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Abstract

The compactness (i.e. the spatial relationship between nodes allocated) of the place-

ment of a job on a HPC machine such as HECToR can have a large effect on its per-

formance (over %10)[7][1]. At the moment, HECToR has not been subjected to any

optimisation in this area. Carl Albing (of Cray) has recently produced a doctoral thesis

with suggestions as to how performance may be improved using job node allocation al-

gorithms for 3D torus topologies, as employed on HECToR. This project first explored

the similarities and differences between his results on another another Cray XE6 ma-

chine (the same architecture as HECToR) using a simulator. Results showed that even

on the same architecture, the job size distribution can have a significant effect on how

effective job placement algorithms are.

Initially two algorithms were tried out for the Cray XE6 machine comparison: first fit

and FIFO. The first fit algorithm performed well for small jobs and the FIFO algorithm

showed potential for large jobs. The next step of the project involved trying to bridge

this gap by finding an algorithm that worked well across the whole spectrum of job

sizes. The most overall improvement for small and large jobs was seen with a “closest

fit” algorithm, which works by the minimizing the largest ordinal distance between an

allocated group of nodes. With this algorithm, the improvement seen for small jobs was

over %70, for large jobs %28 and overall %31.

The final stage of the project involved trying all the algorithms out on other topolo-

gies - including the dragonfly and 5D torus - using the same number of nodes that HEC-

ToR currently has. These simulations confirmed that the network topology also has an

effect how effective job placement algorithms are, however the same two families of

algorithms were the most effective across all the topologies. The closest fit algorithm

performed the strongest, more so on the dragonfly network and less so for the 5D torus.

Overall, the placement of jobs had a mixed effect on these more highly connected net-

works.
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1 Introduction

Modern supercomputers use schedulers to allocate jobs to free nodes. With no opti-
mization in place, jobs can be placed on any available nodes. Often job placements become
dispersed across the network, leading to increased distances that must be traversed for com-
munication between nodes. Where nodes communicate frequently between one another in a
job, this extra distance can cause a job to run for longer than necessary.

It is however possible to apply algorithms to minimize the distance between these allo-
cated nodes, thus decreasing communication traffic overall - particularly for jobs with higher
levels of communication. Previous research has shown that performance gains of more than
%10 could be seen from doing this[7][1]. The purpose of this project is to explore such
algorithms, in particular looking for ones which works well over a wide range of job sizes.
Additionally, different topologies were also looked at to explore what kind of effect this had
on which algorithms showed the most improvement in compactness.

This project used a simulated job scheduler to explore the effects different job scheduling
algorithms had on the average distance between nodes (as an indication of possible perfor-
mance increase) for the machine HECToR. First, results were corroborated with previous
runs on a machine with similar architecture to HECToR. Next, new algorithms were devel-
oped, implemented and run on HECToR log data. Finally, new topologies using the same
number of nodes as HECToR were mocked and the same algorithms were run to compare
their effects on different network topologies.

Chapter 2 lays down the background work behind the project, including information on:

• supercomputing network performance

• network topology

• job placement optimisation

• metrics for ascertaining improvement in placement

• specifications of HECToR

• previous research on Cray XE6 machines

Chapter 3 outlines the structure of the simulator code in its original form, the upgrades made
to create the results seen in this project and the tests that were created to assure correct results.

Chapter 4 presents the two job distributions seen in previous research on another Cray XE6
and on HECToR and compares the results of the two initial job allocation algorithms run on

1



the log data from both machines.

Chapter 5 introduces several new job allocation algorithms and presents their results us-
ing HECToR log data.

Chapter 6 analyses the results of running the various algorithms from several other angles.

Chapter 7 covers the work trying out all the algorithms on other network topologies.

Chapter 8 wraps up the project with some conclusions.

Chapter 9 proposes possible extensions to the project that could be carried out in the fu-
ture.
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2 Background and Literature

Supercomputers are often built from individual machines (or parts of) to form what is
known as clusters. These clusters connect together smaller groups of processors, also called
nodes, with some form of cabling or other connection to form a network. The number of
nodes on a network can be on the order of tens, hundreds to thousands and even millions.
A program submitted to be run on a supercomputer (or job) is allocated a number of these
nodes as prescribed by the submitter, which defines the job size. A job is then run on groups
of these separate nodes, which communicate with one another by sending data and passing
messages across the network.

2.1 Network Affect on Performance

Many factors can affect performance for a job on a particular node configuration, in-
cluding network latency and bandwidth. Network latency is a measurement of the delay in
communication between nodes on the network and bandwidth is the speed that data can tra-
verse across the network[5]. Once a physical system is set up though, these factors become
much harder to change. Something that is easier to change, however, is what configuration
of nodes a job is running on.

When jobs are placed in no particular order on nodes on the network, “fragmenta-
tion” can occur (see Figure 1) which can exacerbate existing communication bottlenecks[6].
Where this happens, any communication that goes on between nodes will have to traverse
past many other nodes in the network each time data must be passed. This can be prob-
lematic for a few reasons. Firstly, the physical distance for the data to travel is needlessly
increased, thus increasing the latency. Secondly, other surrounding nodes may also be in use
and competing for the same network paths thus decreasing the bandwidth for each job. As
such, the distances between nodes a job is run on can add up and have a noticeable affect on
job performance.

3



Figure 1: Fragmented Job on HECToR (Size 8) [3]

2.2 Network Topology

The network topology is the shape the network takes when connecting separate nodes
together. There are many variations of topologies that can be found in supercomputing clus-
ters, ranging from simple structures like rings and meshes, to loop-around toruses and newer
ones like the dragonfly[5][15]. The differences in these shapes help determine how quickly
data can traverse between nodes in the network. A simple metric for determining this is
“hops,” which is the number of nodes a message must traverse through to get to the node the
message is intended for. The closer together the nodes a job is allocated are, the fewer the
number of hops that is required to pass information between them.

2.3 Optimizing Job Placement

Because jobs are constricted by their placement on the network topology they are run-
ning on, optimisation of job node configuration can be beneficial. This optimisation on the
network can be approached in a number of ways. Two of the main types are: node ordering
and node allocation algorithms[1]. Node ordering attempts to optimise the ordering of the
nodes themselves in a topology. When the scheduler selects free nodes on the network for a
job, it chooses from these nodes in a particular order, some of which are more optimal than
others. Node allocation algorithms on the other hand select free nodes from the scheduler in
nearby groups without necessarily considering the order they are in. This project focused on
the latter type of optimisation.
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Although the optimisation of the placement of jobs is an NP-complete problem[10], re-
cent research has shown some promising results[6][7]. Two of these include bin-packing and
dynamic allocation algorithms. Bin-packing algorithms look for consecutive available space
to hold specific sized bins, whereas the dynamic algorithms focus more on looking for free
nodes in the vicinity of one another. Bin-packing algorithms have been used frequently for
simulating storage in areas such as warehouses or trucks. However, where consecutive free
nodes of a particular size cannot be found, jobs must wait until the space is available, even
where there are enough nodes free. On a supercomputer, letting nodes go idle would waste
valuable resources. Additionally, these algorithms can take a long time to run - some have
estimated on the order of hours[11], while others rely heavily on heuristics[8]. Dynamic
allocation algorithms, on the other hand, can be much more flexible and quick. Indeed,
research has shown that they can produce less fragmentation than algorithms seeking out
contiguousness[6]. For these reasons, this project has further focused in this direction ac-
cordingly.

2.3.1 Dynamic Allocation Algorithms

Dynamic allocation algorithms were originally conceived for use in memory storage,
where chunks of variable-sized consecutive blocks are allocated. An important distinction
between these types of algorithms and bin-packing ones is that while contiguity is ideal, it
is also less pertinent[10]. Allocations do not need to be fully contiguous as there is still
much improvement to be seen by placements which are even a little closer together. While
dynamic allocation algorithms may have been created for memory allocation, they can easily
be applied to other areas where improvement in compactness can be seen. Because of their
speed and flexibility, dynamic allocation algorithms are more suitable for use by a job node
scheduler where time and space are more precious resources.

There are many possible kinds of dynamic allocation algorithms available[9]. Gener-
ally, they seek out a suitably large fit of a particular size by traversing through the free space
available and differ in when to stop looking and also where this approach fails. For ex-
ample, one type is the “first fit,” where the algorithm searches for the first available free
space. Where enough consecutive free space cannot be found, the algorithm takes a recur-
sive divide-and-conquer approach[1]. This is explained more in Section 4.2. While memory
allocation algorithms are predominantly designed for one dimensional arrays, for network
topologies these algorithms need to be able to find contiguity in more than one dimension.
Here the role of node ordering also comes into play, which helps define what is considered
“consecutive.”
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2.4 Job Placement Metrics

In order to properly ascertain how “well-placed” a job is, that is to capture how com-
pact a job node placement is, a metric must be used in order to compare the effectiveness
of different algorithms and their corresponding parameters. Again, there are a number of
possible options, however the three main ones are: diameter, hop-bytes and MIND[1]. Di-
ameter measures the distance between the two furthest nodes. However, this does not take
very well into account shape in the sense that two jobs, one with evenly distributed nodes
and one with all nodes but one in close proximity, would both return the same value for the
diameter. Hop-bytes includes the byte count of each message, which is information that is
not taken into account (nor included in the logs) for this project. This is because the aim is
to find allocation algorithms that work well across the spread of jobs that are run on HEC-
ToR. Including this information would not help towards finding a good middle ground as
hop-bytes are very application specific. The final option is MIND, which is shorthand for
Mean Inter-Node Distance. MIND gives a general average of the distance between nodes
and is used for analyzing the improvement seen by different algorithms in this project.

2.4.1 MIND and Improvement

Figure 2 describes the MIND equation, where the MIND value of a torus T for a job
comprised of S nodes is equal to the sum between all nodes of the Manhattan Distance (dij)
between two particular nodes divided by one half the number of nodes in the placement (s)
times the number of nodes in the placement minus one. The equation takes into account
wrap-around effects of a network topology using modular values when calculating the Man-
hattan distance. While the MIND value gives the best general average of a “good fit,” it is
also fairly computationally expensive (on the order of O(N2)). The program to compute the
MIND values of the simulated placements in this project was parallelised for this reason.
This metric has been used for all the algorithms and topologies that were simulated. Values
reported and compared are of the percentage change in the mean MIND average between
the algorithm run with no placement preference and a new algorithm. This additional metric
will henceforth be used interchangeably with the “improvement” seen in an algorithm for a
particular job size.

MIND(T, S) =

s−1∑
i=1

s∑
j=i+1

dij

1
2
s(s− 1)

Figure 2: MIND Equation
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2.5 HECToR

2.5.1 Specifications

The overall goal of this project was to find ways to optimise the job placement of pro-
grams running on the hardware seen in Cray XE6 supercomputers. In particular it focused
on HECToR, which is the UK national supercomputer based in Edinburgh and is a Cray
XE6[2]. A picture of one of the cabinets in HECToR can be seen in Figure 4. HECToR
has 2816 computing nodes, each of which has 32 processing cores. These nodes are con-
nected into a 3D torus network, as can be seen in Figure 3. The dimensions of HECToR are
15x6x16, with two nodes at each coordinate and where 64 of the nodes are used as login
nodes. On HECToR, the maximum number of hops across the network is 18.

Figure 3: 3D Torus Network Topology [17]
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Figure 4: Inside One of HECToR’s Cabinets [4]

2.5.2 Log Data

This project used data from actual (albeit anonymized) jobs run on HECToR from the
start of 2012 to the start of 2013. Although HECToR contains 2816 computing nodes, only
2048 of the nodes at a time can be requested per job, which is the highest number of a job
size reported in this project. Additionally, only those job sizes that have more than thirty
instances in the log file are reported and the average MIND values used to calculate the
improvement are normalised by the logarithm of the job size. Throughout this paper, job
sizes are often discussed in terms of “small” jobs, “large” jobs and overall. “Small” jobs are
defined as 1-10 nodes and “large” jobs are between 11-2048 nodes. “Overall” includes both
of these groups. This distinction is made due to the average size of 10 for the job distribution,
which is explained later in Section 4.1.
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2.6 Previous Research on Cray XE6 Machines

Currently there is no optimization in place on HECToR with respect to job node schedul-
ing. As such, when jobs are placed on the network, the scheduler selects nodes on a “first
free” basis[20]. Carl Albing of Cray submitted a PhD thesis on a larger survey of this field
last year (building on previous work) and as part of it created a simulator to test out differ-
ent scheduling algorithms[1]. He ran two different algorithms and tested them out on three
different machines’ data. One of these machines was Hopper, the supercomputer housed
at NERSC, which is also a Cray XE6 [13]. The first part of this project extended Dr. Al-
bing’s work by determining what similarities and differences there are from running these
algorithms on data from the two machines: NERSC and HECToR.
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3 Simulator Code

The original simulator code was written in Java and consisted of ten classes and one
external library, which was reused and upgraded for this project. The codebase also liaises
with a MySQL database containing mappings for the nodes on HECToR to their coordinate
locations on the network. The simulator code was refactored to accommodate several new al-
gorithms, whereby one of the original classes was removed and an additional six new classes
added. Five unit tests were also written and added under a separate testing package with
an additional external library to use TestNG functionality[19]. Bash scripts were created
to run different variations of the simulations and to collect and analyze their results. The
algorithm examples included in the sections to follow (for example, Figure 11), however,
are written in pseudocode for better readability. All of the real code, however, has been
submitted electronically along with the dissertation.

3.1 Original Code

The simulation starts in the main function in the ALPSSim class, which reads in a
log file one line at a time and sends each placement (P for place and F for remove) as a
Reservation to an ALPSEngine object. When the engine is first created, a particu-
lar job node scheduling algorithm must be specified, which is then used to place the jobs
on the Torus network. This network object keeps track of the current simulated node
mappings on the machine as specified in an SQL database. Three allocator classes are
part of the original code base: one parent class (NodeAllocator) and two child classes
(FirstFitAllocator and FifoAllocator). The parent class is abstract and the two
children correspond to the algorithms described later in Section 4.2. A complete view of the
structure of the simulation code can be seen in Figure 5.

As the structure may suggest, the simulator does not precisely mimic the actual sched-
uler; there are several key differences. The first is - although there is capability for such a
setup - a simulation always starts out with no current jobs running on the machine. This
means that jobs will all find perfect fits until the simulation “gets going” (ie. fills up with
enough jobs that noticeable fragmentation would ordinarily be more likely to occur). The
second difference is that there is no functionality built in to account for failure. That is, only
jobs in which there was originally room to be placed will actually be simulated. This can
be seen in the simulator code examples where the possibility of failure is not accounted for.
Finally, the time a job takes to run is not taken into account with the simulator either - jobs
are simply placed and removed in the order that they show up in in the log file. However,
some residual of their run-time remains in the ordering, where jobs which run for longer are
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removed further down in the log file.

Figure 5: Original Simulation Code UML Diagram

3.2 Updated Code

The main purpose of updating the simulator code was to implement new job allocation
algorithms, in particular those outlined in Section 5. This was done mainly with the addi-
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tion of new child classes to inherit from the NodeAllocator class, however this class
and the FirstFitAllocator class were refactored first to make adding new function-
ality easier. Additionally, an off-by-one error was discovered in the original algorithm in
the FirstFitAllocator class, so this function was rewritten. Although only three new
classes were added, there are actually four new algorithms. The FirstFitAllocatorRevised
accommodates two algorithms as well as being a parent class to a third. The main changes
in this new structure are shown in Figure 6.

Figure 6: Updated Simulation Code UML Diagram

3.3 Testing

Finally, a new testing package was added to ensure that the algorithms were producing
the correct results and would continue to do so where changes were made elsewhere in the
codebase. The package includes unit tests that inherit functionality from the open source
TestNG library. At the top of the hierarchy there is an abstract parent, CommonTest,
which sets up the database connection for use by the child classes and cleans up after each of
their tests are run. Then four other tests were created to test the functionality of the four new
classes added. Another class, called NodeDebugHarness, containing static functions was
also added to allow for shorter available nodelists to be used as well as printing out available
nodes for debugging purposes. The new testing package structure can be seen in Figure 7.
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Figure 7: Simulation Test Package UML Diagram
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4 Comparison of Job Node Allocation Algorithms on

Cray XE6 Machines

The first part of this project involved reproducing the research done by Carl Albing on job
node allocations for the NERSC machine, another Cray XE6. The purpose of doing this was
two-fold: to confirm his results and to see what role, if any, the job size distribution had on
job node allocation algorithms. First, the differences between the jobs run on both machines
are explored. Then the preliminary algorithms are introduced and explained. Finally, the
results and conclusions from the comparison of the two is explored.

4.1 Job Size Distributions

As can be seen in Figures 8 and 9, the job sizes of the two Cray XE6 machines (HECToR
and NERSC) follow somewhat different distributions. Both distributions peak early and have
long, small tails. However, HECToR has a second peak at 9-16 nodes, where there are nearly
as many jobs run at 9-16 nodes as at 1 node. On the NERSC machine, no other job size range
contain close to as many jobs as 1 node. The mean job size for each the two distributions
confirms this difference: the mean job size of NERSC is 3 and for HECToR is ∼10.

While both HECToR and NERSC are Cray XE6 machines, they have a different number
of processors per node. As the x-axes on the graphs in Figures 8 and 9 show, each node on the
NERSC machine contains twenty-four processors while each node on the HECToR machine
contains thirty-two. This should be kept in mind when viewing subsequent comparisons of
improvement seen on the two machines as they will not show an exact match. However,
rebinning both values proved awkward and showing both on a consolidated graph seemed
confusing, so they are simply graphed on the same axis for clarity. Furthermore, there are
roughly four times as many jobs in the logs used from HECToR as there are for NERSC
(probably due to the fact that the data logs from the NERSC machine cover only 43 days,
while the HECToR logs span a whole year). This difference can be seen along the y-axes in
the same figures.
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4.2 Preliminary Dynamic Allocation Algorithms

Two dynamic allocation algorithms were originally implemented and run on the NERSC
data: First Fit and FIFO[1]. The First Fit algorithm takes in an acceptable gap
size as a parameter and iterates over the free nodes on the network searching for a consecutive
chunk of available nodes the size of the current job (where consecutive is defined by the gap
size parameter). Where a consecutive chunk of free nodes cannot be found, the algorithm
recursively divides and re-runs over two evenly divided smaller chunks until enough nodes
have been allocated to the job. The FIFO algorithm takes in an input parameter specifying
a “large” job size and returns the first free nodes it finds from one end of the free node list
if the job size is “large” and from the other end if it is small. The nodes returned are not
necessarily consecutive.

The following results for these preliminary (and subsequent) algorithms show improve-
ment between jobs run on a particular algorithm configuration versus the jobs run on the
FIFO-0 algorithm. The new algorithm results are compared to the FIFO-0 algorithm and
not the original mapping because there were already jobs occupying nodes when the logs
were collected, as explained in Section 3.1. In contrast, the FIFO-0 algorithm is run with
the same initial configuration as the new algorithms and simply selects a mapping from the
first available nodes it finds, as the job scheduler of HECToR does. Finally, an off-by-one
error was discovered in the original First Fit algorithm, so these results were created
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using the corrected algorithm. The differences between the original algorithm and the up-
dated one can be seen below in Figure 10. The updated algorithm simply returns slightly
better results.
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Figure 10: Improvement versus Job Size for Original and Fixed Fit Algorithms
Run on HECToR Log Data

4.2.1 First Fit Results

The simulator ran the First Fit algorithm on the NERSC and HECToR data sets
using gap sizes of 1, 2, 4 and 8. The results for the improvement using gap sizes of 1
and 8 are shown in Figures 12 and 13 respectively. In comparison to the NERSC data,
the First Fit algorithm performed similarly (although slightly better) for smaller job
sizes and generally better for larger job sizes for the HECToR data. The larger the gap
size, the more positive the results were overall for both data sets. This improvement can be
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seen clearly between Figures 12 and 13 for gap sizes 1 and 8. The HECToR log data also
responded more positively to the algorithm overall. While both data sets oscillate between
positive and negative improvement in Fit-1, the magnitude of the negative values for the
HECToR data set is smaller than those for the NERSC. The magnitude of the positive values
for the HECToR data is also notably greater for larger job sizes end for both smaller and
larger gap sizes. Overall, the Fit-8 algorithm produced the best results, although between
the four algorithm runs the average improvement only varied by ∼%1.5.
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First Fit Algorithm

function fitAllocate

initialize returnNodes to empty

call getChunk

if available chunk is not empty

add all nodes in chunk to returnNodes

mark these nodes as in use

else

split the jobSize in half

call fitAllocate again with first half

add all nodes returned to returnNodes

mark all nodes returned as in use

call fitAllocate again with second half

add all nodes returned to returnNodes

mark all nodes returned as in use

return returnNodes

function getChunk

refresh available nodes on network

initialize returnNodes list to empty

while there are available nodes left to traverse

if the returnNodes list is empty

add the current node

else if the returnNodes list is greater than or equal to the job size

break out of the while loop

else

if the space between the current node and the previous node is less

than or equal to the gap size

add the current node to returnNodes

else

clear the returnNodes list and add the current node to the

list

if the returnNodes list is less than the job size

return null

return the returnNodes list

Figure 11: Functions to Allocate Nodes and Get Suitable a Chunk Size For
First Fit Algorithm
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Figure 12: Improvement versus Job Size for Fit-1 Algorithm on HECToR and NERSC Dataa

aData for all graphs has been submitted electronically

19



-20

0

20

40

60

80

100

Job Size (Nodes)

%
 C

h
a

n
g

e
 M

e
a

n
 M

IN
D

HECToR

NERSC

Figure 13: Improvement versus Job Size for Fit-8 Algorithm on HECToR and NERSC Data

4.2.2 FIFO Results

The simulator then ran the FIFO algorithm on both data sets using “large” parameter
values of 2, 4, 8, 16, 32, 64 and 128. The results using parameter values of 2, 32 and 128
are shown in Figures 15, 16 and 17 respectively. Overall the NERSC data set responded
more positively to the FIFO algorithm for smaller job sizes, while the HECToR data set
responded more positively for larger job sizes. However, the magnitude of the positive re-
sponse to the algorithm was much less than for the First Fit algorithm. As the size of
the parameter value increased, the more positively both data sets responded for larger job
sizes and the poorer the response was for smaller job sizes. In fact, the difference between
mixed and positive responses can be seen at the point where job size = parameter size.
Additionally, as can be seen most clearly in Figure 17, the percent improvement for small
job sizes oscillates between positive and negative magnitudes at greater magnitudes for the
HECToR data set while still responding mostly positively for the NERSC data set. Overall,
the FIFO-32 algorithm produced the best results, however, unlike the Fit algorithm, the
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difference between the average improvement for the worst and best runs was more varied
(by ∼%11).

FIFO Algorithm

initialize returnNodes list to empty

get available list of nodes

if the job size is smaller than the ‘‘large’’ parameter

reverse the list of available nodes

while there are nodes in the available nodes list

add current node

if the size of returnNodes is greater than or equal to the job size

break out of the while loop

return the returnNodes list

Figure 14: FIFO Algorithma

aThis is Carl Albing’s algorithm
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Figure 15: Improvement versus Job Size for FIFO-2 Algorithm on HECToR and NERSC
Data

22



-20

0

20

40

60

80

100

Job Size (Nodes)

%
 C

h
a

n
g

e
 M

e
a

n
 M

IN
D

HECToR

NERSC

Figure 16: Improvement versus Job Size for FIFO-32 Algorithm on HECToR and NERSC
Data

23



-21

-1

19

39

59

79

99

Job Size (Nodes)

%
 C

h
a

n
g

e
 M

e
a

n
 M

IN
D

HECToR

NERSC

Figure 17: Improvement versus Job Size for FIFO-128 Algorithm on HECToR and NERSC
Data

4.2.3 General Discussion of Similarities and Differences

The original results from running the two algorithms on the NERSC data set showed
that the FIFO algorithm worked better for larger job sizes, while the First Fit algorithm
worked better for smaller ones. The First Fit algorithm with a gap size parameter of
4 showed the best improvement results overall[1]. Generally, the results from running the
HECToR data set through the algorithms confirmed this behaviour as well. However for
the HECToR data, the First Fit algorithm with a gap of 8 produced the highest percent
improvement on average across all jobs.

Although for the most part the two data sets responded similarly to the algorithms, a
number of noticeable differences also cropped up. In particular, the NERSC data set was
more sensitive to the First Fit algorithm and overall did not respond as well to the
algorithm as the HECToR data set. Conversely, the HECToR data set was more sensitive to
the larger parameter valued FIFO algorithms, oscillating more markedly between positive
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and negative percentage change mean MIND values at lower job sizes. Both of these features
may be due to the differences in the distribution of job sizes found in the two data sets.
The various job sizes in the HECToR data set are more evenly spread out across a wider
range, whereas the job sizes in the NERSC data set peak early and taper off more quickly,
resulting in a smaller number of larger sized jobs. The average job size of the distributions,
as described in Section 4.1, confirms this given that the value for the NERSC data set is much
lower than for the HECToR data set. Because relatively there are a larger number of small job
sizes in the NERSC distribution, it may always be more difficult to find contiguous chunks
for larger job sizes unless the smaller jobs are placed closer together. This would explain why
the FIFO algorithm works better for the smaller jobs sizes with larger parameters for the
NERSC data and worse for the HECToR data set. Because the HECToR data set has a wider
range of commonly used job sizes, the FIFO algorithm might show some improvement,
but not in any one specific area. Additionally, the HECToR data set may respond better
to the First Fit algorithm overall because there is more room for improvement with
fewer small jobs and more larger job sizes which might have normally become much more
fragmented.

There are other factors that may explain the differences as well. While the two data
sets were run on similar architectures, the scheduling algorithms may be different on these
two machines. The machine at NERSC may have different maximum times which jobs are
allowed to be run so may have a different turnover altogether. This would show up in the
logs as jobs being placed and removed more quickly than they might be in the HECToR logs.
It is also possible that the scheduler is set up to wait until contiguous chunks of free nodes
are available to run large jobs. Finally, it should be taken into consideration that the nodes
do not have the same number of processors, as described in Section 4.1, so indeed the graphs
would never be an exact match.

The main conclusion to be drawn from this preliminary comparison is that job node
scheduling algorithms have different effects depending on job size distributions. In particu-
lar, this holds where the architecture and topologies are virtually the same. Therefore, opti-
misations using such algorithms would need to be done on a per-machine basis. Here, having
a simulation could be quite useful because results can be obtained and decisions made about
topologies and scheduling before the machine is even built using historic data indicative of
the job distribution of the service.
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5 New Dynamic Allocation Algorithms

Although the two preliminary algorithms separately showed some promise for large and
small-sized jobs, neither of them worked well overall for both groups. Four new algorithms
were designed and implemented to run over the HECToR data set to try to bridge this gap.
These include:

• a “largest fit” algorithm

• a First Fit algorithm varying gap size by job size

• a combination of the FIFO and First Fit algorithms

• a “closest” fit algorithm

Some other variations of these algorithms were also tried and their results are documented
where applicable. As original data for the NERSC set was not available for comparison, the
following graphs only show the percent improvement per job in comparison to the FIFO-0
algorithm run on the HECToR data.

5.1 Largest Fit

5.1.1 Algorithm Concept

The Largest Fit algorithm loops over the list of free nodes on the network looking
for a contiguous chunk that will fit the job size. An input parameter of acceptable gap size
must also be specified, which defines contiguousness. Where an available chunk cannot
be found of the job size, the algorithm selects the largest free chunk available and then
continuous the search. Similar to the First Fit algorithm, the algorithm iterates again
seeking out the “largest fit” for the remainder (ie. job size− largest size) until the complete
number of nodes has been found. The algorithm can be seen in Figure 18.
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Largest Fit Algorithm

function allocateNodes

initialize returnNodes list to empty

intialize remainingNeeded to job size

while the size of remainingNeeded is greater than zero

refresh the list of available free nodes in the network

call getLargestContiguous to get largest contiguous chunk of free nodes

with the parameter remainingNeeded

add returned nodes to returnNodes list

mark all returned nodes as in use

subtract off number of returned nodes from remainingNeeded

function getLargestContiguous

initialize nodeList to empty

initialize maxList to empty

if the number of available nodes is greater than the remainingNeeded size

while there are available nodes left

if the nodeList list is empty

add the current node

else if the nodeList is greater than or equal to the

remainingNeeded size

return the nodeList list

else

if the space between the current node and the previous node

is less than or equal to the gap size

add the current node to nodeList

else

if the nodeList list is greater than the maxList

set the maxList equal to the nodeList list

clear the nodeList list

if the nodeList list is greater than the maxList

set the maxList equal to the nodeList list

else if the number of available nodes is equal to the remainingNeeded size

return all the available nodes

return the maxList

Figure 18: Functions to Allocate Nodes and Get a Suitable Chunk Size For
Largest Fit Algorithm
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5.1.2 Results

The simulator ran the Largest Fit algorithm on the HECToR log data using gap
size values of: 1, 2, 4 and 8. Of the four algorithms run, the Largest Fit algorithm
produced the second highest results overall, for large job sizes and for small job sizes. For
overall average and large job size average, the Largest Fit with a gap size of eight
performed best, where the difference between the Largest Fit algorithm and the highest
value (from the Closest Fit algorithm, which performed the best in all the categories)
was ∼%2 improvement for the overall average and ∼%1 improvement for the large job
sizes. For the small job size average, the Largest Fit with a gap size of one performed
best, where the difference between the results from the Largest Fit algorithm and the
best performing algorithm (again the Closest Fit algorithm) was ∼%2 improvement.
Between the smallest and largest gaps, the difference was only ∼%1 improvement for the
large and overall averages. However for the small job average, the difference between the
averages between gap sizes of one and eight was almost %10 improvement in favor of the
gap size of one. These differences can be seen in Figure 19.

This behaviour is similar to the results seen with the First Fit algorithm, although
the Largest Fit algorithm produced better results overall. Between the smallest and
largest gaps, the difference for both algorithms was only ∼%1-2 improvement for the large
and overall averages. For the small job average, the difference between the averages between
gap sizes of one and eight was ∼%7-10 improvement in favor of the gap size of one. This
makes sense given that most small jobs are less than 8 nodes in size, so using a similar gap
size would not be likely to show much improvement. However, for average and larger than
average jobs, a gap size of eight matters less and is more flexible to allow for a compact
placement. For all job sizes though, the Largest Fit algorithm performed markedly bet-
ter in improvement in comparison to the First Fit algorithm. This is probably because
the Largest Fit algorithm optimizes the amount of the chunk that is contiguous more
than the First Fit ever would. However, both only seek out a contiguous chunk on the
first iteration and on subsequent tries looks for smaller contiguous chunk(s) that can be any-
where on the network. Inevitably though, the Largest Fit algorithm is more likely to
require fewer iterations as it looks for the largest chunk available. Indeed, the First Fit

algorithm runs ∼2 seconds slower than the Largest Fit one as can be seen in Table 3.
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Figure 19: Improvement versus Job Size for Largest Fit Algorithm

5.2 FifoFit

5.2.1 Algorithm Concept

The FifoFit algorithm combines the two algorithms FIFO and First Fit. It se-
lects free nodes using the First Fit algorithm from the beginning of the free nodes list
if the job size is “large” and from the opposite end if the job size is small. Here two param-
eters are involved: one for varying the fit gap size and one for determining what constitutes
a “large” value for the FIFO algorithm. Code-wise, the algorithm itself simply inherits from
the same class as the First Fit algorithm and overrides the function that obtains the free
node list with one that follows the same procedure as the FIFO algorithm. As such, snippets
of the code are not included here.
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5.2.2 Results

The simluator ran the FifoFit algorithm on the HECToR data set using “large” pa-
rameter values (for the FIFO algorithm) of [ 2, 4, 8, 16, 32, 64, 128 ] and gap sizes (for
the First Fit algorithm) of [ 1, 2, 4, 8 ], resulting in twenty-eight different combi-
nations of parameters. The improvement seen from these various runs were mixed, al-
though the difference in the overall average improvement only differed by ∼%4 improve-
ment between the poorest performing algorithm (FifoFit8-1) and highest performing
one (FifoFit64-8). All algorithms saw improvement overall compared with the FIFO
algorithm and some saw improvement over the First Fit algorithm. Most saw improve-
ment over the Varying Fit algorithm as well (in particular, all those with a Fit gap size
of eight). FifoFit64-8 performed quite well overall and for high average values, coming
in just after the Closest Fit and Largest Fit algorithms. For the small job aver-
ages, the FifoFit32-1 and FifoFit4-1 performed only ∼%0.5 improvement worse
than the Largest Fit with a Fit gap size of four and better than the Largest Fit

with a Fit gap size of eight. The FIFO algorithm with the best improvement overall was
with a gap size of thirty-two and the FIFO algorithm with the most improvement for small
jobs was with a gap size of four. As explained in Section 5.1.2, the First Fit algorithm
with the most improvement for small jobs was with a Fit gap size of one.

As can be extrapolated from the examples above, overall the results seen in the com-
bination of the two algorithms corroborate with the results seen separately. That is, the
parameters that worked well for particular job types for each individual algorithm worked
better in combination. As well as this, those parameters that worked well for small or large
job sizes still worked well in combination. Generally, runs with a Fit gap size of eight
performed well overall and for large jobs, and those with a Fit gap size of one performed
well for small jobs (as seen for both on their own). Relatedly, runs with higher FIFO param-
eter values worked better for larger job sizes and overall, while the smaller parameter values
worked better for smaller job sizes. See Figure 32 for the complete picture.
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Figure 20: Improvement versus Job Size for Select FifoFit Algorithms

5.3 Varying Fit

5.3.1 Algorithm Concept

The Varying Fit algorithm varies the acceptable gap size for a contiguous chunk of
free nodes by job size. A log function was used in order to gradually increase the gap size
from small jobs up to large ones. Originally, an input parameter for gap size was used as
well, however testing out several variations of the algorithm with such a parameter showed
that this did not provide any additionally useful means of tuning. Furthermore, the results
followed the same trend as the original First Fit algorithm. In multiplying or dividing
by the gap size in various incarnations, the resulting values did not change by more than %1
in improvement. While this is also true for the Largest Fit algorithm, in this algorithm
the variable parameter seemed to detract from the nature of the algorithm itself so in the
end was not used. The algorithm effectively uses the same method as the First Fit
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algorithm, while overriding the value of the gap size as shown in the code in Figure 21. The
factor of two is used to keep very small jobs (size 2-3) from having gaps in them and the
gaps range from a size of 1 (for job sizes of 2-3) up to 8 (for jobs over 1000 nodes).

Varying Fit Algorithm

function getGapSize

if varying gap size by job size

return the integer value of the natural logarithm of the job size

multiplied by 2

else

return the normal gap size

Figure 21: Function to Get Gap Size in FirstFitRevised Class

5.3.2 Results

The Varying algorithm was the worst performing algorithm of the four new algo-
rithms, although it still showed more consistent positive improvement than the FIFO algo-
rithm and results fell between the best and worst performing First Fit algorithms. It
seems a little surprising that it does not perform better than any of the static First Fit

algorithms. However, perhaps it is a case of tailoring the algorithm to work well with a
particular job distribution. Given that this task would likely require further tweaking where
other algorithms showed more promise, this particular path was not pursued.
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Figure 22: Improvement versus Job Size for Varying Fit Algorithm

5.4 Closest Fit

5.4.1 Algorithm Concept

The Closest Fit algorithm returns the subset of free nodes of a particular job size
with the minimal largest distance between consecutive nodes in the available list. Because
of its reliance on “consecutive” nodes, the success of this algorithm is heavily coupled with
the job node ordering of a machine. It works by looping over all free nodes in the list
and compares the largest ordinal distance between the nodes within each possible available
grouping of a job of size N and returns the one with the smallest value. The algorithm breaks
out though at the first available grouping found to be acceptable as determined by an input
parameter for gap size. The only reason to test out multiple input parameters here would be
to potentially speed the algorithm up (as it would break out sooner with larger gaps being
acceptable). However, given that this was the second fastest running algorithm (see Table
3), this did not seem necessary. It was tested though to confirm that the improvement also
decreases as larger tunable parameter values are used. The algorithm can be seen in Figure
23.
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A variation on this algorithm was tried using the MIND value instead of the minimal
largest distance. While the improvement values were higher using this variation, the simula-
tor took on the order of hours to run. This kind of timescale would be unacceptable for a job
scheduler on a supercomputer. Optimising the algorithm (or even parallelising it) was outside
the scope of this project. However, because the results were somewhat interesting, the values
found can be seen in Figure 25 (and in subsequent graphs including all the algorithms).

Closest Fit Algorithm

function findClosestFit

initialize minimumList to empty

initialize minimumDistance to 99999

get list of available nodes

if size of available nodes list is greater than the job size

while there are still available nodes left in the list

if the job size is greater than one

get sublist of size of job size from available nodes

call getLargestDistanceBetweenNodesInList for sublist

if the largest distance between nodes in the sublist is

less than the minimumDistance

set the minimumList to be the sublist

set the minimumDistance to be the largest distance

between nodes in the sublist

if the minimum distance is less than or equal to the gap

size

return the minimumList

else

return the next available node

else if available nodes list size is equal to the job size

return the list of available nodes

return the minimumList

function getLargestDistanceBetweenNodesInList

initialize largest value to -1

while there are nodes in the list minus the last node

get the distance between the current node and the next node

if this distance is greater than the largest value

set the largest value to the distance

return the largest value

Figure 23: Functions to Get List of Closest Fit Nodes and
Largest Distances Between Nodes in a List
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5.4.2 Results

The Closest Fit algorithm produced the most improvement out of all the algorithms
run on the HECToR data. For jobs of size three, the improvement is almost %100 (the actual
value is %96.7). Still, at the higher end of the job sizes the algorithm stops performing as
well, just as all the other algorithms. This is because there simply is not as much room
for improvement for larger jobs, which are placed over most of the nodes of the network.
However, the Closest Fit results when using MIND values instead of the minimized
largest distance ones look even more promising. As can be seen in Figure 25, the results
almost looks like a step function and show a noticeable improvement almost all the way
up to jobs run on 1000 nodes. This is, of course, the best that can be done here as we are
measuring the improvement in the MIND. Perhaps surprisingly though, while this variation
of the algorithm tops the improvement values for the overall and large job size values, it only
comes in third for the small job sizes (although the difference is only a couple of percentage
points). This may be because improving the MIND values for the larger jobs limits the
consecutive placements for the smaller jobs and so more fragmentation occurs at the lower
level.
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Figure 24: Improvement versus Job Size for Closest Fit With Minimized Largest Distance
Algorithm
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Figure 25: Improvement versus Job Size for Closest Fit With MIND Algorithm
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6 Further Analysis of Job Allocation Algorithms

So far the only results which have been presented have been Improvement versus Job
Size graphs for the different algorithms, however there are many other aspects of the data that
the following section explores. The first part of this section discusses the effect of normal-
izing improvement values by CPU usage to shed more light on how much the improvement
actually matters per job size. The next part describes the effect of running each of the single
parameter algorithms with higher and higher gap sizes in order to find their breaking point.
Overall averages for different job types were then calculated for all of the algorithms. To
ensure correctness, the data from each of the algorithms was run though a Student’s pairwise
T-test analysis. The final part of the analysis concludes with a look at the performance of the
various algorithms.

6.1 Normalization of Improvement

Along with the number of jobs sizes run on HECToR, the “computing resource” (kAU)
value for each job size was also available[14]. These values indicate which jobs are consum-
ing the most amount of CPU time. A binned distribution of the kAU values per job size range
for HECToR can be seen in Figure 26. “Fitness factors,” from the normalized values of each
bin of this distribution, were created and used as weights on the original improvement graphs
(Improvement versus Job Size) in order to see if this unearthed more clear similarities/differ-
ences between the algorithms. The assumption here is that the jobs which consume the most
time are also communicating the most, which while not always the case is still more likely
to be true (however, this is heavily dependent on the type of algorithm being run). Where
this is true, then smaller jobs will consume less time because they have less communication
overhead. So ideally, when applying these algorithms it is hoped to see more improvement
at the larger end of the job size range than smaller ones, but this becomes more difficult as
the job size approaches size of the network. Thus by normalizing the graphs in this manner,
it was hoped that a less distorted view of the improvement can be seen.
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Figure 26: kAU Value versus Job Size for HECToR

The graphs in Figures 27 and 28 show the original and normalized improvement val-
ues for each of the best performing (where applicable) algorithms tested. For the normalized
version of the graph, it is clear that all the improvement seen at the smaller job end of the
graph in Figure 27 (for all but the FIFO algorithm) mean less than they seem to. The most
improvement seems to actually be happening between job sizes of 9 to ∼30 nodes. Then up
until ∼175, the improvement seems to oscillate around %5, afterwhich it dwindles down to
about 0 near 1000 nodes and then there is very little to no improvement seen after this. The
top performing algorithms are the same for the normalized case as the original case, however
the differences in the magnitudes of percentage improvement are much smaller. So overall
the Closest Fit still shows the most improvement at ∼%5 overall. However, as can be
seen more clearly between Figures 32 and 33, the differences between the magnitude of the
overall improvement is much smaller both between algorithms and between the different job
sizes.
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Figure 27: Improvement versus Job Size for Best Performing Algorithms
on 3D Torus
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Figure 28: Normalized Improvement versus Job Size for Best Performing Algorithms
on 3D Torus

6.2 Threshold Investigation

Three algorithms (First Fit, FIFO and Largest Fit) were run with varying gap
sizes up to 2050 to determine at what gap threshold these algorithms break apart. Figures
29, 30 and 31 show these results. The three separate graphs are included to show differences
between the overall, small job size (1-10 nodes) and large job size (11-2048 nodes) average
improvements respectively. Only these three algorithms were run as they require a variable
gap size parameter. FifoFit was not included as it is merely comprised of the FIFO and
First Fit algorithms.
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Figure 29: Graph of Average Improvement Versus Gap Size For First Fit, FIFO and Largest
Fit Algorithms
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Figure 30: Graph of Low Job Size Average Improvement Versus Gap Size For First Fit, FIFO
and Largest Fit Algorithms
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Figure 31: Graph of Large Job Size Average Improvement Versus Gap Size For First Fit,
FIFO and Largest Fit Algorithms

Across all three graphs, the Largest Fit and First Fit algorithms follow
the same movement from the smallest to largest gap sizes, whereas the effect on the FIFO
algorithm is quite different. In the overall average and large average graphs, the shape for the
Largest Fit and First Fit peaks around 15 nodes and slowly diminishes with very
little going on after a gap size of 1550. Given that the average job size is just over 10 nodes,
this value makes sense. The FIFO algorithm follows the same shape in these two graphs as
well, however it jumps up and down quite a bit more and peters out a lot more quickly (at
around a gap size of ∼500). This is probably because there are far fewer numbers of jobs
after this size, so overall not a lot of difference will be made using such large gaps. For the
low average graph, the Largest Fit and First Fit algorithms peak much higher at
the smallest gap size (5) and then tail off at a much steeper slope, but again petering out
around 1550 nodes. Interestingly, for all three graphs, while the Largest Fit values start
out slightly higher than the First Fit values, after around a gap size of 450 they start to
converge. The FIFO algorithm also peaks at the smallest job size, but tails off even more
quickly and then short of a gap of oscillating around zero improvement between 100 to 150
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nodes remains steadily around %1-2 improvement until the very end even past 2050 nodes.
While this seems wrong, there are actually a number of jobs greater than 2048 in the log file,
but they are not registered in any of the graphs here because they are test runs (and indeed
there are fewer than thirty of them, see Section 2.5.1). So having these larger jobs come
from the opposite end of the list must still help some of the smaller jobs be placed more
compactly.

6.3 Averages Comparison

The average improvement for small jobs, large jobs and all jobs for all of the algorithms
are shown in Figures 32 and 33 for original values and normalized values respectively. The
most striking difference between the original and normalized graphs is that, similar to what
was seen in Section 6.1, when the original values are multiplied by the fitness factors the
small jobs have a much smaller impact overall. Additionally, the differences flatten out
overall between different parameter values for the algorithms in the normalized graph for
the low values. However, the opposite is true for the overall and larger job averages. Here,
the differences seem to become magnified. This makes sense considering how much more
kAU there is for jobs between 9-256 nodes. The improvement in improvement can be seen
here much more clearly between increased gap sizes for the FifoFit, Largest Fit and
First Fit algorithms. For the latter two, it can be more clearly seen that the improvement
goes up along with gap size for the larger jobs and overall, while it goes down for smaller
jobs.
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Figure 32: Overall Averages
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Figure 33: Normalized Overall Averages

Table 1 shows the top three algorithms in order of the percentage increase in improve-
ment for small jobs, large jobs and overall. The Closest Fit showed the most improve-
ment in all three job types and the Largest Fit showed the next highest improvement
for both the second and third places of all three job types. However, the parameters for the
Largest Fit in second and third places was different for the small job sizes than for the
large job sizes and overall. As explained previously in Section 5.1.2, smaller gap sizes show
more improvement for small job size placements and larger gap sizes show more improve-
ment for the large job size placements for the Largest Fit algorithm.
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Small Job Sizes Large Job Sizes Overall

Algorithm Improvement Algorithm Improvement Algorithm Improvement

Closest 71.28 Closest 27.95 Closest 30.88

Largest-1 69.29 Largest-8 26.81 Largest-8 29.037

Largest-2 68.30 Largest-4 26.28 Largest-4 28.94

Table 1: Top Three Algorithms for 3D Torus Topology

6.4 T-Test Analysis

The results were run through a paired Student’s T-test algorithm to determine if the
results were significant (as well as to compare with the NERSC results to see if they were
conclusive). The T-test shows if the improvements are valid improvements overall by looking
at individual changes for each placement[18]. An assumption is made that the algorithms
will all show improvement overall greater than 0. Therefore the null hypothesis constitutes
values less than or equal to zero. So to be valid, the T-test value needs to be above 0.05,
which all of the algorithms are. As the average of the differences gets bigger, then the value
produced by the T-test gets bigger, so better performing algorithms will have higher T-test
values. Values reported in Table 2 use the average values of improvement, normalised by job
size.

algorithm mean standard deviation T-Test valid
Fifo-128 1.07417 1.84998 30.8259 yes

Fifo-16 0.995274 1.66964 144.802 yes

Fifo-2 0.903076 1.54181 155.466 yes

Fifo-32 1.05037 1.78554 85.8939 yes

Fifo-4 0.810734 1.28785 253.376 yes

Fifo-64 1.07721 1.84333 32.1558 yes

Fifo-8 0.898599 1.50908 223.756 yes

FifoFit128-1 0.365051 0.68575 600.815 yes

FifoFit16-1 0.369218 0.70032 595.72 yes

FifoFit2-1 0.373645 0.731024 588.798 yes

FifoFit32-1 0.358394 0.690245 605.615 yes

FifoFit4-1 0.354944 0.698356 598.983 yes

FifoFit64-1 0.360961 0.690005 603.695 yes

FifoFit8-1 0.368196 0.696206 594.769 yes

FifoFit128-2 0.378245 0.693257 597.013 yes



FifoFit2-16 0.376985 0.690734 595.169 yes

FifoFit2-2 0.359857 0.717607 597.948 yes

FifoFit32-2 0.374336 0.689903 601.515 yes

FifoFit4-2 0.367948 0.700379 597.034 yes

FifoFit64-2 0.377472 0.693244 596.952 yes

FifoFit8-2 0.384564 0.706944 589.143 yes

FifoFit128-4 0.419477 0.711402 583.878 yes

FifoFit16-4 0.421898 0.715753 579.648 yes

FifoFit2-4 0.401975 0.718043 584.773 yes

FifoFit32-4 0.416397 0.709642 585.787 yes

FifoFit4-4 0.403487 0.733471 588.398 yes

FifoFit64-4 0.416651 0.707613 586.27 yes

FifoFit8-4 0.423429 0.709189 580.923 yes

FifoFit128-8 0.477916 0.769164 555.535 yes

FifoFit16-8 0.477117 0.766963 558.95 yes

FifoFit2-8 0.454383 0.750176 563.166 yes

FifoFit32-8 0.473175 0.764466 561.305 yes

FifoFit4-8 0.450678 0.767411 570.912 yes

FifoFit64-8 0.480437 0.771976 557.122 yes

FifoFit8-8 0.475643 0.763179 560.501 yes

Fit-1 0.38064 0.71578 589.07 yes

Fit-2 0.394499 0.719194 584.014 yes

Fit-4 0.438778 0.748051 570.009 yes

Fit-8 0.491245 0.787496 545.11 yes

Closest 0.312544 0.464702 679.43 yes

ClosestMind 0.343521 0.428882 681.091 yes

Varying 1.01559 1.8242 160.781 yes

Largest-1 0.329519 0.51473 655.87 yes

Largest-2 0.348658 0.520518 649.271 yes

Largest-4 0.389974 0.580331 630.609 yes

Largest-8 0.465111 0.681025 586.953 yes

Table 2: Algorithm Data Analysis and T-Test Results
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6.5 Performance Timings

The simulation was run five times for each algorithm and the results of the average of
those times are plotted in Table 3. The timings were taken over the whole simulation run for
the entire year-long log data to account for differences in timings for large and small jobs
as well as to get more reliable timings overall. The FIFO algorithm performed the fastest,
which is no surprise given that it has only one potentially computationally intensive section
for each placement (which is when a list requires reversal). However, given a valid gap size,
this reversal only occurs when a job size is smaller than the “large” parameter, which is
not always the case. The Closest Fit algorithm (using minimized maximum distance)
comes in second place in terms of time, which makes sense given that only iterates over the
whole network once and breaks out once it has found a suitable fit. The Varying Fit

algorithm, which uses logarithms (which are expensive calculations), takes the longest of
the feasible algorithms. Of course, the Closest Fit (using the MIND calculation) takes
on the order of hours, which makes sense given that it calls an O(N2) algorithm for each
potential fitting in the network. The First Fit, Largest Fit and FifoFit have very
close times and they all use similar recursive approaches. The Largest Fit approach is
slightly more optimal than the First Fit approach as it optimises for larger chunks and
uses a single recursion instead of a divide-and-conquer one. As expected, the FifoFit runs
slightly longer than the First Fit given the possibility of having to reverse the list before
traversing it.

Algorithm Overall Time for Simulation Run (s)

First Fit 89.9086

FIFO 69.3062

Largest Fit 88.0878

Varying Fit 287.6006

FifoFit 92.5408

Closest Fit (Minimal Largest Consecutive Distance) 81.7104

Closest Fit (MIND) 7843.491

Table 3: Timing Comparisons for Simulation Runs Using Different Algorithms

The long-term goal of using more compact placements is to improve performance of
jobs run on supercomputers. If a particular scheduling algorithm took too long, this would
undo the benefits of using it in the first place. Additionally, the algorithm will be used each
time a job is placed, so this overhead could add up. For these reasons the performance of the
algorithms themselves is as important as their effects.
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7 Results On Other Topologies

The results covered so far have only covered one specific topology: the 3D torus. There
are many other possible network configurations, two of which are covered in this section.
To produce these results, the simulator codebase was first updated to accommodate other
topologies. As real data for these topologies was not available (and comparisons with such
would have been less enlightening as other variables - such as the job distribution - may have
encroached), the next step required re-mapping the original number of nodes on HECToR
to fit new network coordinates. This was done for a dragonfly topology and 5D Torus. The
results of both of these incarnations are discussed further below.

7.1 Code Refactor

The simulator code was originally only written to run on a 3D Torus network, so sev-
eral changes to the class structure were required to simulate the new topologies. First, the
Torus class was refactored to inherit from an abstract Topology3D class and a parent
abstract Topology class was subsequently created above this. A new Dragonfly class
then extends from the Topology3D class and a new Torus5D class now inherits from
the Topology class, as it has 5 coordinates instead of 3. Additionally, an abstract par-
ent Coordinate class was created to handle the varying number of dimensions. The
Coord3D and new Coord5D classes now inherit from this class. Figure 34 shows this
new class structure hierarchy. A new (mocked) coordinate mapping of node ID (also used as
the ordinal value) to coordinate value on the network was also created and put in the database
for each new topology. Where multiple nodes can be found at the same coordinate, these val-
ues will overlap. Finally, a new unit test was created and the whole unit test suite was run to
ensure that the refactor did not also break pre-existing functionality.
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Figure 34: Refactored Simulation Code for New Topologies UML Diagram

7.2 Dragonfly

Cray has developed a new dragonfly network topology to be used on their Cray XE30
machines. This is particularly interesting to explore as the successor to HECToR service
(ARCHER) will be a Cray XE30 running the same job distribution. The topology consists
of 3 levels: blades, chassis and groups. Four nodes are found on a blade, sixteen blades
connect to one chassis and six chassis exist in a group. Each chassis has an all-to-all mapping
between blades and each group has an all-to-all mapping between chassis. A picture of a
possible group is shown in Figure 35. To use the current HECToR network of 2816 nodes
thus requires 8 groups, albeit not all of the last group was used. The dimensions of the new
network are 16 x 6 x 8.

52



Figure 35: Dragonfly Network Topology[15]

One of the main draws of this new network topology is its dynamic nature. Messages
can be bounced off of other blades intra-chassis and off of other blades inter-chassis within a
group for a maximum of 4 hops per group. To simulate this network precisely would require
much tweaking of the current simulation and more information about system overloading
than was available. As such, only the best case and worst case scenarios for the physical
connectivity of the system are simulated.

7.2.1 Best Case Scenario

The best case scenario restricts the maximum number of hops between any two nodes
in the network to be three. Physically, this equates to an all-to-all connection between the
groups. That is, there is a physical mapping of each node in a group to its corresponding
node on every other group. Additionally, it assumes that the router never makes more than
one hop between blades or chassis. Although this is a possibility, it is unlikely to always be
the case.

Results from running this scenario showed that the network topology itself also makes a
difference in the magnitude of improvement that can be seen from a job placement algorithm
as well as the limit of improvement for the range of job sizes. Interestingly, no improvement
was seen in the best case dragonfly simulation after the size of the job exceeds ∼450 nodes
for any of the algorithms. This is just above the number of nodes found in a group (384).
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After 384 nodes, across almost all of the algorithms, the percent improvement drops by
several points. This is probably because the jump from intra-group to inter-group is the
last stage in which the hop value actually increases for this particular topology. So where
a job is large enough to span multiple groups, there is much less likelihood of seeing more
compactness from different types of spanning and after a point (450 nodes) there is no chance
of it. As in the 3D Torus, the Closest Fit algorithm showed the most improvement in all
categories for the best case dragonfly network (see Table 4 for more details). Comparably, the
overall improvement was actually smaller than for the 3D Torus, as the maximum possible
number of hops in this network is much smaller (in this scenario, the maximum number of
hops is only three versus the eighteen in the 3D Torus). In this regard, the MIND comparisons
are not quite equal and the percent increase seems like much more than it is.
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Figure 36: Improvement versus Job Size for Algorithms on the Best Case
Dragonfly Topology
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Figure 37: Normalized Improvement versus Job Size for Algorithms on the Best Case
Dragonfly Topology

Small Job Sizes Large Job Sizes Overall

Algorithm Improvement Algorithm Improvement Algorithm Improvement

Closest 94.99 Closest 30.87 Closest 35.21

Largest-1 92.41 Largest-8 29.55 Largest-1 33.28

Largest-2 92.20 Largest-1 28.99 Largest-2 33.17

Table 4: Improvement Values for the Top Three Algorithms for Best Case
Dragonfly Topology

7.2.2 Worst Case Scenario

As the worst case scenario is strictly a physical distinction, the number of hops can range
from 0-5. The assumption made here is that groups are connected only from one node to one
other node in a different group. For this simulation, the connection was simplified to always
be at the node coordinate (0,0,z), where z is the group node number. That is, only one cable
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connects one group to another at the 0th base and 0th chassis. In reality, due to the unique
routing of the dragonfly topology, the number of hops can be up to 7.

Interestingly, results showed that slightly more improvement could be seen for this setup
than the for the best case scenario for large jobs and overall. However, the magnitude of the
improvement was not significantly larger. Additionally, the improvement for smaller jobs
was conversely slightly worse than for the best case scenario. Keeping in mind the differ-
ences in the number of maximum hops in these two networks (5 versus 3), the improvement
is actually probably less overall. These results are likely due to a couple of different factors.

One reason for this behaviour could be that given the bottleneck of only one node con-
nection between groups, there is a much greater possibility of worse placements in compar-
ison to the best case scenario. So while the allocation algorithms have on the whole found
more better placements, they have also probably found a number of worse placements which
drags down the average. This is much more apparent for larger jobs at the higher end of
the spectrum, where the improvement weaved much more frequently (and with higher mag-
nitudes) between having positive and negative values. These negative values start showing
up right around jobs with 450 or more nodes, where the best case dragonfly configuration
started seeing no improvement. It seems slightly strange that given this single connection
restriction that larger job sizes and overall this setup responded more favorably than the best
case scenario, but this is probably because there are a larger number of possible hops (ie. 5
instead of 3). Where enough large jobs have improved more markedly, this could make up
for the fact that many of the very large jobs responded so poorly.

It is also possible that this response can be partially attributed to the difference in the
nature of what a “gap” (or even to be “ordinal”) means in a 3D torus versus a dragonfly. On
a 3D torus, hops between nodes are equal for all but those that share the same coordinate,
whereas on a dragonfly network there are levels of hop jumps that two nodes can differ on
(ie. via blades, chassis and groups). In particular, in this scenario, because none of the
algorithms are aware of where the one connection between groups is they are just as likely to
put place jobs further away from that coordinate in a particular group than near it. If the job
is smaller than a group, then this matters less (except when the network is quite saturated),
but larger jobs will be more affected by this bottleneck. Thus, while the nature of a gap
on this network is different, the algorithms have not been updated to reflect this, so do not
show as much improvement as they might have potential to. Again, because the number of
maximum hops in this network (5) is much smaller than in the 3D torus, the improvement
seen is not comparable.
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Figure 38: Improvement versus Job Size for Algorithms on the Worst Case
Dragonfly Topology
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Figure 39: Normalized Improvement versus Job Size for Algorithms on the Worst Case
Dragonfly Topology

Small Job Sizes Large Job Sizes Overall

Algorithm Improvement Algorithm Improvement Algorithm Improvement

Closest 94.66 Closest 36.67 Closest 40.59

Largest-2 91.54 Largest-8 33.25 Largest-8 36.48

Largest-1 91.39 Largest-1 32.02 Largest-1 36.04

Table 5: Improvement Values for the Top Three Algorithms
for Worst Case Dragonfly Topology

7.3 5D Torus

IBM has also implemented a new topology on their Blue-Gene/Q machine. This topol-
ogy is a 5D-torus shape, which is similar to the 3D-torus except there are two extra dimensions[16].
Figure 40 attempts to convey this setup. To mock a 5D Torus with 2816 nodes means that
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instead of running on a 15x6x16 grid, the network dimensions would be 11x8x4x4x2.All of
the dimensions have a wrap-around, so modular addition is again used when calculating the
Manhattan Distance. The maximum number of hops on a 5D torus is 14.

Figure 40: 5D Torus Network Topology [16]

Running the algorithms on the 5D torus simulation produced results that were similar to
the 3D torus, albeit with different values of improvement. The top three algorithms for all the
job types were the same, although only a fraction of the improvement was seen. Given the
similarities in these two networks and that the maximum hops is somewhat smaller for the
5D torus, this makes sense. Similar to the worst case scenario on the dragonfly network, for
very large jobs some of the improvement was negative. Perhaps there is a similar bottleneck
going on on this network, whereby because there the largest dimension is 5x the smallest
dimension, at some point the large job sizes simply are far less likely to find a better fit
without some “awareness” in the algorithm of the best direction to place in. On topologies
such as this in particular, node ordering could potentially prove beneficial in increasing the
effectiveness of some of these algorithms
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Figure 41: Improvement versus Job Size for Algorithms
on the 5D Torus Topology
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Figure 42: Normalized Improvement versus Job Size for Algorithms
on the 5D Torus Topology

Small Job Sizes Large Job Sizes Overall

Algorithm Improvement Algorithm Improvement Algorithm Improvement

Closest 55.28 Closest 21.17 Closest 23.48

Largest-1 54.02 Largest-8 18.85 Largest-8 20.37

Largest-2 52.67 Largest-4 17.81 Largest-2 19.98

Table 6: Improvement Values for the Top Three Algorithms
for 5D Torus Topology

7.4 Best Overall MIND Comparisons

The following graphs in Figures 43 and 44 attempt to convey the best results on the
different topologies on a more equal level. Figure 43 shows the average MIND value per job
size as calculated by the Closest Fit algorithm for each of the topologies. As can be
seen, generally the larger the maximum number of hops there are in the network, the higher
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the average is as the job size increases. However, interestingly, the 5D torus seems to show
an equal and sometimes larger average for small to mid-sized jobs. Figure 44 then shows the
actual difference between in average MIND value between the Closest Fit algorithm
and the FIFO-0 algorithm for each of the job sizes. Here it is much more apparent that the
results for the 3D torus actually show the most improvement. At its peak, there is a decrease
on average of almost 3.5 hops for a number of jobs. The next highest value is on the 5D
torus with a maximum decrease of around 2 hops. As expected, as the job size increases, this
value decreases (even into the negative range for the 5D torus and the worst case dragonfly)
for all of the topologies.
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Figure 43: Average MIND Value With Closest Fit Algorithm versus Job Size
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Figure 44: Average ∆ MIND Value Between Closest Fit Algorithm and FIFO-0
versus Job Size

7.5 Individual MIND Comparisons

This final section shows the range of possible MIND values for the best performing
(where applicable) of each of the algorithms for each of the topologies. The graphs show how
the minimum, maximum and average MIND value changes as the job size increases. The first
(and largest) graphs shows the original placements and the subsequent smaller graphs show
the different placement values for the best performing algorithms. Interestingly, the three
values for all of the algorithms tend to converge towards the highest job end. Even for the
3D torus, which has the highest range of possible MIND values of the topologies looked at, at
the highest end of the job size spectrum the MIND values only vary between a minimum of 8
and a maximum of 9. For the best case dragonfly network, these values converge completely
at 2 past job sizes of 450, where results previously showed no improvement could be seen.
This is because as jobs grow in size, the number of possible placements decreases.
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The y-axes in the graphs below for the different topologies span from the minimum to
the maximum number of hops on the topology. So for the 3D torus, the y-axis spans from 0-
18. Although the dragonfly network showed the most improvement, this is probably because
there are fewer hops to traverse. Where the difference between the one hop and the next
number of hops is %25 on the dragonfly, on the 3D torus it is %5. Looking at the graphs that
follow, there is much more of a spread of the averages on the dragonfly graphs in comparison
to the toruses, which would indicate that actually there is less consistent improvement overall
for the dragonfly topology.
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Figure 45: Minimum, Maximum and Average MIND Values versus Job Size for 3D Torus
Topology Using the Original Job Allocation Algorithm
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Figure 46: Minimum, Maximum and Average MIND Values versus Job Size for 3D Torus
Topology Using Various Job Allocation Algorithms
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Dragonfly Topology Using the Original Job Allocation Algorithm
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Figure 48: Minimum, Maximum and Average MIND Values versus Job Size for Best Case
Dragonfly Topology Using Various Job Allocation Algorithms
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Figure 49: Minimum, Maximum and Average MIND Values versus Job Size for Worst Case
Dragonfly Topology Using the Original Job Allocation Algorithm
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Figure 50: Minimum, Maximum and Average MIND Values versus Job Size for Worst Case
Dragonfly Topology Using Various Job Allocation Algorithms
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Figure 51: Minimum, Maximum and Average MIND Values versus Job Size for 5D Torus
Topology Using the Original Job Allocation Algorithm
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Figure 52: Minimum, Maximum and Average MIND Values versus Job Size for 5D Torus
Topology Using Various Job Allocation Algorithms
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8 Conclusions

This project had three main goals to tackle and succeeded in producing results for all
of them. The first aim was to compare the results of running the First Fit and FIFO

algorithms on HECToR data to what was found on the NERSC machine. The second part
was to create some new job allocation algorithms and try them out on the HECToR data
and see if there was any improvement over the two original algorithms, in particular looking
for algorithms which would perform well for both small and large jobs. Finally, new mock
topologies were to be created with the same number of nodes as HECToR has to see what
kind of effect all the algorithms would have on them. Overall, the results seemed positive in
favor of using job allocation algorithms to increase compactness - and in turn performance
- for jobs run on supercomputing clusters. However, the results were also somewhat var-
ied between different machines and topologies and showed some complications as well as
benefits, particularly for highly-connected topologies.

From looking at the improvement values of the NERSC data in comparison to HECToR’s
data, it is clear that even on a machine with the same architecture (albeit the NERSC machine
had 24 cores per node versus the 32 cores per node on HECToR), the job distribution makes
a substantial difference in how well job allocation algorithms perform. Overall the HECToR
data performed better than the NERSC for both algorithms. The main idea to take away from
this comparison is that job node scheduling optimisations should be done on a per machine
basis. The simulator conveniently allows this to be done without the actual operation of a
production machine.

All of the algorithms run showed some improvement on the 3D torus, albeit some more
than others. None of the algorithms performed as well for large jobs as for small jobs,
although this is likely because it is impossible to see as much improvement at the higher
end (this is particularly apparent in the MIND comparison graphs in Section 7.5). The most
promising algorithm, that is the Closest Fit using minimized maximum consecutive
distance, did not perform all that much worse than the algorithm that actually minimized the
MIND values between nodes. The overall improvement seen was ∼%30. To simulate an
entire year’s worth of placements for this algorithm took less than a minute and a half, which
for use on a day-to-day basis does not seem unreasonable. Additionally, one of the biggest
things to take away from this work is that it does not take much to see a little improvement. It
took tremendous effort (ie. high values of gap sizes) to break all but the FIFO algorithm. So
even where the two preliminary algorithms did not perform as well as the subsequent ones,
an average of even a few percent improvement overall still might be worth implementing
if improvement in performance could be seen regularly (particularly considering the pains
many programmers go through to optimise their own codes). It is interesting to note as well
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that for many of the algorithms run on the 3D torus, improvement can still seen at the very
high end of the job size scale, even at the very highest job size reported. This is clearly not
because the highest job found a much better fit, but as a side effect of all of the other smaller
jobs finding better fits.

Running the HECToR log data on the different topologies also showed some interesting
results. Even on the best case scenario for the dragonfly, a highly connected network, im-
provements of over %35 could be seen overall, although this was only up to the threshold of
450 nodes. For the worst case scenario on the dragonfly network, the highest improvement
was slightly higher at ∼%40 although this improvement reversed for very large job sizes.
For the 5D torus, results were similar (but smaller in magnitude - upwards of ∼%21 overall)
to the 3D torus overall and for large job sizes, although responded similarly to the algorithms
too. This ability to model different topologies using a real workload could help make more
informed decisions when procuring HPC machines.

Small Job Sizes Large Job Sizes Overall

Topology Algorithm Improvement Algorithm Improvement Algorithm Improvement

3D Torus Closest 71.28 Closest 27.95 Closest 30.88

Best Case Dragonfly Closest 94.99 Closest 30.87 Closest 35.21

Worst Case Dragonfly Closest 94.66 Closest 36.67 Closest 40.59

5D Torus Closest 55.28 Closest 21.17 Closest 23.48

Table 7: Top Algorithms By Topology

As the percentage of increase in improvement values are not exactly comparable across
the topologies, the values of the average change in MIND value (between the best allocation
algorithm and no allocation algorithm) for each topology are shown in Table 8. Here it is
clear that the 3D torus shows the most improvement across the entire job distribution with a
decrease on average of 1.89 hops, followed by the 5D torus and then the worst and best case
dragonfly topologies. Although the change is not large for the best case dragonfly network
(with the smallest average decrease) the results are still significant. An improvement of ∼0.4
hops in compactness out of a maximum of 3 hops can be seen, which could still very well
translate into performance increases overall across the board.
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Topology Average ∆ MIND Between Closest Fit Algorithm and FIFO-0

3D Torus 1.89

Dragonfly Best Case 0.424

Dragonfly Worst Case 0.702

5D Torus 0.901

Table 8: Comparisons Between the Topologies of Actual Change in MIND Values

In conclusion, results from this project have shown that the effectiveness of the compact-
ness of job placement algorithms are dependent on:

• job size distributions of a machine

• a particular job size (ie. above or below average)

• a machine’s topology

For particular algorithms (in particular, the Closest Fit) and topologies, there is also
suggestion that these algorithms are dependent on job node ordering as well. However,
further investigation there is outside the scope of this project. Overall, job node allocation
algorithms show promise for varying machines and topologies for improving performance
overall of a distribution of jobs being run.
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9 Future Work

A continuation of this project could go in a number of directions. The first step would be
to actually try out some of these algorithms on a real job scheduler as opposed to the simula-
tor and see if the results corroborate. From there, actual performance timings could be run to
see if any of the algorithms could feasibly be used regularly, as a slow allocation algorithm
could undo all the benefit of a compact placement. Then, performance tests of benchmarks
could be run to determine the relationship between actual performance and compactness.

Another idea would be to try to optimise some of the algorithms themselves. In par-
ticular, the Closest Fit with MIND calculation algorithm showed great potential, but
with plenty of room for improvement in timing. The timing could be decreased by finding
a cheap way to parallelise it (ie. using a streaming processor). Alternatively, it might be
possible to find a more efficient algorithm for the calculation or even a different but similar
metric. Additionally, other algorithms, variations or combinations could also be tried to see
if any outperform that one. One thing that was not expounded upon much in this paper is
the issue of node ordering. The Closest Fit algorithm in particular might benefit from
a more optimal node ordering on any of the topologies. Finally, the issue of the effect of gap
sizes on the dragonfly network could be explored more to see if there were a more effective
dynamic use of this type of parameter. As well as this, particularly in the case of the worst
case dragonfly network (and also possibly the 5D torus), a more “aware” algorithm would
likely show better improvement than the static ones explored here. That is, it would be in-
teresting to develop an algorithm with an awareness of where the bottlenecks in placement
were, for example where the single connection across groups in the worst case dragonfly
were located.

With regards to long-term planning, the simulator could also be modified to look at the
effects of different job placement algorithms for a “straw-man” exascale machine. Job sizes
could be scaled up by orders of magnitude of the tens of thousands and their placements on
different topologies could be simulated. The performance of different placement algorithms
becomes increasingly important as the number of nodes increases to millions (and beyond),
so this would be worth investigating too. This is an aspect of exascale which has not been
explored and might benefit from further investigation.
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Glossary

dragonfly network topology with all-to-all mapping across three
levels of node connections and dynamic routing

FIFO First In First Out - when run with “0,” this indicates no
optimisation used

fragmentation where jobs on the network are placed in disparate
locations, as opposed to on one contiguous chunk of
nodes)

HECToR High-End Computing Terascale Resource, the Cray XE6
UK national supercomputer

hop metric of number of jumps required to get from one node
to another node on the network

improvement percentage change MIND average between new
algorithm and FIFO-0 algorithm

kAU measure of CPU time used by a job

large job size ranges from 10-2048 nodes

MIND Mean Inter-Node Distance

NERSC National Energy Research Scientific Computing Center
in California, housing another Cray XE6 machine

normalized improvement improvement value multiplied by normalized kAU
values to show which jobs are seeing more
improvement with regard to how much compute
time they are using

small job size ranges from 1-10 nodes

torus network topology with wrap around dimensions (3 and 5
for this project)
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