example, Microsoft Azure has recently introduced the pricing per
minute to match the prices per hour provided by Amazon. In the following sections, we
will describe the pricing models from Amazon and Microsoft Azure that are currently
available.

2.3 Amazon Cloud

The leading cloud computing provider today is Amazon with AWS(Amazon Web
Service)[5]. Amazon Web Service was developed in 2002 which only had a "suite
of cloud based services"[15] such as storage, computation, etc. In 2006, Amazon
EC2(Elastic Compute Cloud) became available as a commercial web service that al-
lowed consumers and companies to rent computers. According to Jeremy Allaire, CEO
of Brightcove, Amazon was the first cloud provider to offer IaaS[15].

Amazon provides various types of instances which consist of nine categories as
we can see below[16]:

• Standard Instances - are available in small, medium, large and extra large options.
The instances are used by consumers, with lots of resources at a low cost based
on the type of applications required to execute.

• Second Generation Standard Instances - are available in extra large and double
extra large options. This instance is used where the application requires a high
demand of CPU and memory performance. They are used to manage "high traffic
content management systems".

• Micro Instance - is a low cost option that provides a lower amount of CPU. The
user will be able to increase the CPU capacity at short intervals when more cy-
cles are available. This is used for low throughput applications that still requires
significant compute cycles periodically.

• High Memory Instances - are available in extra large, double extra large and
quadruple extra large instances. These instances give users between 17GB up
to 68GB memory. They provide the lowest price per GB of RAM. Used mostly
for database applications, distributed memory cache, etc.

9

• High CPU Instances - come in medium and extra large options. The instances are
characterized by compute power. They have the lowest price per CPU ratio with
respect to memory as well as providing the lowest cost per CPU. This instances
are used for high traffic web applications, batch processing, video encoding, etc.

• Cluster Compute Instances - available in quadruple extra large and eight extra
large. The instances in this category provide high CPU and network performance.
The logical cluster provides high-bandwidth and low latency network between the
instances in the cluster. It is used mostly for high-performance analytic systems.
Commonly used in parallel programming.

• Cluster GPU Instances - provides only one type of instance that allows users to
use NVIDIA Tesla GPUs using CUDA and OpenCL. They also provide high CPU
and cluster network.

• High-I/O Instances - are used for high performance databases. The instances offer
high CPU, memory and network performance.

• High-Storage Instances - used for very large data sets. They provide high storage
density, low storage cost and high sequential I/O performance[17].

• EBS-Optimized Instances - in addition to high storage instances, users might
choose to launch EBS-Optimized Instances using IOPS volumes at a lower cost.

The instances described above range from 0.060$/hour for the small standard
instance to 4.6$/hour for the high storage instance. As of February the prices have been
decreased for M1(First Generation Standard Instance), M2(High Memory), M3(Second
Generation Standard Instances) and C1(High CPU) families of instances by an average
of 10-20 percent as mentioned in [18]. Figure 3 shows how each region is affected by
the price reduction. Since 2006 when it was introduced to public, Amazon has reduced
their prices twenty-five times. However, with such a large variety of instances not all
parts of the world can have access to all types of instances. This is not necessarily a
problem, because users can choose the hosting site that they want regardless of the area
they are in.

Amazon provides three different types of pricing based on the user requirements:

• On-Demand Instances

• Spot Pricing Instances

• Reserved Instances

Many providers these days tend to do offers for long-term commitment because
it will be much cheaper for the consumer than on-demand pricing, however, the users

10

Figure 3: How much money can a user save depending on the area he is using the
resources.

must pay an up-front cost. However, the providers need to ensure that the computations
of one customer does not affect the performance of another customer.

In the following part, we are going to describe different types of pricing which
allows basic negotiation between the consumer and the provider.

2.3.1 On-Demand Instances

On-demand allows users to pay for as much as they use without any long-term
commitment. This allows the user to rent and maintain hardware at a low cost. However,
Amazon charges by the hour, even though a consumer used only one and a half hours,
he/she will still be charged for the two full hours. This type of pricing is mostly used for
applications that require short computations. In case users need to run the application
for a very long period of time such as a year, he/she will be better off by choosing a
long-term commitment. This has been proven later on in this section to be cheaper than
using on-demand pricing for a full year. The pricing for each instance in this case is
set according to the complexity of the instance. The instances that do not involve GPUs
or lots of CPUs will be automatically cheaper since they are mostly used for simple
development and not for high performance.

2.3.2 Spot Pricing Instances

Spot Pricing allows users to reserve for a period of time the unused space in the
cloud at a much lower rate than the on-demand pricing. When using spot pricing in-
stances, the user has to bid the biggest price he/she is willing to pay in order to run the

11

instance(s). Amazon provides a history of how the market price changes over time. In
Figure 4 we can see how their pricing fluctuated over a 3-months period with respect to
On-Demand which is constant.

Figure 4: This is a graph that states how the Amazon price market for spot instances has
changed over the last 3 months.

The user makes an estimated guess about how long the instance will run and how
much it will cost to run it. However, if the market price goes over the users’ bid then the
instance will be terminated instantly. In this case, if the instance has only ran partially,
the user will not be charged for the extra hour because it was terminated by Amazon.
However, the user can terminate the instance when the computation is done, in which
case the user will be liable for paying the full hour if it only ran partially.

Using this type of pricing the user can save money when doing computations.
However, not everyone will be willing to bid in order to run the instances because they
might have very important computations in which case they do not afford to lose time
and money when the instance gets cut off. The users should bid strictly what they want
to pay for the instances. For example, in the past people have bid higher amounts until
the price went up to 100$. Table 1 presents the lowest price market the Spot Price can
have for a specific instance:

Users that require to run an instance for only a small amount of time, might find
it cheaper to use spot pricing because they can save up money. In case the spot price
goes over the on-demand price they can choose to opt out of the spot instance and use
on-demand pricing without terminating the instance.

2.3.3 Reserved Instances

The last pricing model offered by Amazon is the long-term commitment. This
is for users to ensure their resources at any time they want. Using a contract gives a
user the benefit that those resources will be there at all times as well as saving a great
deal of money. So by doing a long-term commitment users get a lower rate for the

12

Instance type Lowest Spot Price On-Demand Price
Standard Instances

Small 0.007$ 0.06$
Medium 0.013$ 0.12$
Large 0.026$ 0.24$
Extra Large 0.052 0.48$

Second Generation Standard Instances
Extra Large 0.0575$ 0.5$
Double Extra Large 0.115$ 1$

Micro Instances
Micro 0.005$ 0.02$

High-memory Instances
Extra Large 0.035$ 0.41$
Double Extra Large 0.07$ 0.82$
Quadruple Extra Large 0.14$ 1.640$

High-CPU Instances
Medium 0.018$ 0.145$
Extra Large 0.07$ 0.580$

Cluster Compute Instances
Quadruple Extra Large 3.0 $ 1.300$
Eight Extra Large 0.27$ 2.400$

High-Memory Cluster Instances
Eight Extra Large 0.343$ 3.500$

Cluster GPU Instances
Quadruple Extra Large 0.4$ 2.100$

Table 1: The table presents the differences between the lowest price the Amazon Spot
Price can have and the On-Demand price that the users can opt to choose. The data is
based on the utilization they had on the 25th of June.

instances they want to use. However, the drawback is that they are required to pay an
up-front cost which is for reserving the instances. But in the end, the price is lower by
almost 50% as we can see in section 3.5. Amazon provides contracts for one-year or
three-year commitment. Based on this the prices for the instances can vary. In case the
user goes for one year with low utilization the price per instance will be the highest,
while if he/she goes for three year contract with high utilization the instance price is
the lowest. However, if users do not need high utilization then they only pay for what
they use, otherwise the user pays even if the instances are not in use at all times. Since
the prices for those are lower the user is not affected. The upfront cost depends as well
on reserved instance type(low, medium or high utilization). Additionally, users may get

13

more discounts if they go over a certain budget as stated in the table below:

Total Instances Reserved Upfront discount Hourly discount
<250000$ 0% 0%
250000$ to 2000000$ 10% 10%
2000000$ to 5000000$ 20% 20%

Table 2: The table shows the discount that is applied for the reserved instances based on
budget.

2.4 Microsoft Azure

Microsoft Azure holds the second leading position after Amazon. Azure has only
been introduced since January, 2010 but only worked as a fully paid service since Febru-
ary, 2010[19]. Azure supports three types of services: Virtual Machines(IaaS), Cloud
Services(PaaS) and Web Sites(PaaS)[20]. One of the most important advantage that
Azure provides is the ability to support multiple models. For example, the user can
have a web site to present data and a VM to generate the data. Azure used to provide
various types of instances at an hourly price like all the other providers. However, they
just recently introduced the pricing per minute which they state is better from the users
point of view since he/she is charged for the exact amount being used. In the next
section, we will analyse whether it is better for the user to pay by minute or by hour.
Another thing from which Azure users can benefit is the 1-month free trial where users
get 200$ to use however they want. It offers users a way to look around and see how
the cloud behaves without having any strings attached. Even though, Amazon provides
a free trial as well, for a year long, it does not give the users the liberty to choose what
they want. Amazon’s free-trial is more constrained allowing only certain instances to
be used in which case the user will not know the performance of other instances.

Microsoft Azure provides only two categories of instances as follows:

• Standard Instances - these instances provide only an "optimal set of compute,
memory and IO resources". These contain 5 different types of instances based on
the users needs.[21]

• Memory Intensive Instances - which provide high amounts of memory, they are
usually used for databases. The instances have 28GB and 56GB RAM memory.

Microsoft Azure has only two types of pricing:

• pay-as-you-go

• monthly plans

14

2.4.1 Pay-as-you-go price

The pay-as-you-go pricing works in a similar way with the one provided by Ama-
zon. Here, the users can request as many instances as they want without having any
upfront cost or long-term commitment. Currently, Microsoft offers pricing per minute
which will be compared in Section 2.5.1 with the pricing per hour provided by Amazon.
However, the user is restricted to only 744 hours per month as mentioned on Microsoft
Azure Pricing Website[21]. For the pay-as-you-go plan users can terminate the instance
at any time being charged just for the period of time used. The pricing per minute
matches the Amazon price per hour.

2.4.2 Monthly Plans

Microsoft Azure also provides monthly plans for users that require more time to
run their applications. They offer two plans: a six-month commitment and a one-year
commitment. These plans in turn can be of two types: pay monthly or pre-paid. With
a pay monthly plan the user must commit with a minimum of 500$/month, while with
pre-pay, the user has to do it for the whole period of time. In this cases, the price per
instance varies based on the commitment level spend, the duration of the commitment
and whether they are choosing a pay-monthly or pre-paid plan. Any unused resources
that a user has at the end of the monthly bill will be rolled over as credit for the next
month and so on until the end of the plan. In case the consumer goes over the monthly
commitment he/she will have to pay for any additional resources at the pay-as-you-go
price. If the user decides to go for a monthly commitment, then he will have the current
month commitment plus any left overs from the previous months. Otherwise, in case of
a pre-paid plan the users’ monthly commitment is equal to the remaining balance made
on subscription. For users that have opted for monthly plans the billing is going to be
done at the beginning of each billing cycle. Users can change their monthly commitment
at any time without changing the plan length. In case the new commitment falls under a
higher rate of discount, then the discount will be applied in the next billing cycle.

Microsoft Azure offers discount rates for their monthly and pre-paid plan as seen
in Table 3.

2.5 Comparing Amazon vs Microsoft Azure

This section compares the cloud computing providers mentioned above. As we can
conclude from the sections above, both Amazon and Microsoft are well known cloud
computing leaders. Amazon is one of the oldest cloud computing provider which offers

15

Monthly
Commitment
Spend

6-Months
Plan(Monthly
Pay)

One-Year
Plan(Monthly
Pay)

6-Months
Plan(Monthly
Pay)

One-Year
Plan(Pre-Paid)

500$ - 14999$ 20% 22.5% 22.5% 25%
15000$ -
39999$

23% 25.5% 25.5% 28%

<40000$ 27% 29.5% 29.5% 32%

Table 3: The table shows the discount that is applied for the monthly plans provided by
Microsoft.

users more stability and reliability. Microsoft has become known a couple of years after,
but still managed to get the second place in the leading market. Amazon and Google
stated that the cloud industry has started to behave more like a utility market, making it
harder for the providers which now have to race on prices[22].

As of recently, Microsoft announced that they will match the pay-as-you-go stan-
dard instances with Amazon Standard Instances from June, 2013. Therefore, the prices
will suffer a reduction between 21 and 33%. Mike Neil, a general manager from Mi-
crosoft Azure has told "The Register"[22] that they are trying to make it in such a way
that the pricing will no longer be a deciding factor for consumers. However, by intro-
ducing pricing per minute Microsoft has brought some benefits for the users regardless
of the fact that the price per hour is the same. There is still a difference in the price for
the memory intensive instances as seen below.

Instance Type Amazon Microsoft
A6(Memory Intensive) 0.82$ 1.02$
A7(Memory Intensive) 1.640$ 2.04$

Table 4: The table shows differences in pricing for the memory intensive instances on
27th of June. The Microsoft prices have been updated on 16th of April, 2013, while
Amazon has left the same prices since February, 2013.

However, even though the pricing per pay-as-you-go matches, Amazon provides
a cheaper price for reserved instances as we can see bellow in Table 5. When reporters
asked whether they would try to match those as well the answer was no. They stated
that their commitment is on the pay-as-you-go model and if users want to get further
discounts they can sign up for a Microsoft Enterprise Agreement.

Another difference between the two providers is that Microsoft provides six-
months or one-year commitment while Amazon provides one-year or three-year com-
mitment. In both cases users have to pay an upfront commitment just the length of the

16

Instance Type Amazon Microsoft
Extra Small N/A 0.01-0.02
Small 0.021$ 0.04-0.05
Medium 0.042$ 0.08-0.1
Large 0.084$ 0.16-0.19
Extra Large 0.168$ 0.33-0.38
A6(Memory Intensive) 0.206$ 0.56-0.66
A7(Memory Intensive) 0.412$ 1.12$ - 1.31$

Table 5: The table shows differences in pricing for medium standard reserved instances
from Amazon with the Monthly commitment from Microsoft.

contract is different.

Microsoft has recently announced that they have 200000 consumers using either
trial or pay-as-you-go model while Amazon has millions of users each year. Another
thing that differentiates Amazon from other companies is that it comes from a retail
background applying a retail economics perspective to the cloud including price-cuts,
only developing technologies when they have a demand, etc.[23] Amazon is big which
makes it easier to monitor what jobs are running and launching new ones based on the
users demands. They now have the ability to see what is being used by application
developers. Competitors find it hard to beat someone like Amazon. Because Amazon is
big it can attract more consumers. More and more companies are using Amazon cloud
as a platform to develop new applications. For example, Red-Hat has decided to build
its platform-as-a-service on top of Amazon’s infrastructure[23]. Amazon is targeting
everyone from simple developers to world’s biggest enterprises. Since it first came out
Amazon revenue has increased significantly as we can see in Figure 5.

Azure subscriptions have gone up by 48% in the last six months[24]. However,
according to Bloomberg, Microsoft has earned 1$ billion in revenue in the last year.
This is the most Microsoft has ever made. In a recent study, it was discovered that 20%
of the companies use Azure, while 71% use Amazon. However, it is estimated that
Microsoft might rise to 35% in the next year. In the last couple of months Microsoft and
Amazon have been battled on the price.

Based on the information that was provided above we can make a comparison
between Amazon and Microsoft pricing. First of all, we will consider a normal user
that just requires to use one medium instance for an hour and a half. If the user chooses
Amazon he/she will pay 0.24$. When using Amazon, a user is going to pay for a full
hour no matter how long the instance was used for. If the user chooses Microsoft, then
the price will be 0.18$ since they charge per minute. The other case to be considered is
when there is a company that wants to run 1000 instances for an hour and a half. When

17

Figure 5: The graph shows the dramatical increase since Amazon has introduced EC2
and S3. The increase can be seen year-by-year with an intense growth curve based on
the expansion and addition of new technologies.

using Amazon, the company will pay 240$, while for Microsoft they will have to pay
180$. From here we can conclude that for a normal user it does not make a difference
to which provider he/she chooses. The difference will be when the consumer requires
to do large computations for a longer period of time. In this case the user will be better
off to use Microsoft since he/she can save up money.

As seen above, one of the most interesting aspects that we are going to take a
look is the way they charge users for the resources requested. The two leading providers
offer the same price per hour. However, we have mentioned above that Microsoft Azure
charges users per minute as of July, 2013 while Amazon charges per hour. This is one
of the most interesting features offered lately that has raised many questions. Does it
actually benefit the users in any way? In the next part of this section, we will make a
comparison between the two pricing models to see whether the user can save up money
by using one or the other. To make the comparison accurate, we are going to take a
look at three cases: worst case, best case and random case, as well as from the view
of a normal user and a company that requires more resources. As mentioned in the
beginning, Microsoft has stated that if the units are low the user can get more benefits out
of it. This is why we are going one step forward and try to analyse whether introducing
pricing per second can be more beneficial than the pricing per minute.

18

2.5.1 Price per minute vs Price per hour

Every provider today offers various plans for the users to choose from. One of
the plans is to pay on-demand for the exact amount that they use. When Amazon first
started they introduced the pricing per hour which they are still using today. Recently,
Microsoft Azure has introduced the price per minute stating that the users will get more
benefits. This will make the pricing more accurate since the users will pay for the
exact amount they use. According to Microsoft, as lower the measuring unit is, as
many benefits the consumer has. Therefore, this section will consist of analysing the
pricing per minute introduced by Microsoft with the pricing provided by Amazon. The
comparison will examine the best, worst and random case, in order to make an accurate
assumption regarding which one is more beneficial for the user.

First, we will make a couple of assumptions since we can only relate to one
instance which is provided by both Amazon and Microsoft Azure. As we can see in
Figure 6, the instance that we are going to use to compare the price is based on the
medium instance.

Figure 6: This Figure shows the advantages of pricing per minute compared to one
from Amazon which is per hour. The pricing has been done for the same instance from
Amazon, Microsoft and Google[34].

As mentioned in [35], the prices from Microsoft will match the ones from Ama-
zon for the "base-level infrastructure - storage, compute instances, etc.". According to
Microsoft the change can benefit the user on the long run. Therefore, we devised some
analysis to see how much does it really impact the consumer and whether it is worth it.
Taking a look at the model, the consumer is only impacted if the instance is shut down
before the hour elapses.

The analysis is conducted based on the information in the picture above. We know
that the price per hour for both Microsoft and Amazon is 0.12$/hour. From here we can
deduce that the Microsoft price is 0.002$/min. During the analysis the best case,the

19

worst case and the random case are evaluated based on different perspectives. The best
case emphasizes Microsoft as being much cheaper than Amazon(the consumer uses only
a couple of minutes from an hour), while the worst case leaves things to the latitude of
the user to choose the provider they think is more stable and reliable since the price
difference is going to be very low. The best case from the user’s point of view is when
the instance gets stopped after 61 minutes. The worst case is when the consumer uses
the resources for 1 hour and 59 minutes(119 minutes per total). For the random case, a
random generator set has been used because the users will most likely end the instances
randomly. This is one of the most accurate comparisons. The difference between prices
is only vizible in the [1..59] interval since per hour the price stays the same.

Let’s first see how many benefits a single user can have when using 10 resources.
The comparison is done taking into consideration all three possible cases. First, we
consider the best case where the user stops the instance after 61 minutes. In this case
the user only pays 1.22$ when using Microsoft Azure rather than 2.24$ required to pay
for an Amazon instance that charges by hour. The user saves 1.18$ which he/she can use
to get more instances later on (up to 9 extra hours to spend on the cloud). The next case
to be considered is the worst case, where the users do not get many benefits out of it.
Considering that a user ends the instance after 119 minutes, he/she needs to pay 0.002$
less when using the pricing per minutes rather than what they would normally pay for a
normal hour. Therefore, the users can decide to choose the provider that is more reliable
and stable and well known on the market. The last case emphasizes a random case which
is more likely to occur because the users are going to stop the instances at random times.
Using a random generator set to simulate 10 randomly numbers between [61..119]. The
random set provides an average time of around 90 minutes. The user gains in this case
0.6$ when using Microsoft over Amazon. This is not a big price difference, however,
the user can still get 5 extra hours to spend another time with any of the providers.

To conclude the above analysis, we can see that the users can get between [0,002..1,22]$
depending on how long they have used the resources for. Looking at Amazon the con-
sumers need to make sure they are aware when the hour "flies out" so they can close
the instance in case they finished their job. Sometimes it is hard to ensure when the full
hour has elapsed and they might go over 1 hour by a couple of minutes which will still
charge them for the following hour. Depending on how long the consumers need to use
the resources, they should made a decision based on what exactly they need and what
they think it is more important. If they want reliability then Amazon is the cloud that
has been on the market for a longer period of time, making it more stable. In this case, it
is more about the requirements rather than the price because the difference is very small
even if we look at the random case.

We have seen above how the prices vary for a normal user, now we will take a
look at the impact it has on a large company that requires 100000 resources at a time.

20

Following the same principle as above we will start by looking at the best case. Using
this case, the company can save up to 11800$ if they choose Microsoft, as we can see
in Table 6. Clearly, this can save them lots of money, that they could be using for more
complex instances. However, this case is less likely to happen so we will take a look
now at the random case. For the random case, we have seen above that the average for
the random set is 90 minutes. Taking this into account, we can compute the money that
a company can save which is up to 6000$. Again, for a big company this is a lot of
money that can be used for something else that maybe requires more important things
to be done. Last but not least, we considered the worst case, in which the company can
only save 200$. In this case, the company can choose either provider and probably the
most stable one.

From the above analysis, we can conclude that the company can save up between
[200..11800]$. This can be beneficial for the company because the money can be used
for something else or to buy more hours for computations. The random case still gives
the company a gain of 6000$ which can be used further for getting more instances, so
the company benefits from the pricing per minute.

In the following table we will show a brief overview of what it was described
above, in order to have a clear picture of everything that was illustrated above.

Case Provider Price per minute Number
Resources

Price
Resources

Best Case(61 min) Microsoft Azure 61*0.002$/min=0.122$ 10 1.22$
Best Case(61 min) Amazon 2*0.12$/hour=0.24$ 10 2.4$
Random Case(90min) Microsoft Azure 90*0.002$/min=0.18$ 10 1.8$
Random Case(90 min) Amazon 2*0.12$/hour=0.24$ 10 2.4$
Worst Case(119 min) Microsoft Azure 119*0.002$/min=0.238$ 10 2.38$
Worst Case(119 min) Amazon 2*0.12$/hour=0.24$ 10 2.4$
Best Case(61 min) Microsoft Azure 61*0.002$/min=0.122$ 100000 12200$
Best Case(61 min) Amazon 2*0.12$/hour=0.24$ 100000 24000$
Random Case(90min) Microsoft Azure 90*0.002$/min=0.18$ 100000 18000$
Random Case(90 min) Amazon 2*0.12$/hour=0.24$ 100000 24000$
Worst Case(119 min) Microsoft Azure 119*0.002$/min=0.238$ 100000 23800$
Worst Case(119 min) Amazon 2*0.12$/hour=0.24$ 100000 24000$

Table 6: The table concludes what it was previously described and how the prices per
minute vs per hour vary depending on the cloud provider and the case chosen.

The price per minute can have advantages for both a simple user and a company.
Only in the case where the consumer just wants to use a simple instance for an hour, it
is not worth all the hassle of deciding and they can just go with the cloud that they think

21

it is more reliable. After doing all these research, one of the questions this raised is why
the providers have not come up to an even more exact pricing like per second. This will
be explained in the next Section 2.5.2.

2.5.2 Price per second vs price per hour

Section 2.5.1 described how the pricing per minute affects the user. The conclusion
deducted after analysing the results was that the price per minute can really save the user
money. It all depends whether the consumer was happy with the services provided. In
this section, we describe the effects that pricing per second has on a simple user and a
company. Using the same principle as above and knowing that a price per hour is 0.12$
brings us to the conclusion that the price per second will be 0.000033$.

Let’s consider now how the pricing per second works for a normal user. For the
best case, we can see that the user saves 1.19967$ when using the pricing per second.
In this situation, the user can save up money to buy resources later on. The next case
that we are going to take a look is the random case which is going to be around 4993
seconds when using a random generator set. Now the user can save up to around 0.8$.
The last but not the least, we considered the worst case in which the user will only pay
0.00033$ less. This is not worth it, in which case the user should go with the provider
that is more reliable and stable.

From analysing the above the user can save between [0.8..1.19967]$. From here
we can conclude that there is no difference between using seconds or minuted for a
normal user. For this reason, there is no need to implement a model for developing a
pricing per second for a normal user.

We have seen that the pricing per second does not have any impact for the normal
user. To make the analysis more accurate we took a look whether a company can benefit
from this pricing scheme or not. Considering again the three cases, we started analysing
the best case. The company can save up to 11997.7$ by using the best case. In this case,
the difference between pricing per minute or per second is only 100$. Considering now
the random case, the company can redeem around 7500$ while for the worst case the
company gets 3.3$.

From the analysis above the company can save up between [3.3...11997]$ based
on when the instances are terminated. Table 7 shows an overview of what it was de-
scribed above.

In comparison with the per minute pricing, it is not better. In this state there is no
point in implementing the latter one from which not even the big companies can benefit.
They can save up money but it is not worth the hassle of implementing a new pricing
scheme.

22

Case Provider Price per sec Number
Resources

Price
Resources

Best Case(3601s) Microsoft
Azure

3601*0.000033$/s=0.120033$ 10 1.20033$

Best Case(3601s) Amazon 2*0.12$/hour=0.24$ 10 2.4$
Random Case(4993s) Microsoft

Azure
4993*0.000033$/s=0.164769$ 10 1.64769$

Random Case(4993s) Amazon 2*0.12$/hour=0.24$ 10 2.4$
Worst Case(7199s) Microsoft

Azure
7199*0.000033$/s=0.239966$ 10 2.39966$

Worst Case(7199s) Amazon 2*0.12$/hour=0.24$ 10 2.4$
Best Case(3601s) Microsoft

Azure
3601*0.000033$/s=0.120033$ 100000 12003.3$

Best Case(3601s) Amazon 2*0.12$/hour=0.24$ 100000 24000$
Random Case(4993s) Microsoft

Azure
4993*0.000033$/s=0.164769$ 100000 16476.9$

Random Case(4993s) Amazon 2*0.12$/hour=0.24$ 100000 24000$
Worst Case(7199s) Microsoft

Azure
7199*0.000033$/s=0.239967$ 100000 23996.7$

Worst Case(7199s) Amazon 2*0.12$/hour=0.24$ 100000 24000$

Table 7: In the table above we have shown how the price varies based on different
providers and different pricing scheme. From this table the users can conclude which
provider to choose in terms of lowering the price.

3 Negotiation

We have mentioned above in Section 2 that the pricing models can be improved.
One way to do so is to create a new mechanism that benefits both providers and con-
sumers. We are going to start by giving an overview about some negotiation mecha-
nisms and strategies, followed by the description of a new mechanism based on interac-
tive negotiation. Negotiation is founded on the following attributes: price, availability
of resources and utilization. It has the advantage of providing benefits for both sides in
case the negotiation has been settled as well as increasing the number of users. After
describing the mechanism, we developed a design and an implementation that will help
us analyse whether the interactive negotiation is better or not. The last part of the sec-
tion describes a new pricing model that is going to emphasize a pre-paid plan in which
users do not require to have a contract.

23

3.1 Introduction to Negotiation

These days, negotiation is one of the processes that a lot of companies acquire in
order to thrive. This consists of an agreement between the consumer and the provider
that will equally benefit both. More and more companies are using negotiation because
it is the key point for business survival, growth and empowerment. Negotiation is seen
as a time spent to make profit and cost effective relationships with other companies
that will potentially promote the negotiators reputation. When the customers are happy,
it will automatically attract more customers, through word of mouth or other means,
making the company grow and remain competitive in the market. The way to remain
in the competitive market is by embracing negotiation which differentiates businesses
between each other[25].

Every business is aware that in order to survive it needs to produce money. Having
a consultant that can deploy high negotiation skills brings benefits to the company. It
helps keep the business up by making wise decisions in terms of vendors and what deals
fit best the business[26]. Negotiation is often seen as a finite state machine.

In case a company decides to go for a negotiation model, they need to know what
are the key elements for a negotiation process[31]:

• Making a deal through a final offer from buyer or seller;

• It needs to make sure there are participants such as customer and provider;

• There are messages send between the participants to come up with a deal suitable
for both sides;

• The process flow describes the changes in the deal;

• Send back messages to the participants when the deal changes.

While a lot of companies are using negotiation, cloud computing negotiation is
still in its early days. The market leaders use a very simple negotiation strategy, in which
the customer is presented some prices from which he can either chose to accept or reject
them. Cloud Computing is becoming one of the modern technologies these days, as
mentioned in Section 2 which drives the prices downwards by any means in order to stay
in the competitive market[33]. There are more providers which are entering the "playing
field each trying to differentiate itself from the already established players"[33]. One
way to look at this is to choose different pricing schemes in order to keep the business
growing.

24

3.2 Negotiation Mechanisms

Firstly, we took a look at some of the negotiation mechanisms that are used these
days in various subjects such as grid computing, business, etc. A negotiation protocol2

is initiated in all the negotiation strategies, in which one presents an offer and the other
party either accepts it or sends back a new proposal. This is known as an alternating
offer as mentioned in [27]. However, time constraints should be specified since this can
go on for months. Various negotiation strategies3 have been enforced[28]:

• Contract Net

• Auction Model

• Game Theory Based

• Discrete Optimal Control Model

The negotiation strategies are selected based on the type of business that each
provider is running. The provider needs to make an elaborate analysis of the negotiation
mechanisms available to ensure that he/she has selected the proper one for the business
that can bring benefits on the long run.

The first negotiation strategy discussed in this dissertation is the Contract Net
protocol which is used to exchange the Service-Level Agreement(SLA) between the
provider and the customer[27]. In Contract Net, an agent acts as a manager evaluating
the task announcements from other agents and bids for the tasks that the agent is engaged
in. This type of protocol can have only two possible bid outcomes: accept or reject.
Therefore, Contract Net is convenient for multilateral processes. However, it has some
drawbacks as well. The protocol cannot provide feedback for an acceptable agreement
between the two parties. Because of this the protocol is not useful for bilateral process.
Therefore, it will not be of any use in the rest of the dissertation, since the main reason of
the paper is to come up with a new negotiation mechanism that can benefit both parties
through communication and interaction.

The second negotiation mechanism is Auction, one of the most used mechanisms
these days. Auctions are used mostly for antic pieces, painting, grid computing, etc.
This model of negotiation allows both parties to communicate, they are either in the
same room making bids or separately in case the bid is sealed. Auctions are generally,
one-to-many negotiation, meaning that a seller can have many buyers, or vice versa as
mentioned in [28]. For negotiation, both parties need to agree on the offer without any
penalties in case of rejection. There are different types of negotiation:

2In this dissertation, negotiation protocol will be considered as a set of norms that constrain the pro-
posal of negotiation.

3The mechanism through which it maximises its own individual welfare.

25

• English Auction - it is an ascending auction. The bidding starts at the reservation
price and progresses until only one bidder is left. This is equivalent to the Vickrey
model. The resources are given to the user that values them the most. The winner
claims the item at the last bidding price.

• Dutch Auction - it is a descending auction. The auctioneer begins with a price too
high for any buyer and then progressively goes lower on the price until someone
requests it. The winner takes the item at the price it was bid. This is not neces-
sarily effective because users might still end up paying more than what the item
costs.

• First-price, sealed bid Auction - The bidders submit the price they are willing to
pay. All the prices are opened at the same time and the winner is the one who is
willing to pay the most.

• Vickrey Auction - Bidders submit a single irrevocable, sealed bid. They are not
aware of what the others bid. The bids are all opened at once and the winner
is the one that is willing to bid the most for the item, and he/she will pay the
second-highest price that was bid.

• Multiround sealed bid Auction - each round has a deadline at the end of the round.
It can either start a new one or the auction is closed. This might take too much
time.

• Electronic bulletin board approach - bidders can check the bulletin board and
they have a chance to bid over the highest bid. This is common for Internet based
where people are all over the globe.

• Yankee Auction - the participants pay the amount they bid.

• Non discriminative Auction - refers to the bidders that won the auction pay the
lowest bid rather than what they bid for.

When creating an auction there needs to be some policy choices applied[31]:

• Anonymity - in a sealed auction the number of items being auctioned and the
number of items bid for each bid, don’t need to be revealed. Only the winning
bidders could be revealed. The inventory should not be disclosed. However, in an
open bid all these could be exposed beforehand.

• Restrictions on bid amount - Seller can specify the minimum starting bid. If the
proposal happens regularly for an item then the minimum bid can be calculated
based on the history known.

• Rules for closing the bid - it can have a closing time or it can go on until some
certain time is elapsed between the bids. It can also be closed when the items have

26

been sold.

• Evaluation rules and breaking tied bids - when an item is sold a higher bid is better
than a lower bid. If the two bids have the same quantity then it can be given to the
one that arrived first.

• Services provided to sellers and bidders - reserved prices is one thing that can
be provided to the sellers by the auctioneers. Another one can be to "certify the
quality of the product, collecting payment on behalf of the seller", etc.

To conclude what it was described above, the auction model is used mostly for
dynamic resource allocation. Therefore, the negotiation strategy going to be used in this
dissertation embraces the Vickrey model. The reason for choosing this auction model,
except the fact of being dynamic, is that it can be inference-proof. By inference-proof
negotiation we can understand that if an auction is set properly neither the buyer nor
the seller have to lie about their strategies in order to win. The other auction model that
will be used is the Yankee auction. This is used when there is only one user bidding at
a time.

Another negotiation strategy is the Game Theory Based Model. In this model,
each agent has the responsibility to offer a plan, if the plan is accepted by all users then
the negotiation is terminated. If agents choose "out" or no agreement is made then the
process is turned down.

The last negotiation strategy discussed in this paper is Discrete Optimal Control
Model. This is optimized for the market model. The Discrete Optimal Control Model
consists of three steps as specified in [28]: getting all the information together, coming
up with a decision and making the decision known. The information acquired can be
about price, tasks, the number of tasks, etc. After gathering all this information the mar-
ketplace agent can decide what algorithm will be appropriate. In the end, the decision
can be made available to other related agents. The mechanism has m processors and n
tasks. Some assumptions and constraints need to be made according to the needs of the
users. The mechanism is meant to give the optimal solution.

3.3 Negotiation Strategies

We have talked about negotiation mechanisms that are available, now we are go-
ing to take a look at the negotiation strategies that we can adopt. Current negotiation
mechanisms support one-to-one negotiation as described in Section 2, however, many-
to-many transactions can be done as well[32]. The latter is possible by using one-to-one
negotiations and then everyone reports to just one agent which will then make a decision
based on their next move. Negotiation can have many attributes to negotiate over, but

27

for the purpose of this dissertation only price will be taken into account. Negotiation is
usually done in the presence of incomplete information, since for our case the consumer
will not know how many resources the provider has available. The utility function de-
cides whether the negotiation between the user and consumer can be done. If minimum
utility is ensured then a negotiation can be placed(if both areas of acceptability overlap
then a solution can be found):

v(x1, ..., xn) =
∑

i=1,...,n

wivi(xi),
∑

i=1,..,n

wi = 1 (2)

where:

• xi - is the ith attribute of negotiation

• vi - is the utility function

• wi - is the weight or priority of the attribute ith.

The one-to-many negotiation resembles multiple consumers that want to buy from
a provider. In order to accomplish this, they require to exchange information, which
involves interaction between the two parties. The one-to-many negotiation is done by
making multiple one-to-one negotiations. However, in order to do that, the consumers
are split into multiple agents which will be called sub-negotiators like in Figure 7. In
this dissertation, we are going to develop a negotiation strategy using the one-to-many
strategy.

Figure 7: The pictures shows how the process of one-to-many negotiation works.

A few strategies have been developed that handle one-to-many negotiation:

28

• Desperate Strategy - in this strategy, time is important, which makes the deal to be
sealed fast. If one offer is found then the sub-negotiators are terminated and the
offer is accepted. If more than one offer is found, then the one with the highest
utility is chosen and the rest of the sub-negotiators are terminated.

• Patient Strategy - this strategy waits until all the sub-negotiators have an offer and
then chooses the best one available. However, there is a draw back because the
strategy does not have a set time which means that it can go on for too long.

• Optimized Patient Strategy - in which an agent uses the information from one
negotiation outcome to influence the others. It also ensures that no offer that is
worst than an offer received is offered.

• Strategy Manipulation Strategy - which allows the coordinating agent to modify
the negotiation strategy at runtime.

Looking at the strategies above, we will use the desperate strategy along the
dissertation because time is important and the users will be satisfied if they can get the
instances requested as soon as possible. In a negotiation process, the provider wants to
maximise the revenue while minimising the risk of penalties, meantime the consumer
wants to gain the maximum guaranteed for meeting the quality of service requirements
at the lowest possible cost. In order to ensure that the quality of service has been met,
there needs to be a negotiation-aware scheduler and a negotiation client. The scheduler
is aware of the negotiation client only as a medium for submitting proposals or receiving
feedback. Requests for smaller number of nodes was tested to have a higher potential
of acceptance.

Like any other strategy, every negotiation model should have the following properties[29]:

• Guaranteed Success - making sure that an agreement will be reached;

• Maximising Social Welfare - this will ensure that the outcome will maximise the
sum of utility function mentioned above for every negotiation participant;

• Pareto Efficiency - meaning that is not possible to find another solution that one
party can be better off and at the same time no party will be worse off[30];

• Individual Rationality - this is ensured if playing by the rules is in the best interest
for the participants. Without them the users will not engage in negotiation;

• Stability - means that the users should all behave in a specific way. One example
of stability as mentioned in [29] is Nash equilibrium, in which the agent s can not
perform any better than the agent s’ and vice-versa;

• Simplicity - means that the participant can determine easily the optimal strategy;

29

• Distribution - it needs to ensure that there is no point of failure and that it provides
good communication between agents.

After doing the analysis of the new negotiation model, we will determine whether
the model supports all the above properties.

Negotiation is possible for fixed prices as well as auction models. For fixed
prices, the seller makes an offer and the buyer can then accept it or the seller can with-
draw the offer from negotiation[31]. This is the negotiation plan used currently in cloud
computing. For example, if we take a look at Amazon they offer consumers on-demand
pricing which they can chose to take it or not. For the auction, there is a deal available
if the highest bidding price is above the reservation price, when being set by the bid-
der(someone who makes an offer). Currently, cloud computing does not offer interac-
tion for setting the price on the resources used. Therefore, this dissertation will describe
later in this section a new mechanism that will be able to handle auctions between the
provider and the consumer.

Figure 8: The Figure displays the basic negotiation model seen these days in cloud
computing.

In the next part we describe the new negotiation model designed later on. The
model is based on the Vickrey auction model defined above, as well as the Yankee
auction. After the model is described, we are going to take a look at another approach
for the pricing model. Cloud computing is similar with the pricing models provided
by the mobile carriers. However, mobile carriers have introduced, a while ago, a new
pre-paid pricing model. In this plan the users do not need to pay an front cost or to have
a long-term commitment. Based on the information we have about the pre-paid plan for
the mobile carriers, we analyse whether it is good for a cloud or not.

30

3.4 A new negotiation model

As we have mentioned in Section 3 above, negotiation is done in many fields with
the purpose of making the company grow. However, cloud computing only handles
simple negotiation which is mostly one sided as seen in Section 2. Therefore, in this
section we will describe our negotiation mechanism that was designed and implemented
as part of this work.

Firstly, a brief introduction about the basic negotiation models that are now avail-
able having Amazon as the main example. Amazon is the current leader in cloud com-
puting, offering users on-demand, reserved and spot instances. The negotiation model
in this case does not require any interaction. The consumer can decide to take it or
leave it or maybe use a different provider. This simple model of negotiation has brought
growth to the company and a very good reputation. Amazon is known for having the
lowest prices for on-demand pricing strategy as well as being reliable. Therefore, it only
attracted more consumers since it started being on the market. One of the things that
a cloud should have is a small price from which the users can benefit and that will au-
tomatically increase the utilisation. Also by providing the users with different types of
instances gives them more flexibility in choosing what they need without purchasing the
hardware. Of course, every instance has a different price but it is still cheaper and time
effective than getting your own hardware. Amazon also provides reserved instances for
which users have to pay an up-front cost plus any instance they use depending on the
utilization level. This is mostly used by consumers which are using lots of resources in
order to decrease the price they pay.

Since none of the models available offer interaction with the user, we devise a
model that uses negotiation through auction. In auction models, the users interact with
the provider. The negotiation mechanism consists of a bidding mechanism for the user.
The mechanism is using the Vickrey and Yankee approach described in the beginning
of the section. If the negotiation is done between a single user and the provider, then
the Yankee auction strategy is going to apply as long as the price bid is between the low
price and the maximum price described below. This is illustrated in Figure 9

In the Vickrey mechanism, if there are multiple users bidding at the same time
for the same instance then they are going to bid against each other. Otherwise, each one
bids for the instance. The provider needs to make an estimate of how much energy they
used for powering the resources as well as how much does it cost them to buy more
resources. This should be done for the types of instances that are most utilized. After
setting those prices, the provider can create their price that just contains the maintenance
of the instance. This is the minimum price from which the provider cannot get any profit
but in the same time they do not lose anything. The providers’ perspective should be to
minimise the price as low as possible in order to attract more users. They should then

31

Figure 9: The Figure displays the new negotiation model using the Yankee auction.

set a low price and a maximum price based on 1% and 100% profit. The low price has
been chosen in such a way that the provider will not have any loss. In the same way,
the maximum price is chosen so the customer does not have to pay so much even if
the provider has 100% profit. These are just some assumptions used for the purpose of
this dissertation. The consumer then selects the instance that he/she needs to use. After
selecting the instance, the user needs to bid on the instance, putting a value that he/she is
willing to pay. In case the price bid is lower than the lowest price set by the provider, the
user is asked to bid another time. In the end the consumer pays the price that he/she bid
as stated in the Yankee auction. The minimum and maximum price from the provider is
calculated every time a user wants to bid on an instance based on how many resources
there are left.

In case there are many users that are bidding at the same time then the Vickrey
algorithm is applied as described in Figure 10. Then the price is set for all the users
based on the second highest price bid from all the users. The user can accept the offer
or reject it depending on how much he/she is willing to pay. If a user does not agree
with the offer, then the consumer can make another offer and so on. The algorithm needs
to be pareto-optimal and individual rational in order to be optimal. However, there is
a time limit set in order for the user to be able to purchase the instance. No one will
actually choose negotiation if they need to wait for too long. So the estimated time to
wait and negotiate for an instance is set to no longer than 5 minutes. The time has been
set to a specific one because some users require the instances straight away and they
choose to go with someone else if the auction goes for too long.

The model described above is going to be pareto-efficient and individual rational
because they follow the Vickrey auction. The Vickrey algorithm is pareto-optimal and
individual rational. It chooses the second highest bid and not the third one because the

32

Figure 10: The Figure displays the new negotiation model using the Vickrey algorithm.

first one is pareto-optimal, meaning that there is no further gain from the improvements
in resource allocation. We have assumed that since the price is pareto-optimal there is
no other option that can benefit both the provider and the consumer at the same time.
Since the algorithm is individual rationale as well it means that neither parties can lie
about their bids. This ensures a fair trade between the providers and the consumers.

3.5 No-Contract Pricing

Up to now, we have described what is cloud computing, the pricing models offered
today, a brief introduction about negotiation and deployed a new negotiation model that
handles interaction. So in this section we are going to take a look at a different pricing
model that has not been implemented in the cloud yet.

After doing some research about the pricing schemes offered by most of the
providers, the conclusion was that all of them provide either on-demand or contract
pricing plans. Hence, cloud computing industry can be related to the mobile industry
since both of them are trying to attract more users, make profit and keep the business
going. The two industries are similar since both of them provide plans for pay-as-you-
go and contract plans which vary based on the target users they aim for[36]. Just as
mobile providers make their pricing known without any plans, cloud computing follows
the same principle having various on-demand prices[37] for different types of instances
as mentioned above in Section 2. On the other hand, they provide contract plans in order
to give more benefits and subsequently to increase the number of consumers. This is

33

ensured based on the "service profit chain hypothesis", mentioned in [38], which states
that customer satisfaction brings customer loyalty and ultimately increases profitability.
Having customers that are loyal to the company brings higher profit through "enhanced
revenues, reduced costs to acquire customers, lower customer-price sensitivity, and de-
creased costs to serve customers familiar with a firms service delivery system"[38].
Moreover, it has been researched that more than 120 mobile companies have 33% profit
for the gross margin resulting in the prices being much higher than what they should
be[41]. In case the customer becomes unsatisfied with the services, the provider should
make a better offer that cannot be refused. This is essentially a benefit for the provider
since it has a lower price to keep a costumer than to try to get a new one[39]. Mobile
providers, use contract plans to constrain the consumer to stay with a mobile carrier for
at least the period of the contract. People usually do not have too much money to spend
up front for a mobile phone so the idea of going into a contract and paying a lot less
for the phones sounds very appealing to the consumer at first sight. However, they do
not realize that by going into a contract they spend much more than what they would
normally pay, in case they would have just bought the phone from a retailer[40] and go
on a no-contract plan. Similarly, cloud providers, such as Microsoft and Amazon,offer
contract plans for 6-months, 1-year and 3-years. For example, an Amazon consumer
using a 1-year contract plan for an m1.medium instance using the high utilization pric-
ing is paying 583.28$ for the whole year. From the total amount paid, only 245.28$ is
spend on the instance the other 338$ is for the provider to reserve at all times an in-
stance for them. This is equivalent with using the normal on-demand pricing for almost
203 days. However, if the user is aware that they need more than that, they should go
with the contract since they do not have any other options. The contractor ensures the
consumers have reserved the instances at any time, just as the mobile providers are en-
suring capacity for the contract consumer first of all[41]. So by using a contract plan the
user has to pay an up-front cost which is more than the resources requested, like mobile
providers which end up paying more for the phone because of the additional charges
that are coming with the plan. The mobile carriers contract plans are equivalent with
the cloud reserved plans. They both require an up-front cost, one case for a new phone
and in the other case to reserve the instance. In addition to this the user is charged for
the conversations/resources used.

For this reason, mobile companies have recently started providing no-contract
plans which has been proved to be profitable, cheaper and preferred by customers be-
cause they get more benefits out of it[42]. This has started as being a plan for people
with low-income but soon became used by everyone[43]. By no-contract plan, a user
gets a certain number of minutes, texts and possibly data included. The plans can be for
a day, a week or a month. After the user finishes the data from the plan they are charged
at the normal price. In a no-contract plan the users have to get a phone from a retailer
or use the one they already have. In case of buying a new phone, they need to pay the

34

cost of the phone which might be expensive to have just at the start. However, this saves
lots of money in the end because there is no activation fee in the beginning. They can
choose to use the plan which best fits them. For example, if a consumer only needs
more than 500 minutes for 4 months a year, then he/she can only switch for a fitted plan
during those months. In all the other months, they can use a cheaper one that suits their
needs. By using a no-contract plan the user has the ability to choose different plans each
month or switch the provider without paying any termination fee because they are not in
a contract. One more advantage that this brings them, is having a phone that can be used
with any provider regardless of where they have bought the phone from. Another benefit
brought by the no-contract plan is having control over how much people spend[42]. In
early years, the contract plans were more used by the consumers, however, now more
people are satisfied with no-contract plans that are starting to multiply more, to wrap
around the necessity of the users[44].

As a result of the research described above, cloud computing was found to be sim-
ilar with mobile plans. However, after checking providers, such as Amazon, Microsoft,
ProfitBrick, CloudSigma; none of them offer no-contract plans for users. Providers
attract much more users by giving them a certain amount of resources for a specified
period of time with no up-front cost. The first thing to do in order to try to come up with
an offer is to check which types of instances are most used by the consumers. After
coming up with a list of most used instances, providers can check which is the aver-
age number of resources used per week and per month. This means that those are the
instances more likely to be used in the future.

In this section, the assumption made is that the most used instance is m1.medium
from Amazon. We have also assumed that the instance is used regularly for 10 hours a
day. Earlier in this section we discussed about the year long plan which we have con-
cluded to be 583.28$ for a heavy utilization compared to on-demand which is 1051.2$.
We can see that even with the up-front cost the contract plan is almost half the price of
the on-demand per year. The price for the instance in a year long contract is 0.066$.
Let’s say our system has a high utilization for the m1.medium, using the information
from above we can come up with some no-contract plans. Assuming that the only cost
for the provider is to pay for energy and maintenance from time to time, the lowest price
per instance should just include that. This is going to be harder to assume since they do
not provide any indication of this. Taking a look at the Amazon m1.medium instance,
for the on-demand the price is 0.12$, for a high utilization contract the price is 0.028$
without the upfront cost and 0.066$ with the upfront cost, while a spot instance price
can get as low as 0.013$. The no-contract plans should be targeted at two categories,
one for the simple users and the other one for companies.

The first plan created was for a simple user that only requires the instances for
general use. The plan in this case should contain 10, 100 and 500 resources for a month

35

assuming that the user does not require more than 6 hours a day. For example, if the user
would require to use this at the on-demand prices they are going to spend 216$, 2160$
and 10800$ respectively. Let’s assume the instances is given at half of the on-demand
price which is 0.06$. This saves the user half of the amount spent for on-demand pricing,
and it is not going to tie them to a contract. In case, they were not satisfied with the
services after one month they can switch to a different provider. The price was set based
on the information from above. Knowing that the price can get as low as 0.013$ and as
high as 0.066$, we can choose a price between the boundaries. Ultimately, the providers
are trying to have all their resources in use at any time as well as increasing the number
of users. Having many more requests they can get more resources for the ones that are
over-utilized in order to comply with the users necessities. Moreover, there are users that
just want to run an application or build something on a cloud. Due to this perspective,
the provider also needs to provide a no-contract plan for a day or a week. This is more
likely to be used by smaller users rather than companies because usually the companies
require much more computation to be done. The plan for a day is covering 8 full hours
at any time. The number of hours have been chosen based on the fact that a person
works only 8 hours a day. The assumption made for the price in this case is based on
the mobile industry which has 33% profit for the on-demand pricing. Knowing this, the
price will be set in order to only bring 10% profit in which case the price will be set at
0.0924$. The plan for a day will be for 1, 10 and 100 resources respectively having a
cost of 0.739$, 7.39$ and 73.9$. The plan for the week will contain 35 hours to be used
at any time for 10, 100 and 500 resources. The customer will be charged 30.23$, 302.3$
and 1617$ respectively(using the same price as above).

The second plan was created for companies that require much more resources
than a normal user. Some companies may only need to make computations for only
three months rather than 1-year or 6-months. For this reason, a one-month plan needs
to be created for companies that require a higher number of resources. The Amazon
website[37] gives more discount to volumes of resources between [3500..8500], de-
ducting that consumers mostly use between [500..3500]. The assumption made is that
the provider gives less discount for intervals where they have more users and more dis-
count to where there are only a couple of consumers using it. The price will be set as
the one above, designed for a normal user(0.06$). The plan will be fixed for a number
of resources such as 1000, 3000, 5000. The no-contract plan will also be set for 15 days
worth of hours that can be used at any time during the month or 30 days worth of hours
in case of heavy utilization. The plan containing 15 days worth of hours is priced at
21600$, 64800$ and 108000$ respectively. In addition, the other plan for the full month
worth of hours is prices at 43200$, 129300$ and 216000$.

In every single plan, mentioned above, the user can save money. At the same time
the consumer is not tied up for a full year contract or more. The only thing left for the
consumer to do is to make sure they are using the correct no-contract plan that suits their

36

Normal User
Period Resources Cost

Day - 8 hours
1 0.739$
10 7.38$
100 73.8$

Week - 35 hours
1 30.23$
10 302.3$
100 1617$

Month - 180 hours
10 108$
100 180$
500 5400$

Company

Month - 360 hours
1000 21600$
3000 64800$
5000 10800$

Month - 720 hours
1000 43200$
3000 129300$
5000 216000$

Table 8: The table shows the no-contract plans for cloud that will be implemented later.

needs. When the plan runs out they are charged the on-demand price like in the mobile
industry. As seen above, the plan is for normal users and for companies, however, this
does not mean that they are fixed. So a company can use the plans from normal users
and vice-versa. It all depends on what each of them needs the resources for.

4 Design

We have looked at how the new negotiation model and the no-contract plans are go-
ing to work. In this section, we design the mechanism for implementing a fixed pricing
model, the negotiation model and the no-contract plans described above. Throughout
this section the lowest price refer to the price containing only the energy amount as
specified in Section 2. The provider in this case does not have any profit nor a loss.
The project has a front service which contains the command line interface accessed by
the users as well as a back-end service that contains the database. The database keeps
a record of the users with the amount they paid and the amount they currently have to
pay and a record of the instances provided. The instances in the database provide a
more complex view because every time a user requests an amount the program checks
whether that instance in the database has that specific amount available. By keeping a

37

database the user is also going to be advised whether the instance requested exists or
not. The user has only read access to the last bill he/she has to pay, as well as the prices
for the instances and the instances available. The database set-up can be seen in Figure
11.

Figure 11: The pictures shows the entity model of the database.

4.1 Fixed Pricing Model

The fixed pricing model is one of the simplest models that cloud computing pro-
vides as mentioned in the sections above. Cloud computing provides on-demand pricing
also known as fixed pricing. Each instance has different architectures which results in a
different price for each of them based on the complexity of the hardware. Moreover, the
energy price differs based on the different types of instances. In this dissertation, our
fixed price contains the maintenance cost(the lowest cost) plus 33% profit, as it is in the
mobile industry.

For the fixed price model the mechanism is straight forward. The user can check
the types of instances, the price per instance as well as choosing an instance if it was
not already selected through the command line. For the first option, the consumer can
check the types of instances offered by the provider. Each containing details about the
architecture. After choosing the type of instance, the consumer can check the price. The
API handles the fixed pricing demand based on the variables passed through the com-
mand line. Having decided all this, the consumer can choose not to use the provider or

38

go ahead and reserve the instance(s). The consumer can then choose the amount needed
from that instance. The provider checks if they can provide the users demand. If the sys-
tem cannot provide that instance for the amount requested the user gets some options:
to wait until the provider can provide the right amount, choose to go for a different
type of instance or end the process. Considering the option where the provider has the
amount of resources requested, the consumer is going to be allocated the instances for
the time specified in the command line. When allocating the instances, the back-end
server, containing the instances available should be updated and the charging should be
started. This is done in parallel in case there are more consumers accessing the amount
at the same time(for this software we will be using threads). The Fixed_Pricing Class
implements a thread so the updates can be done one at a time using mutual exclusion.
The consumer keeps the instances until he/she chooses to terminate them. When the
instances are terminated the user is charged for the period used and the instances are
made available again. The consumer is able to make a rough estimated of the bill based
on how many hours the instance was used but they do not have access to the bill un-
til the instances have been terminated. Once the user receives the bill, the database is
also updated and the user can check the current amount that he/she needs to pay. If the
provider does not have the resources requested it prompts the user to see whether he/she
wants to use a different instance at the price it is offered or choose to come back later.
For the purpose of this design, the only time the users can see what types of instances
are available and what price they have is when they choose to opt for the fixed pricing.
The fixed pricing method in this dissertation is just a simple way of showing how the
pricing model works and become familiar with the things required to build more com-
plex models on top of it such as interactive negotiation. The whole process can be seen
in Figure 12.

39

Fi
gu

re
12

:T
he

pi
ct

ur
es

sh
ow

s
th

e
m

ec
ha

ni
sm

of
a

fix
ed

pr
ic

in
g

m
et

ho
d.

40

4.2 Negotiation Pricing Model

This subsection describes the negotiation mechanism proposed in this dissertation.
Interactive negotiation has not been introduced yet into the cloud models as mentioned
in Section 3. As we have seen above, negotiation can have a huge impact on the provider
as well as the consumer since both of them can benefit from it, when the negotiation is
closed.

The new mechanism developed is considered to be similar in a way with the Spot
Instance Pricing from Amazon. However, it provides a different approach since users
can rent resources for unlimited time with a low price. In this API the consumer is
requested to choose an instance and specify the necessary amount, as well as the time
the instance is going to run for. The time is set before, in order to make it easier to
analyse the benefits. After this has been done and the provider has checked that they
can provide the users’ demand, the consumer can go on to bid the price he/she is willing
to pay. When the bidding starts the provider automatically sets the lowest price and the
highest price. In this case the highest price is considered to be 100%, the maximum
profit the provider can get out of the resources, while still not charging a lot. We have
considered this because the provider is going to get profit out and the consumer does not
need to pay too much. The price can change, however, based on the number of users at
that time. If there are many users and the demand is higher, then the lowest price will
be just the maintenance otherwise, it can change. If only one user is bidding at a time
then the user needs to bid a price between [lowest_price..higest_price]. Once the price
is in that range the provider accepts it and the resources are allocated to the consumer by
paying the price he/she bid. This is developed after the Yankee auction, because the user
pays for the price he/she bids. The other option is when there are multiple consumers
bidding for the same resource at the same time. In this situation, the Vickrey mechanism
is going to be applied. The users are all blindly bidding the amount willing to pay and
the provider is choosing the highest one. If there are more consumers with the same
highest price then it is going to choose the one with the highest quantity. However,
the consumer pays the second highest bid rather than the one it bid like in the Yankee
auction. Another case to consider is when we have multiple users and multiple auctions
happening at the same time in which case the Vickrey is applied for each auction. The
others are withdrawn from the auction and they can start bidding again. The bidding
can only go for 5 minutes in order to balance the time so the user does not have to wait
very long to use the instances. The 5 minutes interval has been considered as a balance
so the user does not have to wait too long to get the instances requested. The time limit
is just a block of time that we have considered to be sensible based on the fact that users
do not want to spend too much time when they need the instances right away. When
a user receives an offer in which both parties are satisfied, the resources are allocated
and the same billing process as in the section above applies. However, the user might

41

never win in the 5 minutes interval in which case, he/she needs to keep trying until their
bid gets accepted. After the resources have been allocated the databases are updated
accordingly. The process should give the user the possibility to achieve a lower price in
the end. This is analysed, later on, in order to see whether it provides benefits for both
the user and the provider. The whole process described above is illustrated in Figure 13.

42

Fi
gu

re
13

:T
he

pi
ct

ur
es

sh
ow

s
th

e
ne

go
tia

tio
n

m
ec

ha
ni

sm
pr

op
os

ed
in

th
is

di
ss

er
ta

tio
n.

43

4.3 No-Contract Plan Pricing Model

Up to now, we have talked about the fixed pricing scheme and the negotiation de-
sign, now we are going to introduce the mechanism for a no-contract plan. As discussed
in the sections above, mobile carriers have adopted this type of pre-paid charging. For
users this is an alternative for not paying the up-front cost required to get a mobile
phone. The same applies for a cloud computing provider, the only difference being that
users pay an up-front cost to reserve the instances.

This model contains a couple of packages that users can rent for a day, a week
or a month with no upfront cost. The packages have been set in Section 3.5. The user
decides which package best fits what he/she needs to do, keeping in mind that whatever
goes over the plan is paid at the on-demand price. Once the user decides the plan, the
provider has to check whether the plan is still available. We considered that the provider
has a number of limited packages for each plan in order to be able to provide other
pricing schemes. After choosing the plan, it allocates it to the consumer until it runs
out. A new table is going to be included into the database to keep count of how much
the user has left from his/her allowance. The user is not allowed to have another plan
until the period has elapsed. The API gets updated because only a part of the resources
are allocated for the no-contract plans. Once the plan has expired, the user loses any
hours that he/she has left from the plan. For this pricing model, we considered that the
user has to pay when choosing the plan and not after like in the other cases. The server
is updated with the number of plans left form each category. The process is described
in Figure 14.

44

Fi
gu

re
14

:T
he

pi
ct

ur
es

sh
ow

s
th

e
no

-c
on

tr
ac

tA
PI

m
od

el
.

45

5 Implementation

Previously, we have created a design that helps building the implementation and
structuring the dissertation. This section gives an elaborate understanding about how
the implementation has been developed as well as showing that the output is accurate.
First, the reader gets an insight of how to start the program using the command line
menu, followed by the description of the fixed priced implementation, and continuing
with the implementation of the negotiation. The negotiation mechanism is of two types:
for a user and multiple users. This is based on the parameters send through the command
line.

5.1 Command Line Menu

The program comes with a command line in order to make it easier for the user.
The user specifies in the command line what his/her requirements are. The command
line handles multiple users who can choose to go for the fixed pricing or the negotiation
mechanism. The user will have to specify the time required for the job to run in order
to be able to test the price. Every variable is going to be checked to see if it satisfies the
conditions or the boundaries. Each user has a user_id and a user_name. As mentioned
in Section 4, a database has been created to hold on the information about the users and
the instances. The database contains the amount paid by the user up to that point plus
the current bill. The user has to pass its user_name every time he/she runs an instance.
The program has multiple arguments containing different users that are executed at the
same time. Each argument contains the parameters required to start a pricing model as
follows:

python main.py [-u username [-d [-p]]][-u username -s model -i instance_id -a amount
-t time]

where:

• -u, –user - login with the user requested. The user name needs to be unique.
Allows the same user to pick a negotiation and a fixed pricing to be executed at
the same time.

• -s, –scheme - refers to the pricing model the user wants to select. The user can
put f for the fixed pricing scheme, n for the negotiation scheme and nc for the
no-contract plans.

• -i, –instance - specifies the instance id that the user is requesting. In case the id is
invalid it will ask the user for another instance id.

46

• -a, –amount - contains the amount the user is requesting from a specific instance.
If the amount is not available, the user can take the amount available plus the
remaining from another instance or choose to pick a different instance.

• -t, –time - for the purpose of this dissertation the user should specify the amount
of time that he/she wants to run the program for. This makes it easier to test the
pricing model.

• -b, –bid - in case the user has chosen the negotiation model, he/she needs to
specify the price that he/she is willing to pay for an instance to run. If there are
multiple users, each one of them needs to specify the price they want to pay for
the instance.

• -d, –typeOfpricing - a list of all types of instances is provided as we can see in
Figure 15. Each instance has a unique id assigned to it. Followed by the name of
the instance and a brief description of what the instance offers. These are set up
by the provider.

• -p, –priceOfInstance - the program provides an option for the users to check the
price for the instance that he/she is interested in. A list is going to pop-up with
the price for every instance as follows in Figure 16.

Figure 15: This Figure shows the types of instances that our system will provide. It
provides details about each instance as well as the price.

Figure 16: This Figure shows the prices for each instance.

Some of the arguments above are mandatory and the user is not able to call the
program without setting them properly. The users are prompted with a message saying
that they are missing arguments from the command line. In case they are not sure what
is missing, the program provides a –help command which gives users the information
about the required fields as we can see in the Figure 17.

47

Figure 17: This Figure shows the help menu provided to use when calling python
main.py -h. In case the user forgets the arguments necessary to run the program, he/she
can just access the command.

5.2 Database

The first thing that the implementation requires is a database which will store the
name of instances, details about each instance, a unique id in order to be able to select
the instance that the user requests, as well as the price for each instance. The database is
generated through python so the administrator does not need to recreate it manually ev-
ery time something goes wrong. When we created the database, we have decided to use
the Connector/Python module because mysqldb module is not supported in Python 3.x.
The database for the fixed pricing scheme consists of three tables: instances, availabil-
ity and price. All tables are developed through python in order to make it easier for the
administrator. In case of failure the database and the tables are generated back through
running the program. After the database has been deleted the tables are populated and
created next time the program is executed. This makes it easier for the administrator
because he/she does not require to create the tables by hand every time something goes
wrong in the database. Deleting the database can be done as well through python. Ev-
ery time a new user requests to use the pricing model, the table is updated. When the
user runs the command line, each variable is checked in order to see if the conditions
are satisfied based on the values from the database. The database contains information
about how much the users spend up to that point and what is the current bill. If the user
exists already, the database just gets updated. The tables are created using the CREATE
TABLE command from MySQL. Values are included in the table using INSERT com-

48

mand. When the instances are allocated the availability table needs to be updated using
the UPDATE command.

5.3 Fixed Pricing Implementation

We have talked about the command line and the database, now we are going to
start looking at the fixed price implementation. As mentioned above in Section 2, a
fixed pricing scheme is also known as pay-as-you-go. Therefore, the user pays for how
long the resources have been used. In our implementation, we have assumed that the
user is charged per hour and the system contains a total of 1000 resources for each type.
The user can choose to select whichever they think suits the computation best. For the
purpose of this dissertation we are going to assume an infinite number of resources. In
case the provider cannot accommodate the demand of the user, he/she has to wait until
resources are available or choose a different instance. In this implementation, we only
provide the first generation standard instances mentioned in Section 2. The reason for
this is that these are similar for both Amazon and Microsoft which makes it easier to
provide analysis in the next section. In order to have a fixed-pricing scheme we need to
set a price for each instance.

After doing some research[45], we came across the fact that an Amazon facility
has an estimated cost of $88 million for 8MW. This includes 46000 servers. Amazon
has estimated the price of a new server at around 1450$. The monthly cost contains
57% allocated for new servers, 18% for power and cooling, while energy is only 13%
out of the total cost of the facility. Knowing this we can calculate how much Amazon
spends for energy per month. An Amazon facility uses 8MW per month for 46000
servers. We know that the total cost is $88M and energy is 13% out of that, meaning
that 11440000$ is allocated for energy. From that we can calculate how much it is per
server which we are interested in. After doing calculations we saw that a server uses
0.173MW from which we can show that a server consumer energy of 43$ per month.
This is the lowest price that our instances can have from which the provider cannot
have any loss. Moreover, the provider does not have any benefit either. Having all this
information we can create now the lowest price per instance which is going to be 0.06$.
We calculate this as being the price for a small instance which uses the least amount of
energy. In order to calculate the price for the other instances we are going to use the
mobile carrier profit margin which we have mentioned in Section 3. The mobile carriers
profit margin is 33%. The pricing scheme developed for this part of the implementation
has 33% more than the instance before as we can see in Table 9.

After setting the prices that are going to be used along this section, we explain
how the program is developed. The first thing a user needs to do is set the fixed price flag
in the command line so the program knows what the user requested. The user should

49

Instance Type Price
Small 0.06$
Medum 0.08$
Large 0.106$
XLarge 0.14$

Table 9: The table shows our pay-as-you-go pricing based on information from an Ama-
zon data center.

have checked before what type of instance he/she is going to request and what is the
price per hour.

The user executes the program with the instance that best fits the type of calcula-
tions, the amount needed and the time required to run the instance. In case the provider
cannot offer the amount requested, the user has to wait or choose to rent a different in-
stance. The price set is going to be the one of the new instance selected. When accessing
the database to check for availability, the provider should ensure that only one user at a
time can access the database in order to make sure that no two users overwrite the infor-
mation in the database or request instances that are actually not available. The program
runs for the period of time requested by the user. After terminating the instance, the user
is prompted with the bill that he/she is going to pay, depending on the time elapsed. The
user is charged per hour according to the price for that specific instance. Then the user
can choose to pick another instance or choose to exit the program as seen in Figure 18.

Figure 18: This Figure shows the process of choosing an instance and running it.

5.4 Negotiation Implementation

Now, we are going to look at the negotiation implementation. The negotiation
starts if the user will select the pricing scheme relevant for it. The user needs to specify
the n parameter for the pricing scheme when running. This part of the implementation
consists of the new model developed that is able to handle interactive negotiation be-
tween the user and the provider. For the purpose of this implementation the program

50

needs to be able to handle concurrent accesses to the database. The program gets the
values passed from the command line such as instance id, time, amount, price willing to
pay for a specific user. All this information is processed through the Negotiation Class.
The program checks to see if the user has provided a valid instance id and if not he/she
is going to be asked to put in another instance id. After looking for the instance, the
program makes sure that it can provide the amount of resources requested.

In this implementation, we looked at two of the cases. In the first case, only
one user interacts with the provider. The user places a bid when starting the program.
The provider checks if the price is greater than the lower price set by the provider. The
lower price and the maximum price are private so the user does not have any knowledge
about them. This assumption has been made because if the user is aware of the lowest
price he/she is never going to have an interest in paying more than that. In this case the
provider is never going to make any profit. The user requires to bid until the provider
accepts his/her offer as shown in Figure 19 below. This is the Yankee auction mentioned
in Section 3, where the user pays the amount it bid.

Figure 19: This Figure shows the process that a single user is passing when bidding a
price acceptable for both the provider and the consumer.

The second case handles multiple users bidding at the same time. As mentioned
in Section 2, the models available now do not support negotiation between a seller and
multiple buyers. The user can test how the program handles a multiple consumer ne-
gotiation by giving more arguments in the command line. If there are multiple users
then the program handles them accordingly. The provider gets the bids from all the
consumers and decide who the winner is going to be by looking at the highest price.
However, the user will pay the second highest price that was bid. All of these are done
in the Multi-Negotiation Class, which receives a dictionary of all the users negotiations
given through the command line. The class has a method which is going through the
dictionary and determine the winner and the second highest price that the user needs to
pay. When the highest user has been found and the amount for that instance is available,

51

the user is going to be charged at the second highest price for the amount requested.
The rest of the users need to start again either as a one user negotiation or a multiple
negotiation between users until their resources get allocated.

Figure 20: This Figure shows the winning user and how much it will pay.

In case, multiple users apply for multiple instances the provider collects the in-
formation for each instance and calculates the price beforehand. If the price from the
users bidding for the same instance proves to be better than choosing the highest one,
the provider is going to allocate the resources to the users that are going to produce the
highest price using one instance. For example, if we have 3 users that are bidding for a
medium instance and each one of them bids 0.02$, 0.03$ and 0.04$, while 2 other users
bid for a small instance with bidding prices of 0.02$ and 0.04$, then the provider will
theoretical pick the highest for each one of them meaning 0.04$ and 0.04$, respectively.
The user that requested a medium instance has to pay 0.03$ while the user requesting a
small instance pays 0.02$ as seen in Figure 21. This gives the provider a total of 0.05$,
but if the provider decides to go with all the users that bid for a medium instance there
is going to be a profit of 0.04$ as seen in Figure 22.

Figure 23 shows the structure of the implementation in a UML. The program has
a Main Class which receives the command line and parses it accordingly based on the
options provided in the Parser Class. The Main Class appends every variable from the
arguments given in the command line and then looks through the list of pricing schemes
to decide which one is FIXED PRICING or NEGOTIATION. The Fixed_Pricing
Class, Negotiation Class and Multi_Negotiation Class act as threads. When the Main
Class finds a user which requested the fixed pricing, it creates an instance of that class

Figure 21: The figure shows winners of the bids.

52

Figure 22: Figure shows the allocation of resources to all users requesting an instance
rather than the winners for each of the instances. The profit has been proven to be higher
as we can see.

and run the instance with the instance requested and the amount wanted in case it is
available. The Fixed_Pricing Class starts the running method and checks if the instance
exists. If the instance does not exist then it asks the user to choose a different one. After
the instance has been selected, it checks the amount requested. If the amount is not
available it prompts the user for another amount. If the user has not asked for a fixed
pricing, then it goes through the negotiation. As we have seen above the negotiation
has two sides, one that handles a single user using the Yankee auction and one that
handles multiple ones using the Vickrey auction. The program decides which one the
user requested by looking through a dictionary which has stored instances as keys and
command(s) as elements in a list. The program deletes the instances from the dictionary
that do not match the id’s from the database. If the instance has only one element
in the list then it creates an instance of the Negotiation Class. After doing the same
checks as the ones mentioned above, the provider decides whether the bid is between the
boundaries. The boundaries refer to the lower price and the maximum price, mentioned
in Section 3. In case the price is not between the boundaries, the user is asked to bid
again until they get to an agreement and both parties are satisfied. However, if the list
has more than one element it gets processed in the Multi_Negotiation Class. Here, the
Vickrey model is going to be applied. The user that bid the highest price is going to
win but he/she is going to pay the second highest price according to the auction model.
There is another class that handles all the pricing as well as billing the user. The Pricing
Class also has a function for checking beforehand whether choosing the winning user is
better than giving the instances to multiple users. We have created also a helper class for
the functions that access the database to update or insert the values. This has facilitate
the programming because they can be accessed from everywhere in the program.

53

Figure 23: The figure shows the UML diagram of how the program was build.

5.5 Testing for accuracy

In this section, we are going to show that the program provides accurate results.
Pricing models play an important factor inside a company. If the provider charges the
user more than it should it will destroy the company’s reputation.

The first thing we are going to prove is that the program always ensures repeata-
bility. Whenever a program is executed with certain input it always needs to provide the
same output no matter how many times we are running the program. This is guaranteed
as we can see in Figure 29.

Another test going to be enforced is checking that the pricing is produced cor-
rectly. The user is going to pay based on the price bid or price for the instance. The
instances, in this case, are going to be charged per hour so when the user goes over one
hour and terminates the instance, he/she has to pay for two hours. In this case, we need
to ensure that the user is charged accordingly for the right amount of time. Lets take a
look at an example to show that it produces the right output. For example, if one user
wants to request a medium instance for an hour and 10 minutes, he/she will have to
pay 0.12$ since the price for one instance is 0.06$. We can conclude that the program
produces the right output as we can see in Figure 24.

We have seen that the price for a fixed price scheme is produced accordingly so

54

Figure 24: The figure shows that the price for a medium instance that runs for 70 minutes
produces the right amount to be paid by the user.

now we are looking at the price for the negotiation mechanism. In this case, we take as
an example, 3 users requesting a medium instance at different prices. As we have seen
in Section 3, the user with the highest bid is going to win but he/she pays the second
highest price. For this we have devised a dictionary that stores a sorted list of all the
users bidding for that instance so the program looks at the last 2 elements only and get
the information needed. However, the user is going to get the instance requested for the
amount requested at the second highest price. The example tested in this case, contains
3 users that have bid 0.02$, 0.03$ and 0.04$ respectively. They all requested the same
time and the same amount(10 instances for an hour). The program should pick the user
that bid for the highest price which in our case is going to be the user that placed a price
of 0.04$. However, the user pays 0.03$ for the instance which is the second highest
price. To conclude the program should output 0.3$ as the final answer as we can see as
well in Figure 25.

Figure 25: The figure shows that the user that bid the most won the bidding process
while the others have to proceed again. The program outputs the correct price the user
is going to have to pay for his/her requirements.

The two cases mentioned above, show how the model behaves when the user runs
a fixed pricing model or a negotiation pricing model. As we have seen in these cases
the output is produced correctly for this two particular cases. However, to run other
cases we are only changing the parameters in the command line rather the behaviour of
the functions themselves. From here, we can conclude that the program produces the
correct output every time we run it for both the fixed pricing model and the negotiation
model.

55

6 Analysis

We have discussed about cloud computing, about the role that the pricing scheme
plays, about different negotiation models, then we explained the design and implemen-
tation about our new pricing model; which leads us to the part where we are going to
analyse the results found in order to come to a conclusion. The analysis is going to show
whether the new pricing scheme is beneficial for both the consumer and the provider.
By beneficial we refer to the provider trying to maximize the profit and increase the
utilization and the user being satisfied with the price. Looking back at Equation 2 we
can see that the negotiation can only occur when the utility function is satisfied. The
utility function in our model checks whether the conditions from the command line are
satisfied, such as the amount. We have decided in Section 3 that we are going to use
the desperate strategy, which states that if one sub-negotiation is found then the process
is closed which is going to be applied for the one user negotiation process. However,
if there are more sub-negotiations coming at the same time the highest one is chosen,
which is going to be applied for the multiple user process which implements the Vickrey
algorithm. In the end, we have described what properties mentioned in Section 3, does
our model support.

We have seen in Section 3.5 that the price to power an instance is 0.06$ based
on research done with respect to an Amazon data center. However, the information
might not all be accurate about how Amazon handles the data centres because some of
it is confidential. Since we do not have any other information, we have assumed that
for the purpose of this dissertation we are going to use the same price for each type of
the resources while doing the negotiation. The lowest price is going to be set at 0.06$
per hour. As mentioned in Section 3 the maximum price has 100% profit which in our
case is going to be 6$. As mentioned above these are going to be the boundaries for
the instances. In this section, we are going to analyse two cases. For the first one, we
are going to take a look at what happens when the provider has a limited number of
resources but enough to run all the instances, while the second case is going to analyse
the part where the provider has only limited resources left. There is another case when
the provider has an infinite set of resources. However, for this dissertation we will leave
it aside since in this case all the users are going to win in order for the provider to
maximize the profit.

First case that we considered is when the provider has enough resources avail-
able to run the instances of the users that maximizes the profit. Here we are going to
show how the negotiation model behaves in this situation. We started by considering a
single user that wants to negotiate with the provider for a specific price which describes
the Yankee auction. Assuming the provider has the resources available, the user starts
bidding the amount he/she is willing to pay for the instance. The user has to run the

56

command line with the requirements needed, for this analysis we are going to use the
following command:

python main.py [-u username -s n -i 2 -a 10 -t 60 -b 0.03]

As we can see above the user requested 10 medium instances for an hour at
0.03$. However, the users’ bid is not between the boundaries, in which case the provider
is going to ask the user to bid again. The user has then to decide how much more
he/she is willing to pay for the resources. The process goes on until the user and the
provider agree on the price however, the user is going to pay the amount bid satisfying
the Yankees’ auction. This process is beneficial because the provider never loses since
the minimum price needs to be satisfied. Also if the user reaches the minimum price
or over means that the user is satisfied with the price because he/she is willing to pay
that much. Therefore, for a negotiation between a user and a provider the outcome will
always be beneficial for both of them.

Using the same case as above, we now take a look at how beneficial the process
is for a multi user negotiation. In the multi user negotiation, multiple users bid for one
or more resources. As we have mentioned above in Section 3, the Vickrey algorithm is
going to be applied for a multi user negotiation. Here the user does not need to place
a price between the boundaries. It will be more like a spot instance pricing provided
by Amazon. To make the analysis more accurate we are going to explain it through an
example. We will consider having three users(bob, ra, me) placing a bid for a medium
instance and two users(joe, mike) placing a bid for a large instance as follows:

python main.py [-u bob -s n -i 2 -a 10 -t 61 -b 0.08] [-u ra -s n -i 2 -a 10 -t 60 -b 0.09]
[-u me -s n -i 2 -a 10 -t 60 -b 0.03] [-u joe -s n -i 3 -a 10 -t 60 -b 0.04] [-u mike -s n -i 3

-a 10 -t 60 -b 0.11]

Applying Vickrey will lead to choosing mike and ra as the winning users. In
this case, ra has to pay 0.8$ and mike is going to pay 0.4$ as we can see in Figure 26.
However, after doing more analysis we came to the conclusion that the Vickrey model
does not maximize the profit of the provider. As we can see in Figure 26, the provider
can choose to go with all the consumers requesting a particular instance since that will
maximize the profit as we can see in Equation 3. In this case, the Vickrey model will
never win because the price paid is going to be the second highest which means that
there will always be a price higher than. Therefore, adding the second highest and
the highest one will always add up to more profit. Moreover, this leads to choosing
the patient strategy, mentioned in Section 3, against the desperate strategy because the
provider is going to wait until everyone has placed the bid to pick the one with the
highest profit. If we take a look at this example, we can see that by deciding on all the
users that requested a medium instance, the provider will gain 2.8$, while for the large

57

instance they will only gain 1.5$. Each one of them produces more profit to the provider
than the Vickrey model, in which the users are only paying 1.2$. For this reason, the
provider always goes with the option to maximize the profit. After doing research we
came to the conclusion that the provider will never choose the Vickrey model because
the price is always going to be maximized by picking the users that bid the most for one
of the resources because it increases their profit.

Figure 26: The figure shows the process of negotiation with a multiple users when the
provider has enough resources to maximize the profit.

max_profit = max(
∑

i=winners

pricei ∗ amounti,
∑
i=1..n

pricei ∗ amounti) (3)

58

where:

• max_profit is the maximum profit the provider can get out of the users that bid;

• max provides the maximum between the users that can win with Vickrey or run-
ning all the users from an instance;

• price is the bid that each user is willing to pay;

• amount is the number of instances ;

• the first sum refers to the profit the provider makes when running Vickrey;

• the second sum refers to the profit the provider makes when running all the in-
stances of the same type;

The second case we are going to look at is when the provider has only a limited
number of resources left. The program running with just a single user is negotiating
directly with the provider, if the amount requested by the user is not available he/she is
going to be asked to choose a distinct instance as we can see in Figure 27. The user is,
however, still going to pay the same price that he/she bid since we have assumed that
there is no difference between the instances. The output produces a summary of the
instances allocated, the price the user is going to pay and how much he won through
negotiation rather than going with an on-demand price.

Figure 27: The figure shows the process of negotiation between a single user and a
provider based on limited resources.

Now, we are going to take a look at what happens when the provider has resources
left for only one user. We are going to use the same command as the one for multiple
user negotiation but now the provider has only 10 resources left for a medium instance.
The algorithm was created in such a way to offer maximum profit for the provider with-
out unsatisfying the user as described in Figure 28. In this case the provider uses all the
amount left and then it asks the remaining users to select another instance. The providers
is willing to give a larger instance just for the users participating in the negotiation. In
this case the user gets more benefits because it can acquire a better resource at the same
price it first bid for the previous instance selected. After running tests we came to the

59

conclusion that even in this case the user is better off without the Vickrey model. The
reason for this is because the provider has more to gain if it gives the resources to the
users that brings them more profit. It also satisfies the user because he/she is paying the
amount willing to spend for doing the computation.

Figure 28: The figure shows the process of negotiation with a multiple users when the
provider has only 10 resources left.

Table 10 handles the two case scenarios one where the provider has enough re-
sources(case a) and the other where they have limited resources(case b). In the following
part we analysed the results obtained in the table and decided whether the negotiation
model can be an improvement for the current pricing models or not. The tables shows
two profits for the provider. The Vickrey profit is the outcome of the Vickrey mecha-
nism while the Max_Profit is the maximum profit the provider can have in each case.
The table also mentions the users’ satisfaction referring to the satisfaction level of each
user based on the pricing model. This will help in deciding whether it is a good pricing
model or not based on the description given in Section 2.

The first scenario we are going to take a look at is when the provider has enough
resources for a single user. As we can see from the table, the provider has no benefit
when the user bids below the lower price, in which case he/she needs to increase the

60

Cases Initial Start
(instance_id,
amount, time)

Price Bid Provider Profit Resources
in Use

Users Sat-
isfaction

a, single user

2, 10, 60 0.03$ n/a 10/10 yes
2, 10, 60 0.06$ 0 10/10 yes
2, 10, 60 2.4$ 40% 10/10 yes
2, 10, 60 4.2$ 70% 10/10 yes
2, 10, 60 6$ 100% 10/10 yes
2, 10, 60 12$ 200% 10/10 yes

b, single user

2-other, 10, 60 0.03$ - 10/0 yes
2-other, 10, 60 0.06$ 0 10/0 yes
2-other, 10, 60 2.4$ 40% 10/0 yes
2-other, 10, 60 4.2$ 70% 10/0 yes
2-other, 10, 60 6$ 100% 10/0 yes

a, multiple user

2, 10, 61 0.08$

Vickrey:1.2$

30/50 yes
2, 10, 60 0.09$ Max_Profit:1.6$ 30/50 yes
2, 10, 60 0.03$ 30/50 yes
3, 10, 60 0.04$ 30/50 no
3, 10, 60 0.11$ 30/50 no

a, multiple user

2, 10, 61 0.8$

Vickrey:8.4$

30/50 yes
2, 10, 60 0.9$ Max_Profit:16.63$ 30/50 yes
2, 10, 60 0.003$ 30/50 yes
3, 10, 60 0.04$ 30/50 no
3, 10, 60 0.11$ 30/50 no

a, multiple user

2, 10, 61 0.8$

Vickrey:9.2$

20/50 no
2, 10, 60 0.9$ Max_Profit:24.2$ 20/50 no
2, 10, 60 0.003$ 20/50 no
3, 10, 60 0.04$ 20/50 yes
3, 10, 121 1.1$ 20/50 yes

b, multiple user

2, 10, 61 0.08$

Vickrey:1.2$

30/10 yes
2-other, 10, 60 0.09$ Max_Profit:1.6$ 30/10 yes
2-other, 10, 60 0.03$ 30/10 yes
3, 10, 60 0.04$ 30/10 no
3, 10, 60 0.11$ 30/10 no

a, multiple user

2, 10, 61 0.8$

Vickrey:8.4$

30/10 yes
2-other, 10, 60 0.9$ Max_Profit:16.63$ 30/10 yes
2-other, 10, 60 0.003$ 30/10 yes
3, 10, 60 0.04$ 30/10 no
3, 10, 60 0.11$ 30/10 no

Table 10: The table shows the cases the program will produce based on the values given.

61

bidding pricing in order to win. If the user bids the lowest price then both parties are
satisfied and an agreement is enforced. If the user bids above the lower price as we can
see in the table, such as 40%, 70%, respectively 100% profit for the provider, they both
get to an agreement and the negotiation is closed. The provider is going to accept the bid
as long as it does not provide any loss for them, which is the case where the user’s bid
provides 200% profit to the provider. As long as the users agree to bid for a higher price
that means they are satisfied otherwise they can just opt to get out of the negotiation.

The second scenario that we are going to analyse is the negotiation mechanism
where the provider does not have any resources left from that specific instance re-
quested. This case does not differ too much from the one above because the user can
choose another instance to run instead of the one selected. The price he/she wants to
pay is staying the same. This is probably not happening in a real life situation. However,
since we do not have too much information about the instances we have assumed that
all of them require the same amount of energy.

After analysing the table above for the entries specified we can conclude that both
the user and the provider are satisfied if the bidding price is over the LB(lower bound
price). If the price is under LB then the user is satisfied but the provider is not. Also
as the user increases the price he/she is less satisfied, while the provider increases the
level of satisfaction. The cases where the user bids closer to LB is the most satisfactory
negotiation. We can conclude from here that the negotiation for a single user does not
provide an optimal solution for both parties. In order to be optimal, the provider will
try to increase the price bid as long as it can while the consumer will try to lower it as
much as possible. For this reason, there will always be a better option for one of them.
However, they can get to an agreement to satisfy both.

The last analysis conducted handles the negotiation between multiple users. Here
we have again the case where the provider has enough resources and limited resources(in
this example only 10 left). Both cases produce the same output because the user can
choose to go for a different instance if the provider does not have the one requested
while still paying the same price. Having discussed this, we can now take a look at the
results obtained. From the results we can conclude that the provider is always going to
try to maximize the profit as we can see in Equation 3 and in some cases the utilization
as well. The user tries to maximize utilization if it produces the highest profit. When
maximizing the profit not all the users get to run the instances since the provider does
not offer unlimited resources in which case some users are unsatisfied and it might take
them longer to run their instances. In terms of a multi user negotiation, the provider
tries to satisfy all the users that are going to maximize the profit. However, as we can
see in the table not all of them are satisfied in which case those users have to start the
whole process again.

As we can see above the program has produced the output that satisfies both

62

parties through interactive negotiation. After doing the analysis, we can decide whether
what negotiation properties the model satisfies. The negotiation mechanism guarantees
success because the provider tries to satisfy the user in order to attract more consumers.
The model also ensures maximum social welfare which in the case of cloud computing
refers to maximizing the number of users. In this model, the sum of the utility function
is going to be maximized as we have seen in the analysis above. The algorithm was first
devised using the Vickrey algorithm because this was pareto-optimal. However, after
analysis we have discovered that the Vickrey algorithm is not pareto-optimal because
the provider can choose differently in order to maximize the profit and the utilization.
Individual rationale is another property ensured through the model because the users
and the provider are playing fair. The next characteristic satisfied is stability in which
case the provider cannot perform better than the user. We can see this in the case where
the user bids for the lower price which implies the statement before. The algorithm does
not offer simplicity because in some cases it is harder to get to an optimal solution and
still benefit both parties such as in the negotiation between one user and the provider.
To conclude, the algorithm satisfies most of the negotiation properties and satisfies both
parties in most of the cases.

7 Conclusion

In this dissertation, we have shown that negotiation is one important factor in
making a business grow and have a better reputation. By allowing the user to have a
say in the price that he/she is willing to pay for an item, the user is going to be more
satisfied while the provider will automatically increase the utilization. We have seen
in the analysis that the negotiation model is going to be beneficial for cloud computing
pricing models. There can be done more investigation towards other models that might
prove to be better. We have used in this dissertation, the auction model Vickrey which
is a sealed bid where the user bids blindly for the instances he/she needs as well as the
Yankee auction where the user pays the amount it bid.

To close the assumptions made in the previous sections, we have found some
cases in which both the users and the providers are satisfied at the same time. However,
not all of them are also optimal. For a single user, if the price bid is between the
boundaries or over the higher bound both of them are satisfied. In terms of a multi user
negotiation, only the users that are allowed to run the instances are satisfied, while the
provider is satisfied if their profit and utilization are maximized. After doing analysis
we have concluded that the Vickrey algorithm is not beneficial for the provider. Even
though, we thought it maximizes the profit we have proven that by choosing all the users
running the same instance, the profit is much higher. We have also concluded that the

63

patient strategy is better than the desperate strategy because it will wait until all the sub-
negotiations have been done to pick the one that produces the highest profit. However,
it has one drawback because time is not important in this strategy but it might be for a
user that needs to run the instance very fast.

In this dissertation, we have also conducted analysis for the pricing per minute
introduced recently by Microsoft Azure. After doing the experiments, we came to the
conclusion that users requiring many resources will definitely benefit from the pricing
per minute, while for a normal user the difference is so small that it will be at the user’s
latitude what provider to choose. As mentioned in Section 2.5.2, Microsoft has stated
that the smaller the unit, the more benefits it brings. For this reason, we have analysed
how the pricing per second behaves with respect to the pricing per hour from Amazon.
The conclusion we came to was that the pricing per second is not worth implementing
because it is not better than the pricing per minute. In this case the provider’s benefit is
going to be so small that it is not worth the hassle.

In conclusion, a negotiation model can definitely have an impact on the cloud
computing business. The negotiation can maximize the profit as well as the utilization
of the resources. As we have seen above the negotiation algorithm satisfies most of
the consumers while increasing the provider’s profit and utilization which is definitely
a good start. The models can be implemented on top of the pricing models already
existing without too many changes.

The project can be further improved. One of the things the project can add is the
implementation of the no-contract plan described in Section 3.5. Analysis can be done
for this type of plan to see whether it will have the same benefits as the plans provided
by the mobile carriers. If the no-contract plans prove to be beneficial, they will have a
huge impact for the cloud as they did in the mobile industry. Another improvement is
building a GUI instead of the command line implemented now. This will facilitate the
user to navigate and test the pricing scheme. The provider can have an option on the
GUI to see the information from the database. Through the GUI we can produce graphs
automatically, instead of collecting the information manually. People find it easier to
visualize rather than looking at lines of output that might not represent anything to a
person who is not aware of what the software does. Last but not least, the project can
have a back-end server running at all times where each user can send a signal with
the specific requirements to the programs’ instance. In this way, the pricing can be
calculated dynamically. The back-end server will simulate more accurately the pricing
model provided by any provider.

64

A Challenges

Throughout the development of the dissertation we have faced some challenges.
One of the challenges that we faced was installing OpenStack. The original idea was
to develop the pricing model directly on the cloud. After doing research of what open
source cloud to use, we came to the conclusion that we are going to use OpenStack. At
first, OpenStack looked easy to use and install. However, after trying to install it for two
weeks, we saw that it was not so easy. The installation was rather complicated and time
consuming. We have installed OpenStack on top of an Amazon virtual cloud which was
running as a front-end server while having other instances being the nodes. OpenStack
was developed under Linux 12.04 and the Amazon instance is able to launch a machine
and connect to that instance. After doing more research we came to the conclusion that
the documentation does not say anything about how to develop a pricing model which
made it difficult to progress. This is why we have decided to build a normal software
that can just be put on a cloud because it was developed under Python. The program
developed just needs to be moved onto a cloud.

Another challenge that we faced was not being able to run it on a cplab ma-
chine because it requires some libraries that need to be installed for which we required
permission. The program will be able to run on a cplab machine by installing connec-
tor/python. This package is required to create the database.

Last but not least, we have tried to get information from Microsoft and Amazon
regarding their cloud pricing models but we did not get any information due to confi-
dentiality reasons. we have asked the following questions:

• How does your companies pricing model work? Does the price change based on
how many resources are currently free for that specific type of instance that the
customer is requesting?

• How easy it is for the company to implement a negotiation mechanism and how
easy will it be for the customer to use? Are you thinking in the near future to have
a negotiation plan?

• In case where one user wants to request most or all of the resources from within
a region because he is doing large computations in a big company, can the user
get a better price since he is using most or all of the resources available at that
current time in a day? Also what happens if they request all for a very long period
of time, such as a month or more?

• Does the algorithm support changes such as handling dynamic pricing or imple-
menting negotiation? And if so, why doesn’t it have it?

• How did you come up with this pricing model such as what aspects did you decide

65

to take into consideration when designing it? Were the aspects from the customer
point of view or of the company?

• Why are the users charged by hour and not per day or per minute?

• How do you ensure that the usage is accounted for correctly ? As well as from
the business point of view?

• Are users mostly interested in acquiring resources per hour or having long con-
tracts which have an up front cost?

• How do you ensure the pricing -scheme for under-utilization resources?

• What happens when a user requests more resources than what you have available?

• What is the utilization ratio?

• For Amazon, are a lot of users interested in using Spot Pricing? Do people tend
to risk having their resources terminated?

B Code

The code bellow shows the creation of the tables though python, as well as how
the program connects to the database every time updates need to be done. The code also
contains a function that calculates the price for negotiation, as well as a function that
updates the database according to the changes made.

s e l f . TABLES[’ u s e r s ’] = (
"CREATE TABLE ‘ u s e r s ‘ ("
" ‘ u_id ‘ i n t (1 1) NOT NULL AUTO_INCREMENT, "
" ‘ use r ‘ v a r c h a r (5 0) NOT NULL, "
" ‘ payed ‘ f l o a t (1 1) NOT NULL, "
" ‘ c u r r e n t _ b i l l ‘ f l o a t (1 1) NOT NULL, "
" PRIMARY KEY (‘ u_id ‘) , UNIQUE KEY ‘ use r ‘ (‘ u se r ‘) "
") ENGINE=InnoDB ")

s e l f . TABLES[’ i n s t a n c e s ’] = (
"CREATE TABLE ‘ i n s t a n c e s ‘ ("
" ‘ id ‘ i n t (1 1) NOT NULL AUTO_INCREMENT, "
" ‘ type_name ‘ v a r c h a r (1 4) NOT NULL, "
" ‘ d e t a i l s ‘ v a r c h a r (1 0 0) NOT NULL, "
" ‘ p r i c e ‘ f l o a t (1 1) NOT NULL, "
" PRIMARY KEY (‘ id ‘) "
") ENGINE=InnoDB ")

66

s e l f . TABLES[’ a v a i l a b i l i t y ’] = (
"CREATE TABLE ‘ a v a i l a b i l i t y ‘ ("
" ‘ id ‘ i n t (1 1) NOT NULL, "
" ‘ amount ‘ i n t (1 1) NOT NULL, "
" PRIMARY KEY (‘ id ‘ , ‘ amount ‘) , KEY ‘ id ‘ (‘ id ‘) , "
" CONSTRAINT ‘ a v a i l a b i l i t y _ i b f k _ 1 ‘ FOREIGN KEY (‘ id ‘) "
" REFERENCES ‘ i n s t a n c e s ‘ (‘ id ‘) ON DELETE CASCADE"
") ENGINE=InnoDB ")

s e l f . TABLES[’ i n s t _ p r i c e s ’] = (
"CREATE TABLE ‘ i n s t _ p r i c e s ‘ ("
" ‘ id ‘ i n t (1 1) NOT NULL, "
" ‘ p r i c e ‘ f l o a t (1 1) NOT NULL, "
" PRIMARY KEY (‘ id ‘ , ‘ p r i c e ‘) , KEY ‘ id ‘ (‘ id ‘) , "
" CONSTRAINT ‘ i n s t _ p r i c e s _ i b f k _ 1 ‘ FOREIGN KEY (‘ id ‘) "
" REFERENCES ‘ i n s t a n c e s ‘ (‘ id ‘) ON DELETE CASCADE"
") ENGINE=InnoDB ")

S t a r t t h e c o n n e c t i o n
d e f c r e a t e _ c o n n e c t i o n (s e l f) :

d b i n f o = {}
d b i n f o [’ dbhos t ’] = " l o c a l h o s t "
d b i n f o [’ dbname ’] = " C l o u d _ P r i c i n g "
d b i n f o [’ dbusername ’] = " r o o t "
d b i n f o [’ dbpwd ’] = " r a l u c a "
s e l f . c o n n e c t i o n = mysql . c o n n e c t o r . Connect (

h o s t = d b i n f o [’ dbhos t ’] ,
u s e r = d b i n f o [’ dbusername ’] ,
password = d b i n f o [’ dbpwd ’] ,
d a t a b a s e = d b i n f o [’ dbname ’])

s e l f . c o n n e c t i o n . commit ()
s e l f . c u r s o r = s e l f . c o n n e c t i o n . c u r s o r ()

P r i c i n g f o r n e g o t i a t i o n based on t h e p r i c e b i d
d e f n e g o t i a t i o n _ c h a r g i n g (s e l f , name , i n s t , amount , t , p r i c e) :

t ime_now = t
i f time_now%60 == 0 :

p r i c e _ s e t = (i n t (t ime_now / 6 0)∗ p r i c e)∗ amount
e l s e :

p r i c e _ s e t = (i n t (t ime_now / 6 0)∗ p r i c e + p r i c e)∗ amount
r e t u r n round (p r i c e _ s e t , 3)

67

Update t h e b i l l and pay
d e f pay (s e l f , name , p r i c e _ s e t) :

p r i n t (" Amount due t o pay i s : " , round (p r i c e _ s e t , 3))
h e l p e r _ f u n c t i o n s . u p d a t e U s e r B i l l (name , p r i c e _ s e t)

C Figures

The figure shows that the program produces repeatable outputs while running with
the same input command.

Figure 29: The figure shows that the program produces the same results every time.

The output provided by a multi-user negotiation and the users that are allowed to

68

run.

Figure 30: The figure shows the output for a multi-user negotiation.

This Figure shows the output of a simple user that bids below the LB but still
continues bidding until they both agree so the negotiation can be closed.

Figure 31: The figure shows the output for a simple negotiation process.

The output for a fixed pricing model that allows at the end to run another instance
in case the user needs to do more computations.

References

[1] Becoming the Next Success Story: Using the Cloud to Reap a Profit.
https://spideroak.com/privacypost/business-the-cloud/becoming-the-next-
success-story-using-the-cloud-to-reap-a-profit/(Accessed: August 19, 2013)

[2] Revisiting Cloud Computing: how has it changed - and changed us? Available
at http://www.gizmag.com/revisiting-cloud-computing/26768/ (Accessed: July 8,
2013).

[3] Introduction to Cloud Computing. Dialogic.

[4] Michael Armbrust, Armando Fox, Rean GrifïňĄth, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,

69

Figure 32: The figure shows a fixed pricing scheme output.

and Matei Zaharia. Above the Clouds: A Berkeley View of Cloud Computing. UC
Berkeley Reliable Adaptive Distributed Systems Laboratory.

[5] Forrester Report Shows Amazon AWS Reigns Supreme With Develop-
ers As Windows Azure Gains Momentum. Alex Williams. Available at
http://techcrunch.com/2012/12/17/forrester-report-shows-amazon-aws-reigns-
supreme-with-developers-as-windows-azure-gains-momentum/ (Accessed: June
23, 2013).

[6] Keith Jeffery [ERCIM], Burkhard Neidecker-Lutz [SAP Research]. The Future of
Cloud Computing: Opportunities for European Cloud Computing beyond 2010.
Public Version 1.0.

[7] The Cloud Hits the Mainstream: More than Half of U.S. Busi-
nesses Now Use Cloud Computing. Reuven Cohen. Available
at http://www.forbes.com/sites/reuvencohen/2013/04/16/the-cloud-
hits-the-mainstream-more-than-half-of-u-s-businesses-now-use-cloud-
computing/.(Accessed: June 24, 2013).

[8] Why Mode to the Cloud? 10 Benefits of Cloud Computing. Salesforce. Avail-
able at http://www.salesforce.com/uk/socialsuccess/cloud-computing/why-move-
to-cloud-10-benefits-cloud-computing.jsp (Accessed: June 24, 2013).

[9] Security and Cloud Best Practices. Aberdeen Group. Available at
http://www.aberdeen.com/aberdeen-library/6846/RA-security-cloud-
computing.aspx (Accessed: July 8, 2013).

[10] Cloud Computing study for Microsoft shows dramatic reduction in carbon emis-
sions. WSP. Available at http://www.wspenvironmental.com/newsroom/news-
2/view/cloud-computing-study-for-microsoft-shows-dramatic-reduction-in-
carbon-emissions-235 (Accessed: July 8, 2013).

70

[11] Giuseppe DiModica, Orazio Tomarchio .A semanting model to characterize pric-
ing and negotiation schemes of cloud resources. University of Catania, Catania,
Italy, 2012.

[12] Varun Kamra, Kapil SonaWane, Pankaja Alappanavar. Cloud Computing and its
pricing scheme. Sinhgad Academy of Engineering, Pune, India. 2012.

[13] Managing the Real Cost of On-demand Enterprise Cloud Services with Charge-
back Models. CISCO.

[14] Andra Raluca(2013). Pricing Model for Cloud Computing. University of Edin-
burgh.

[15] A history of cloud computing. Arif Mohamed. Available at
http://www.computerweekly.com/feature/A-history-of-cloud-computing (Ac-
cessed: June 25, 2013).

[16] Types of Amazon EC2 Instances. The Leading Cloud Operations Optimization
Service. Available at http://www.newvem.com/cloudpedia/types-of-amazon-aws-
ec2-instances/ (Accessed: June 25, 2013).

[17] Amazon EC2 Instances. Amazon Web Service. Available at
http://aws.amazon.com/ec2/instance-types/ (Accessed: June 25, 2013).

[18] Amazon lowers AWS pricing again; M3 instances roll out globally. Zack Whit-
taker. Available at http://www.zdnet.com/amazon-lowers-aws-pricing-again-m3-
instances-roll-out-globally-7000010685/ (Accessed: June 25, 2013).

[19] Windows Azure: Microsoft’s Cloud Launches Today. Matthew Weinberger.
Available at http://thevarguy.com/cloud-computing-services-and-business-
solutions/windows-azure-microsofts-cloud-launches-today/ (Accessed: June 27,
2013).

[20] What is the new Windows Azure? Jouni Heikniemi. Available at
http://www.redmond-recap.com/2012/06/18/what-is-the-new-windows-azure/
(Accessed: June 27, 2013).

[21] Microsoft Azure Website. http://www.windowsazure.com/en-
us/pricing/details/virtual-machines/ (Accessed August 20, 2013).

[22] Microsoft: FINE! We’ll match Amazon - by HIKING cloud prices. Jack Clark.
Available at http://www.theregister.co.uk/2013/04/16/microsoft_azure_ga/ (Ac-
cessed: June 27, 2013).

[23] Amazon Web Services: Rise of the utility cloud. Jack Clark. Available
at http://www.zdnet.com/amazon-web-services-rise-of-the-utility-cloud-
3040155307/ (Accessed: June 27, 2013).

71

[24] Microsoft’s Azure gets competitive with $1B in revenue. Dara Kerr. Avail-
able at http://news.cnet.com/8301-10805_3-57581994-75/microsofts-azure-gets-
competitive-with-$1b-in-revenue/ (Accessed: June 28, 2013).

[25] What is Negotiation? Available at http://www.the-cost-reduction-
consultant.com/whatisnegotiation.html (Accessed: June 23, 2013).

[26] The Importance of Negotiation in Business. Available at http://www.the-cost-
reduction-consultant.com/ImportanceofNegotiationinBusiness.html, (Accessed:
June, 2013).

[27] Srikumar Venugopal, Xingchen Chu, and Rajkumar Buyya. Negotiation Mecha-
nism for Advance Resource Reservations using the Alternate Offers Protocol The
University of Melbourne, Australia.

[28] Weiming Shen and Yangsheng Li Hamada H. Ghenniwa and Chun Wang. Adap-
tive Negotiation for Agent-Based Grid Computing National Research Council
Canada, University of Western Ontario.

[29] N. R. JENNINGS, P. FARATIN, A. R. LOMUSCIO, S. PARSONS AND M.
WOOLDRIDGE, C. SIERRA. Automated Negotiation: Prospects, Methods and
Challenges.

[30] Raymond Y.K. Lau. Adaptive Negotiation Agents for E-business, Department of
Information Systems, City University of Hong Kong.

[31] Manoj Kumar and Stuart I. Feldman. Business negotiations on the Internet, IBM
Research Division.

[32] Iyad Rahwan and Ryszard Kowalczky and Ha Hai Pham. Intelligent Agents for
Automated One-to-Many e-Commerce Negotiation, University of Melbourne.

[33] Dave Durkee Why Cloud Computing will never be free, ACM.

[34] Microsoft will offer Azure by the minute to take on AmazonâĂŹs cloud. Barb
Darrow. Available at http://gigaom.com/2013/06/03/microsoft-will-offer-azure-
by-the-minute-in-bid-to-take-on-amazons-cloud/ (Accessed 19th June, 2013).

[35] At long last, Microsoft is ready to compete head on with Amazon Web Services.
Barb Darrow. Available at http://gigaom.com/2013/04/16/at-long-last-microsoft-
is-ready-to-compete-head-on-with-amazon-web-services/ (Accessed 19th June,
2013).

[36] Choon Seong Leem, Hyung Sik Suh and Dae Seong Kim. A classification of
mobile business models and its applications, Yonsei University, Seoul, Korea.

72

[37] Amazon Web Services. Available at http://aws.amazon.com/pricing/ (Accessed
21th June, 2013).

[38] Roger Hallowell. The relationships of costumer satisfaction, customer loyalty,
and profitability: an empirical case study, Harvard Business School, Boston,
MA, USA.

[39] Kaj Storbacka, Tore Strandvik and Christian GrÃűnroos. Managing customer re-
lationships for profit: the Dynamics of Relationship Quality,The Swedish School
of Economics and Business Administration, Helsinki, Finland.

[40] Prepaid or Postpode? The fight for your cell phone dollars. Jessica Dolcourt.
Available at http://www.cnet.com/8301-17918_1-57547193-85/prepaid-
or-postpaid-the-fight-for-your-cell-phone-dollars-smartphones-unlocked/
(Accessed 21th June, 2013).

[41] Tommaso M Valletti and Martin Cave. Competition in UK mobile communica-
tions, Telecommunication Policy, Vol. 22, No. 2, pp.109-131, 1998 .

[42] Prepaid Phones: Same Service, Same Phones, but Less Expensive. Chris
McCarthy. Available at http://voices.yahoo.com/prepaid-phones-same-service-
same-phones-but-less-expensive-11990818.html?cat=15 (Accessed 21th June,
2013).

[43] 2-Minute Expert: What are No-Contract Smartphones? Sean Captain.
Available at http://www.technewsdaily.com/3864-2-minute-expert-nocontract-
smartphones.html TechNewsDAily, (Accessed 22th June, 2013).

[44] No-contract options multiply. ConsumerReports. Avail-
able at http://www.consumerreports.org/cro/magazine-
archive/2011/january/electronics/best-cell-plans-and-providers/no-contract-
cell-phones/index.htm (Accessed 21th June, 2013).

[45] A Look Inside Amazon’s Data Centers. Rich Miller. Available at
http://www.datacenterknowledge.com/archives/2011/06/09/a-look-inside-
amazons-data-centers/ (Accessed 10th July, 2013).

73

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Introducing Cloud Computing and the pricing models
	Cloud Pricing Scheme
	Amazon Cloud
	On-Demand Instances
	Spot Pricing Instances
	Reserved Instances

	Microsoft Azure
	Pay-as-you-go price
	Monthly Plans

	Comparing Amazon vs Microsoft Azure
	Price per minute vs Price per hour
	Price per second vs price per hour

	Negotiation
	Introduction to Negotiation
	Negotiation Mechanisms
	Negotiation Strategies
	A new negotiation model
	No-Contract Pricing

	Design
	Fixed Pricing Model
	Negotiation Pricing Model
	No-Contract Plan Pricing Model

	Implementation
	Command Line Menu
	Database
	Fixed Pricing Implementation
	Negotiation Implementation
	Testing for accuracy

	Analysis
	Conclusion
	Challenges
	Code
	Figures
	References

