
  

 

 

 

High Performance Computing Image Analysis 

for Radiotherapy Planning  

 

Zilong Pan 

 

August 20, 2013 

 

 

 

 

 

 

 

 

 

 

 

 

 

MSc in High Performance Computing 

The University of Edinburgh 

Year of Presentation: 2013



  

Abstract 

The Edinburgh Cancer Centre at the Western General Hospital in Edinburgh is doing 

research on image analysis for predicting lung fibrosis induced by radiation as part of a 

treatment plan. They are developing a MATLAB code to analyse three dimensional 

Computed tomography (CT) images of patients but, because a standard three 

dimensional CT image is a large data set to be processed, the original MATLAB code 

runs very slowly and takes a long time to produce a result. 

This project tackles the challenge of processing large data sets of three dimensional CT 

images and accelerating the original MATLAB code. The project focuses on the most 

computational demanding part of the code, which is filtering the three dimensional CT 

images with a Gabor filter. We improve the image filtering algorithm with a Fast Fourier 

Transform, and apply multi-cores and GPU techniques for parallelisation. In this project, 

three GPU technologies are used to optimise the original MATLAB code. The first one is 

the MATLAB Parallel Computing Toolbox. The second is AccelerEyes‟ Jacket,
1
 which 

is a GPU based accelerator for MATLAB. The third is CUDA from the NVIDIA 

Company, being hybrid programming with MATLAB through MEX files, which are 

MATLAB Executable files. Combining MATLAB with GPU techniques and algorithm 

improvements, the original MATLAB code is optimised largely, and has achieved a 

speedup of 120. 

 

                                                

1 Jacket is no longer produced as it was bought by MathWorks who plan to incorporate the functionality in a future 

release of MATLAB. 



 iii 

Contents 

Chapter 1 Introduction ............................................................................................... 1 

Chapter 2 Background Theory ................................................................................... 4 

2.1 Radiotherapy .................................................................................................... 4 

2.2 Three Dimensional Texture Analysis ................................................................ 5 

2.2.1 First Order Statistics (FOS) ........................................................................ 6 

2.2.2 Second Order Statistics (SOS) and Haralick Features.................................. 7 

2.2.3 Grey Level Co-occurrence Matrix (GLCM) ............................................... 7 

2.2.4 Gabor Filtering .......................................................................................... 7 

2.3 Convolution and Cross-Correlation ................................................................... 8 

2.3.1 Convolution .............................................................................................. 8 

2.3.2 Cross-Correlation ...................................................................................... 9 

2.4 FFT based Convolution and Cross-Correlation .................................................. 9 

2.4.1 FFT based Convolution ........................................................................... 10 

2.4.2 FFT based Cross-Correlation ................................................................... 10 

2.4.3 Complexity Comparison .......................................................................... 11 

2.5 General Purpose on Graphics Processing Unit (GPGPU ) ................................ 11 

2.5.1 GPU Computing ...................................................................................... 11 

2.5.2 GPU Programming .................................................................................. 12 

Chapter 3 Design and Implementation ...................................................................... 14 

3.1 Analysis of the Original Code ......................................................................... 14 

3.2 Profiling the Original Code ............................................................................. 16 

3.3 Algorithm improvement ................................................................................. 18 



 iv 

3.3.1 imfilter .................................................................................................... 18 

3.3.2 Convolution ............................................................................................ 19 

3.3.3 FFT based convolution ............................................................................ 19 

3.3.4 FFT based cross-correlation ..................................................................... 21 

3.4 MATLAB Parallel Toolbox with Multiple CPU Cores .................................... 23 

3.5 MATLAB Parallel Computing Toolbox with GPU .......................................... 25 

3.6 Jacket............................................................................................................. 27 

3.7 CUDA ........................................................................................................... 30 

3.7.1 MATLAB Calls CUDA through PTX Files .............................................. 31 

3.7.2 MATLAB Calls CUDA through MEX Files ............................................. 32 

3.7.3 Comparison between MEX files and PTX files ......................................... 36 

3.8 Comparison of the Different Approaches ........................................................ 37 

Chapter 4 Results and Analysis ................................................................................ 38 

4.1 Machines and Platforms ................................................................................. 38 

4.2 Checking Correctness ..................................................................................... 39 

4.3 Performance of the Different Algorithms ........................................................ 42 

4.3.1 Acceleration of the Image Filtering .......................................................... 42 

4.3.2 Acceleration of the Complete System ....................................................... 43 

4.4 Speedup with Multiple Cores (CPU) ............................................................... 44 

4.5 Speedup with GPUs ....................................................................................... 46 

4.5.1 The Speed of Data Transfer ..................................................................... 46 

4.5.2 Measuring Acceleration with GPUs ......................................................... 47 

4.6 Performance of all Approaches ....................................................................... 48 

Chapter 5 Conclusions ............................................................................................. 51 

References ............................................................................................................... 53 

 

 



 v 

 List of Tables 

Table 3.1: The timing results and proportion of the Gabor filtering………………..….18 

Table 4.1: The timing results of the Gabor filtering and other parts…………………...39 

Table 4.2: The speed of data transfer between the MATLAB working space and the 

GPU………………………………………………………………………………...…46 

 



 vi 

List of Figures 

Figure 2.1: The radiotherapy device LINAC at the Western General Hospital in 

Edinburgh……………………………………………………………………………....5 

Figure 2.2: Different views of slices on a 3D image…………………………………....5 

Figure 2.3: The CT slices of a lung (actual MATLAB data) from 3 different views: (a) 

X-Y plane.  (b) Y-Z plane.  (c) X-Z plane…………………………….………………..6 

Figure 2.4 [1]: lung CT images after radiotherapy: (A) non-fibrosis, (B) fibrosis. 

………………………………………………………………………………………….6 

Figure 2.5: A lung CT image is enhanced by Gabor filter [7]……………………..…...7 

Figure 2.6: An example of 2D convolution……………………………………………..9 

Figure 2.7 [7]: The development of GPUs and CPUs from 2003 to 2008…………….11 

Figure 3.1: The procedure diagram of the original texture analysis code……………..15 

Figure 3.2: The main structure of the texture analysis code………………………..….16 

Figure 3.3: Timing results of 4 test cases for the original code………………….…....17 

Figure 3.4: Profile Summary for 128x128x75 image…………………………….........18 

Figure 3.5: The workflow of FFT based convolution……………………………….....20 

Figure 3.6: The workflow of FFT based cross-correlation…………………………..…22 

Figure 3.7: The workflow of the FFT based convolution with PCT GPU…………......26 

Figure 3.8: The workflow of the FFT based convolution using Jacket……………..…29 

Figure 3.9: The CUDA kernel code of a basic 3D convolution…………………….….31 

Figure 3.10: The workflow describes the procedure of accelerating MATLAB with 

CUDA using MEX files……………………………………………….…………..…..33 

Figure 3.11: Variables declared in the CUDA code…………………………………...34 

Figure 3.12: Getting input MATLAB data to C data……………………………….…34 



 vii 

Figure 3.13: Converting the ordering of 3D data arrays…………………………….....35 

Figure 3.14: Re-order the 3D data layout………………………………………….......36 

Figure 4.1: GPU device information………………………………………………......39 

Figure 4.2: Relative errors between the results of the FFT code and the original 

one………………………………………………………………………………….....40 

Figure 4.3: Relative errors of the results between the GPU FFT code and the CPU FFT 

version………………………………………………………………………………...41 

Figure 4.4: Relative errors of the original results between Fermi0 and 

Comp002……………………………………………………………………….....…..41 

Figure 4.5: Speedup of the image filtering part of the original code by using different 

algorithms……………………………………………………………………………..42 

Figure 4.6: Speedup of the complete system…………………………………………..44 

Figure 4.7: Speedup with different number of CPU cores…………………………..…45 

Figure 4.8: Parallel efficiency with different number of CPU cores……………….…45 

Figure 4.9: The GPU speedup of the complete system on Fermi0……………………47 

Figure 4.10: The GPU speedup of the complete system on Comp002………….…….48 

Figure 4.11: The speedup of all approaches on Fermi0………………………….……49 

Figure 4.12: The speedup of all approaches on Comp002……………………….…….49 

 

 



 viii 

Acknowledgements  

Firstly I offer my sincerest gratitude to my supervisors: Dr Mario Antonioletti and Mr 

Luis Cebamanos from EPCC and Dr Bill Nailon from the Department of Oncology 

Physics at the Western General Hospital. They have provided me a lot of guidance with 

knowledge and patience and have given me sufficient materials for the project, and have 

helped me solve problems in the project as they have arisen. 

I would like to offer my gratitude to Dean Montgomery, who provided me the original 

code and helped me understand the code. 

I would like to thank Qian Du for her encouragements and suggestions. 

I would like to thank my parents for supporting me during my study in the UK. 

 

 



 1 

Chapter 1 

 

Introduction 

Radiotherapy has been one of the most effective approaches for cancer treatment for 

several decades [1]. It uses radiation beams to try to kill tumours inside the bodies of 

patients, but the radiation beams used may also hurt the surrounding tissue as well [1]. 

For lung cancer treatment, radiotherapy has a 13% to 37% possibility of causing lung 

fibrosis [1]. The onset of lung fibrosis is currently not visible by eyeball inspection of 

Computed Tomography (CT) scans in the sense that we do not as yet know what to look 

for, but can be classified through Texture analysis [2]. According to a significant amount 

of research, texture analysis can be used to identify the regions of a lung that have 

already changed due to lung fibrosis [1]. The difference between healthy lung tissue and 

interstitial lung diseases on CT images can be classified through volumetric texture 

features. 

The Edinburgh Cancer Centre at the Western General Hospital in Edinburgh is doing 

research in image analysis algorithms, and is developing a MATLAB application for 

three-dimensional CT image analysis to predict lung fibrosis induced by radiation. The 

three-dimensional texture code calculates texture features from a three-dimensional CT 

image which are then used to train a machine learning algorithm which once trained is 

reasonably successful at predicting the onset of radiation fibrosis. However, the original 

MATLAB code which does the image feature extraction is very time-consuming and 

takes a long time to analyse a three-dimensional CT image. For example, it takes more 

than 5 days to analyse a volume of 512 * 512 * 300 pixels on Fermi0. It leads to large 

inconvenience for the lung cancer research. This is a good chance to accelerate a 

program, and compare different kinds of optimisation approaches. 

This project aims to accelerate the original MATLAB code using different HPC 

approaches, and focuses on how to process 3D image data in a faster way. In a previous 

MSc project, a two-dimensional visual texture analysis MATLAB code was parallelised 

using different methods [6], and now the visual texture analysis code is being extended to 

three dimensions, which is much more computationally demanding than the 

two-dimensional code. In order to tackle the challenge, we use the Fast Fourier 

Transform (FFT) based convolution to improve the image filtering algorithm, and we 

also parallelise and accelerate the MATLAB code using Graphics Processing Unit (GPU) 

techniques.  



 2 

The development environment used is MATLAB, as the Edinburgh Cancer Centre use 

MATLAB for their research and development. MATLAB provides a large number of 

built-in functions for matrix calculation and image processing, and it can be combined 

with GPU techniques for parallelisation. In this project, we have done several 

improvements to the original MATLAB code, including: 

 Changing the three dimensional image filtering to use a Fast Fourier Transform 

(FFT) based convolution algorithm instead of the MATLAB built-in function 

imfilter. The FFT based convolution alone achieved a 27 time improvement 

in speed. We further improved the transform from convolution to correlation, 

which is using conjugation approaches instead of rotating filter arrays, which 

benefits the memory, and reaches a speedup of 57 times over the original 

algorithm for 64 * 64 * 37 test case, and 99 times for 512 * 512 * 300 test case. 

 We parallelised the original code to use multiple CPU cores using the MATLAB 

Parallel Computing Toolbox. Based on the original algorithm, the parallelised 

code can get 8 times speedup when it is run on 12 cores.  The performance results 

are used to analyse the speedup with different number of cores, and also, the 

performance of CPU code is compared with the performance of GPU code in 

later stages. 

 We accelerated the original code with GPUs using the MATLAB Parallel 

Computing Toolbox (PCT). The PCT provides some supports for GPU 

computation. It can transfer data from the MATLAB working space to a GPU, 

and provides some built-in functions that support GPU computation. However, 

some of the built-in functions do not support three-dimensional arrays for GPU 

even in the latest version of MATLAB (R2013a), such as the function of 

“imfilter” [10]. This GPU code has more than 100 times speedup on both Fermi0 

and Comp002 over the original code. 

 A product of AccelerEyes named Jacket is used to parallelise the original 

MATLAB code with GPUs. Jacket is a GPU accelerator add-on for MATLAB 

[13]. It provides better supports and improvement for GPU computation than the 

Parallel Computing Toolbox. In addition, it provides a much easier way for GPU 

programming rather than through using CUDA directly. Its GPU code has 120 

times speedup over the original code. However, Jacket is no longer sold to 

customers as its functionality will be integrated into the future version of 

MATLAB. Jacket is still available in the MATLAB R2012a on Fermi0. 

 Fifthly, we accelerate the original MATLAB code with GPUs using CUDA/C. 

CUDA is one of the most mature GPU programming models [17], and is 

developed by the NVIDIA Company.  It can achieve the highest performance on 

the NVIDIA GPU cards [17]. Furthermore, CUDA has a professionally 

optimised FFT library for GPU computation named CUFFT [22], which gives 

great performance and convenience. In addition, CUDA code can be called from 

MATLAB using the MEX-files, which are the MATLAB Executable files. MEX 

files can call other languages, such as CUDA. 
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In the remainder of this dissertation Chapter 2 describes the background theory for the 

image analysis used, such as texture analysis, Gabor filter, FFT based convolution and so 

on. Chapter 3 presents the profiling, design and implementation of the optimisation to the 

original code, including algorithm improvement, multiple CPU-cores parallelisation, 

and GPU acceleration. Chapter 4 illustrates and analyses the results and speedup, and 

compares the performance among different approaches, different testing sizes and 

different machines. Chapter 5 discusses a conclusion and further work. 
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Chapter 2 

 

Background Theory 

2.1 Radiotherapy 

Radiotherapy has been playing a significant role in cancer treatment for decades [1]. It 

applies high energy radiation beams, which pass through a human body to try to kill 

cancerous tumours inside the patient‟s body [1, 2]. However, the radiation beams will 

also possibly damage the surrounding tissue which is not cancerous. According to 

research on lung cancer treatment by the Western General Hospital, after radiotherapy 

there is a 13%-37% possibility of the patient suffering from radiation induced lung 

fibrosis when lung tissue has been irradiated [1]. The over exposure of healthy lung 

tissue to radiation beams causes abnormal changes to the lung tissue, and will lead to 

lung fibrosis, which is a very serious lung disease which permanently affects the oxygen 

transfer in the lung [1]. Therefore, it is crucial to minimise the radiation hurts by 

recognising the regions of cancerous tumours and predicting the risk of side-effects as 

accurately as possible. 

Figure 2.1 shows a photo of the linear accelerator (LINAC) radiotherapy device at the 

Western General Hospital in Edinburgh. 
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Figure 2.1: The radiotherapy device LINAC at the Western General Hospital in 

Edinburgh 

2.2 Three Dimensional Texture Analysis  

The Edinburgh Cancer Centre at the Western General Hospital uses three dimensional 

CT images for texture analysis. Three dimensional CT images can give more anatomic 

details than two dimensional images. The orientation of different slice views on a 3D 

image are shown in Figure 2.2, and Figure 2.3 shows the corresponding lung slices 

(actual MATLAB data) from 3 different views from a 3D CT image. 

 

Figure 2.2: Different views of slices on a 3D image. 
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Figure 2.3: The CT slices of a lung (actual MATLAB data) from 3 different views: 

(a) X-Y plane.  (b) Y-Z plane.  (c) X-Z plane 

Although lung fibrosis is often not visible from CT scans, it can be classified by texture 

analysis [1, 4]. CT Image analysis techniques have been applied for the classification of 

lung fibrosis. The method can identify the areas of a lung that have some changes due to 

lung fibrosis. Figure 2.4(A) shows a CT image of a lung that has no side-effects after 

radiotherapy, and (B) is a CT image of a lung which suffers fibrosis.  

 

Figure 2.4 [1]: lung CT images after radiotherapy: (A) non-fibrosis, (B) fibrosis. 

The Western General Hospital has done research on predicting the risk of fibrosis by 

calculating the visual texture properties through 3D CT scans. Their texture analysis 

MATLAB code can classify the surrounding tissue of a lung, and calculates a total 

number of 2139 texture features on a three-dimensional CT image a simplified set of 

which is then used train a machine learning algorithm which is then used to predict 

whether a patient is likely to develop radiation induced fibrosis from the CT images of 

their lung. The image features are based on the features calculated from the algorithms 

described below. 

2.2.1 First Order Statistics (FOS) 

The First Order Statistics calculate seven texture features from a grey level image which 

are: the mean, variance, coarseness, skew, kurtosis, energy and entropy [1]. They are the 

basic texture features of an image. The calculation of the FOS is only based on individual 

pixels, and has no computational relationship with other pixels. 
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2.2.2 Second Order Statistics (SOS) and Haralick Features 

The Second Order Statistics are an extension of FOS, and calculate the features of pairs 

of pixels which are named Haralick features [1]. The pair pixels are chose according to 

the probabilities that a pixel will be found adjacent to another pixel on a 3D grey level 

image. The calculation of the Haralick texture features considers the adjacency between 

two pixels. The Second Order Statistics are calculated with the co-occurrence matrices 

which will be described in the next section. 

2.2.3 Grey Level Co-occurrence Matrix (GLCM) 

The Grey Level Co-occurrence Matrix (GLCM) is used to calculate the Second Order 

Statistics and the Haralick features [1]. The elements of the GLCM are the probabilities 

of becoming a pair-pixel between two points in a 3D grey level image. The texture 

analysis MATLAB code generates 13 GLCMs describing the relationship between 2 

points in all directions for a 3D grey level image. The GLCMs are the used to calculate of 

the Second Order Statistics and Haralick features.  

2.2.4 Gabor Filtering 

Gabor features are calculated by image filtering with the Gabor filter named after Dennis 

Gabor [1, 3]. A Gabor filter is a linear filter, and is particularly suitable for edge detection 

and texture representation, because it is able to simulate the human visual system [6]. 

Two dimensional Gabor filtering has been widely used and achieved great success in 

image analysis and processing, for example, texture segmentation, face recognition and 

so on [7]. Figure 2.5 shows the enhanced effect of using Gabor filtering to a lung CT 

image. 

 

(a) Original image               (b) Image by Gabor filtering 

Figure 2.5: A lung CT image is enhanced by Gabor filter [7]. 

On the topic of lung texture analysis, the Edinburgh Cancer Centre has expended Gabor 

filter into 3D. The 3D Gabor filter is using 36 angles and 4 spatial frequencies to filter a 

3D CT image. There are 144 texture features calculated by the three dimensional Gabor 

kernel which is modulated by a sinusoidal wave in the original 3D MATLAB code.  
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The 3D Gabor kernel is defined as shown below [1]: 

))(2exp()))
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()
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()
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((exp( 222

,, zwyvxui
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Where u = Fsinφ cosθ , v = Fsinφ sinθ , w = Fcosφ , F = sqrt((u2 + v2 + w2)
2
), x‟ = x 

cosθ  - ysinθ , y‟ = cosφ  (xsinθ  + ycosθ ) - zsinφ , z‟ = sinφ  (xsinθ + ycosθ ) + 

zcosφ . The S is a normalisation scale, and  is the width of the Gaussian envelope. The 

(u, v, w) are the frequency of the sinusoid wave, and F is the amplitude of the wave. The 

φ  and θ  are the orientations of the wave in the three-dimensional frequency domain. 

Using different parameters can generate different Gabor filters, which are used for 

filtering images to get texture features. 

2.3 Convolution and Cross-Correlation 

The original MATLAB code used a MATLAB built-in function imfilter to do the 

linear filtering, which has two modes including correlation and convolution [10].  

2.3.1 Convolution 

Convolution is defined as follows [7]: 

 
zyx kji

kzjyixhzyxghg
,, ,,

),,(),,(*

 , 

Where g represents the 3D image data and h is the 3D filter to be applied. The g(x, y, z) is 

a point on the 3D image, and h(x-i, y-j, z-k) is the filter weights corresponding to the 

point of g(x, y, z) on the image. The progress of doing linear filtering using convolution 

is as follows: 

1)  Zeros are added to the halo of the image, and the width of the halo is half of the filter 

size. So the size of image with padding zeros is: size (image) + size (filter) – 1. 

2) The filter is moved onto the image, and the centre of the filter is made to correspond 

with a point on the image. The filter will cover a region of the image. 

3) On the covering region, each point of the image is multiplied by the responding 

weight of the filter, and then the products are summed up as the result of the central 

point. 

4) The filter is moved to the next point in the image, and the process is repeated using a 

loop from the second step until one finishes operating on all the image points. 

For example, taking a 2D convolution, Figure 2.6 shows a convolution between a 5x5 

image and a 3x3 filter. The result of the point (2,4) is 1x2 + 8x9 + 15x4 + 7x7 + 14x5  + 

16x3 + 13x6 + 20x1 + 22x8 = 575. 
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Figure 2.6: An example of 2D convolution. 

2.3.2 Cross-Correlation 

The imfilter function in the original MATLAB code actually does cross-correlation 

between the image and the filter. Cross-correlation is defined as follows [7]: 

 
zyx kji

kzjyixhzyxghg
,, ,,

),,(),,(

 , 

Where g represents the 3D image data and h is the 3D filter to be applied. The g(x, y, z) is 

a point of the 3D image, and h(x+i, y+j, z+k) is the filter weights corresponding to the 

point of g(x, y, z).  

Cross-correlation is actually equivalent to convolution with the filter rotated 180 degrees 

[12]. Thus, doing linear filtering using cross-correlation is nearly the same as 

convolution, and the algorithm is described below:  

1) The 3D filter is rotated with 180 degrees firstly, which is filter = filter (end: -1 :1,  

end: -1: 1, end: -1: 1) in MATLAB syntax. 

2) Do the convolution as in the description above and get the results. 

For both the convolution and the cross-correlation, the size of the calculation results is 

size (results) = size (image) + size (filter) – 1. We extract the central part of the results 

that is the same size as the image, and ignore the halos. 

For the original MATLAB code, the imfilter is doing cross-correlation. If we use 

convolution, we have to rotate the filter first, and then do calculation. If we use 

cross-correlation, we can do calculation directly. 

2.4 FFT based Convolution and Cross-Correlation 

The original implementation of the MATLAB code used the imfilter function 

contained in the Image Processing Toolbox – one of the MATLAB add-ons. What the 
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imfilter actually does is a convolution or cross-correlation between the image and 

the filter. It costs more to do the linear filtering directly with large data sets, and 

fortunately, there are algorithms that allow convolutions or cross-correlations to be done 

more quickly instead. The most commonly used fast image filtering algorithm is based 

on the Fast Fourier Transform (FFT) [7].  

FFT is one of the most significant numerical algorithms in image processing, and is 

widely used in many areas, such as image analysis, signal processing, and so on. The 

FFT is able to compute the discrete Fourier Transform in a very fast way, and it converts 

space or time to frequency, or inverse from frequency to space[7]. 

2.4.1 FFT based Convolution 

The FFT based convolution applies the property of the Convolution Theorem, which is 

defined as follows [7]: 

convolution (image, filter) = IFFT ( FFT(image) .* FFT(filter) ) , 

where IFFT means inverse FFT, and the “.*” means pointwise product. 

The convolution between an image and a filter can be calculated by taking FFTs of the 

image and the filter respectively and then the convolution result can be calculated by 

performing an inverse FFT on the point-wise product of the two previous FFTs of the 

image and filter. 

Because the FFT wave is periodic, we need to expand the size of the FFT period to be 

larger than the convolution size, which is equal to size (image) + size (filter) - 1. In other 

words, the period of FFT should be larger than: size (image) + size (filter) – 1. The image 

and the filter should be padded with zeros. According to the FFTW, FFT gets the highest 

efficiency if the size of the FFT equals a power of 2. Finally, the results are extracted 

from the central part of the whole results. 

2.4.2 FFT based Cross-Correlation 

The FFT based Cross-Correlation applies a property that is analogous to the convolution 

theorem, and the mathematical theory is defined as follows [7]: 

correlation (image, filter) = IFFT ( conjugation ( FFT(image) ) .* FFT(filter) ). 

The cross-correlation between an image and a filter is similar to the convolution, and it 

can be calculated by taking FFTs as well. After doing FFTs to the image and the filter 

respectively, we do conjugation to the FFT of the image. Here we use conjugation 

instead of rotating the filter, so that it can get higher efficiency in computation. Finally, 

an inverse FFT is performed to the point-wise product of the conjugated FFT image and 

the FFT filter. 

Similarly to the FFT based convolution, the FFT based cross-correlation requires the 

period of FFT to be larger than size (image) + size (filter) – 1. The image and the filter 

should be padded with zeros before performing the FFTs. In the end, the desired results 

are extracted from the central part of the whole result. 
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2.4.3 Complexity Comparison 

Assuming that the image size is m * m * m, and the filter size is n * n * n (n<<m), then 

the calculation complexity of the direct image filtering is O (m
3
n

3
), while the FFT based 

image filtering is O ( (m+n)
3 
log(m+n)

3
 ) = O ( (m+n)

3
 log(m+n) ). From the comparison, 

we can see that the FFT based algorithm can reduce the calculation complexity 

significantly, but the actual comparison still depends on the size of the coefficient in 

front of each of the order calculations. 

2.5 General Purpose on Graphics Processing Unit (GPGPU ) 

2.5.1 GPU Computing 

The Graphics Processing Unit (GPU) for certain types of problem can achieve high 

performance in floating point calculation, and has thus been applied to high performance 

computing problems to reach large speedup [17]. The GPU acts as an accelerator to the 

CPU. The CPU executes most of the lines of code, while the GPU runs the key 

computational kernels, which can take advantages of large number of cores and high 

graphics memory bandwidth.  

GPGPU (General Purpose computation on GPUs) has become popular in scientific 

computing [18]. Figure 2.7 shows the development in peak performance of GPUs and 

CPUs. 

 

Figure 2.7 [7]: The development of GPUs and CPUs from 2003 to 2008 
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We have to consider the data transfer between the CPU and the GPU. If the data transfer 

costs more time than calculation, it is no need to use GPU, but for certain types of 

computational intensive applications, we can use a GPU together with a CPU to 

accelerate computing. 

GPU computing provides helps for acceleration by offloading the computationally 

intensive part of a code to the GPU for large amount of parallel computing, while the 

other part of the code still runs on CPUs. The combination of CPUs and GPUs is 

becoming more and more popular and powerful for some kinds of computational 

intensive programs. 

2.5.2 GPU Programming 

The GPU programming models we use in this project are the GPU support included in 

the MATLAB Parallel Computing Toolbox, the Jacket add-on for MATLAB, and 

CUDA/C called from within MATLAB. Each of these is discussed in more detail below.  

 The Parallel Computing Toolbox (PCT) 

MATLAB provides its PCT for parallel computing, and it is simple for 

programmers to use for parallelising and accelerating a serial code [9]. The PCT not 

only supports parallelisation with multiple CPU cores, but also provides supports for 

GPU acceleration [11]. 

The PCT provides 171 built-in functions for GPU computing currently [12], 

including its FFT functions, which have already been highly optimised, and perform 

very well. The FFT functions in MATLAB are based on the FFTW and CUFFT [12], 

which have the very top performance in the FFT implementation on CPUs and 

GPUs respectively.  

In addition, the MathWorks Company has realised the power and importance of 

GPU computing, and they bought the GPU add-on Jacket from the AccelerEyes 

Company in December 2012 [13]. The PCT is integrating the highly optimised GPU 

add-on Jacket into the PCT. The PCT will have more supports and higher 

performance on GPU computing in the near future. Jacket is available on Fermi0 as 

a separate add-on in MATLAB 2012a, but it is not installed on Indy. 

 Jacket 

Jacket is a GPU computing add-on produced by the AccelerEyes Company [13], and 

it has great supports for GPU computing. Jacket has provided as many as 589 GPU 

functions, compared with 171 in MATLAB 2012 [14]. Jacket not only provides a 

wider range of GPU functions, but also provides better acceleration with GPUs.  

According to a number of benchmark reports, Jacket‟s GPU functions have higher 

performance than the PCT, and much easier for GPU programming than CUDA or 

OpenCL. 
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As mentioned above, Jacket has been purchased by the Mathworks [13], and is 

being integrated into MATLAB Parallel Computing Toolbox, but it is still available 

currently to existing customers – no new purchases can be made though. 

 CUDA 

The Compute Unified Device Architecture (CUDA) is a mature GPU programming 

model developed by the NVIDIA Company [17]. CUDA has the highest 

performance and flexibility for GPU programming on NVIDIA GPU cards, but it is 

much more difficult to program and requires much more efforts than using the PCT 

or Jacket. We have to consider the data transfer between the host and device, 3D 

data memory access, number of threads, and many other relevant programming 

details. 

CUDA has its own FFT library named CUFFT [22]. The CUFFT library is modelled 

after the FFTW, which is one of the most efficient CPU implementation of FFT [22]. 

The FFT is a divide-and-conquer algorithm for efficiently calculating discrete 

Fourier transform. The CUFFT provides a simple interface for GPU computing of 

FFT. 

 

In this Chapter, we describe the background theory for the image analysis used, such as 

texture analysis, Gabor filter, FFT based convolution, and GPU computing and 

programming. We will present the profiling, design and implementation of the 

optimisation to the original code, including algorithm improvement, multiple CPU-cores 

parallelisation, and GPU acceleration.  
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Chapter 3 

 

Design and Implementation  

In order to optimise the original 3D MATLAB code, we first analysed and profiled the 

code using the MATLAB Profiler, which indicates where the expensive parts of the 

original code are. After the profiling, the time-consuming part of the code was 

accelerated with different methods, including: 

 Algorithm improvement 

 Using multiple CPU cores with MATLAB Parallel Computing Toolbox (PCT) 

 Using a GPU with the MATLAB PCT 

 Using a GPU with Jacket 

 Using a GPU with CUDA/C 

These topics are discussed in the remainder of this chapter. 

All of the implementations are based on the MATLAB environment. MATLAB has 

advantages in scientific programming, and provides a number of functions for matrix 

calculation and image processing. Besides that, MATLAB supports GPU computing and 

calling CUDA, which gives us convenience for optimisation. In addition, the Edinburgh 

Cancer Centre can continue their research and development on the optimised MATLAB 

code. 

3.1 Analysis of the Original Code 

The original 3D MATLAB code generates a 3D texture feature vector which is 

subsequently used in an analysis for predicting whether lung fibrosis will result in a 

patient from their CT images. The working procedure for generating the feature vector is 

schematically shown in the Figure 3.1. When a volume CT image is input, the 

application transforms the CT image to a grey level image, and generates different 

matrices which are used to calculate relevant texture features in the next stage. The 

calculation of 3D texture features includes First Order Statistics, Second Order Statistics, 

Haralick features, Gabor features and so on. Most of which have already been described 

in Chapter 2. The results of the texture features are output and used in subsequent 
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analysis to predict whether there is a chance of developing lung fibrosis but this is out of 

scope for this project. 

 

Figure 3.1: The procedure diagram of the original texture analysis code 

The original MATLAB code is mainly constructed of 8 parts: 

 The main function calc_3d_stats gets the input volume image, and calls the other 

functions to complete the jobs of generating matrices and computing texture features. 

Finally, it put all the texture features into a vector as the output result. 

 The graycomatrix and graycomatrix3Ddm448 functions generate the gray-level 

co-occurrence matrix, which is used for the calculation of the Haralick Features and 

the Second Order Statistics. 

 The glrlm_DICOM function creates the Grey-Level Run Length Matrix, which is 

used for the Second Order Statistic and Higher Order Statistics. 

 The fos_3d function implements the First Order Statistics for three-dimensional 

volumes. 

 The Haralick_features function computes the Haralick texture features from the 

co-occurrence matrices. 

 The gabor_3d_features function applies Gabor filters to calculate energies. 

 The glszm_3d function calculates texture features from Zone Matrices. 

Input 3D CT image 

Generate different matrices 

Calculate different features 

Output all texture features 

First Order Statistics 

Second Order Statistics 

Haralick features  

Gabor features …… 

Grey Level Co-occurrence Matrices 

Grey Level Run Length Matrices 

Grey Level Size Zone Matrices 
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 The grayrlprops function calculates run length statistics from the run length 

matrices. 

Figure 3.2 shows the main structure of the texture analysis code. 

 

Figure 3.2: The main structure of the texture analysis code 

3.2 Profiling the Original Code 

In order to find out where the code spends much time, the original MATLAB was tested 

and profiled. We used MATLAB Profiler at first, and then set timers (tic and toc) in the 

code to get more accurate elapsed time of different parts.  

The Edinburgh Cancer Centre has provided 4 test cases. All of them are three 

dimensional CT images, and their sizes are respectively:  

1. 64 * 64 * 37 pixels,  

2. 128 * 128 * 75 pixels,  

calc_3d_stats 

Main function 

fos_3d 

Calculate FOS 

for 3d volume 

Haralick_features 

Compute features from 

co-occurrence matrix 

gabor_3d_features 

Apply Gabor filters and 

calculates energies 

glszm_3d 

Calculate features 

from Zone Matrices 

glrlm_DICOM 

Generate the Grey-Level 

Run Length Matrix grayrlprops 

Calculate run 

length statistics 

graycomatrix 

Create gray level 

co-occurrence matrix 
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3. 256 * 256 * 150 pixels, and  

4. 512 * 512 * 300 pixels. 

The testing was taken on MATLAB (R2012a) on the backend node Fermi0 of Hydra. 

Fermi0 has 4 Intel Xeon X5650 (2.67GHz) CPUs with 6 cores on each processor. Fermi0 

also hosts 4 GPUs of NVIDIA Tesla C2050. 

Using the original MATLAB code all of the four test cases took a very long time to run. 

The timing results are shown in Figure 3.3. The smallest test case (64 * 64 * 37) spent 

776 seconds (about 13 minutes). The 128 * 128 * 75 image ran for 1.8 hours. The 256 * 

256 * 150 pixel image took nearly 15 hours to process. For the largest test case (512 * 

512 * 300), which is a standard 3D CT image size, it took 425011 seconds -in other 

words, it spent about 5 days to process a standard 3D CT image. 

 

Figure 3.3: Timing results of 4 test cases for the original code 

However, it is necessary to profile the original MATLAB code in order to find out where 

the time-consuming parts are before optimising the code.  

At first, the code was profiled using the MATLAB Profiler. All the profiling results from 

the 4 test cases clearly pointed out that the imfilter routine in the 

gabor_3d_features function took up almost the whole execution time. It 

accounted for more than 99% of the total run time. Therefore, the project focused on the 

Gabor filtering, which would benefit the most from being optimised and parallelised. 

One of the profiling results is given out in Figure 3.4 as an example (128 * 128 * 75). The 

MEX-file is the MATLAB Executable file. 
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Figure 3.4: Profile Summary for 128x128x75 image 

In order to get more accurate elapsed time, we set timers (tic and toc) in the part of Gabor 

filtering instead of using the MATLAB Profiler, which would take up some execution 

time itself. The more accurate timing results are shown in Table 3.1. 

Size Total time(sec) Gabor time(sec) Proportion (%) 

64 * 64 * 37 776 771 99.4% 

128 * 128 * 75 6473 6450 99.6% 

256 * 256 * 150 53043 52846 99.6% 

512 * 512 * 300 425011 423470 99.6% 

Table 3.1: The timing results and proportion of the Gabor filtering 

It is clear that the part of Gabor filtering accounts for more than 99%, almost the total 

execution time of the original MATLAB code. Therefore, the project focused on the part 

of Gabor filtering for optimisation, which is presented in later sections.  

3.3 Algorithm improvement 

3.3.1 imfilter 

The original MATLAB code uses the imfilter function from the Image Processing 

Toolbox in MATLAB for 3D image filtering [10]. The imfilter function in the code 

uses 3D Gabor kernels to filter the input 3D CT image, in order to calculate the Gabor 

texture features. The imfilter has two possible working modes: cross-correlation and 

convolution as mentioned in Chapter 2.1, which uses cross-correlation by default. So the 

line of code: 
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imfilter (image, filter, ‘same’) 

does a cross-correlation between the image and the filter, and extracts the results from 

central part of the whole results with the same size as the image. 

3.3.2 Convolution 

Cross-correlation can be done by a convolution with the filter rotated 180 degrees as 

mentioned in Chapter 2. There are 2 main steps doing 3D image filtering using 

convolution: 

1) Firstly, we rotate the Gabor filter by indexing, which is in MATLAB syntax:  

h = h (end: -1: 1, end: -1: 1, end: -1: 1). 

2) Then we use the built-in function, convn, to convolve the 3D CT image with the 3D 

Gabor filter: 

result = convn (image, h, ‘same’). 

For a standard convolution, the size of a complete calculation results is size (results) 

= size (image) + size (filter) – 1, but the „same‟ option indicates that the results are 

extracted from the central part with the same size as the image. 

3.3.3 FFT based convolution 

According to the Convolution Theorem mentioned in Chapter 2: 

convolution (image, filter) = IFFT ( FFT(image) .* FFT(filter) ), 

The convolution can be calculated by taking FFTs, and the main progress in details is 

described below: 
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Figure 3.5: The workflow of FFT based convolution 

1) Firstly, the data of Gabor filter are rotated by 180 degrees. 

2) We pad zeros at the end of the 3D image and the 3D filter using the function 

padarray(), which is: 

image = padarray (image, size(filter)-1, 0, ‘post’), 

filter = padarray (filter, size(image)-1, 0, ‘post’). 

It expands the size to size (image) + size (filter) – 1, so that the circular period of FFT 

covers all the convolution results.  

Alternatively, it is common to pad the arrays to a power of 2 using the function 

nextpow2 and padarray, in order to achieve higher performance for doing FFTs 

[22]. Because the MATLAB FFT function is based on the FFTW, and the white 

paper of CUFFT suggests this [22].  

However, the 3D CT image is a large data set, which occupies much memory, and is 

easy to exceed the limitations of 2.7 GB on Fermi. For example, if we pad the 512 * 

512 * 300 CT image with zeros to the size of a power of 2, the expanded size will 

become 1024 * 1024 * 512 which will take 4GB space for double precision real data, 

8GB for complex data, and 16GB for computing point-wise product between two 
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FFTs. It costs too much memory and thus does not make it particularly suitable for 

GPUs. Therefore, the size was just expanded to size (image) + size (filter) – 1. 

3) 3D FFTs are performed on the expanded image and filter using the function fftn. 

4) We make a point-wise product between the two previous FFTed data. 

5) An inverse 3D FFT is performed to the product from the previous step: 

result = ifftn ( fftn (image) .* fftn (filter) ). 

6) The results are extracted from the central part of the total results by indexing: 

head = floor (size (filter) / 2 + 1); 

rear = head + size (image) – 1; 

result = result ( head(1): rear(1), head(2): rear(2), 

head(3): rear(3) ). 

3.3.4 FFT based cross-correlation 

The FFT based cross-correlation works in a similar procedure as the FFT based 

convolution, but there is no need to rotate the Gabor filter. Instead, we do a conjugation 

on one of the FFTs, according to the theory mentioned in Chapter 2:  

correlation (image, filter) = IFFT (FFT(image).*conjugation ( FFT(filter) ) ). 

The main procedure of FFT based cross-correlation is described below: 
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Figure 3.6: The workflow of FFT based cross-correlation 

1) The 3D image and filter are padded with zeros to the size of size (image) + size (filter) 

– 1, the same as for the FFT based convolution. 

2) 3D FFTs are performed on the expanded image and filter using the function fftn. 

3) We conjugate the FFT results of the filter. 

4) We make point-wise product between the conjugation in the 3rd step and the FFT of 

the filter. 

5) An inverse 3D FFT is performed to the product produced in the 4th step, and the code 

is shown below: 

result = ifftn (fftn (image) .* conj (fftn (filter)) ). 

6) The results are extracted from the central part of the total results as the FFT based 

convolution. 
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The FFT based cross-correlation has higher performance than the FFT based convolution, 

because doing conjugation is an atomic operation which is far more efficient than doing 

rotations on a 3D array. 

3.4 MATLAB Parallel Toolbox with Multiple CPU Cores 

Although this project focuses on optimisation with GPUs, we still implemented a 

parallelisation with multiple CPU cores, whose results were used to compare with the 

GPU computing.  

There are two additional components used for running MATLAB code in parallel with 

multiple CPU cores. One is the MATLAB Parallel Computing Toolbox (PCT), and the 

other is the MATLAB Distributed Computing Server [9]. These two official add-ons 

enable MATLAB to do parallel computing, and we can parallelise the 3D texture 

analysis code on MATLAB. The Parallel Computing Toolbox provides some methods to 

parallelise MATLAB codes, for example, parallel for loops, SPMD (single program 

multiple data), message passing functions, distributed arrays, and so on [11]. The 

Distributed Computing Server enables MATLAB codes to run on a cluster, and provides 

the ability to use job management tools from the toolbox. 

Prior to parallelising the original code, we have to make sure that each iteration process 

is independent of the others. There are 144 iterations in the application of Gabor filtering, 

and each iteration process generates a different Gabor kernel. For each iteration process, 

the original CT image is filtered by the different Gabor kernel, and gives out different 

results. Therefore, all the iterations are independent and can be parallelised. 

Parallelising the 3D texture code using the MATLAB PCT is our first parallelisation 

approach, and it was finished at a very early stage, so it was parallelised directly without 

implementing the algorithm improvement described in the previous section.  

The MATLAB PCT provides a quite simple method for CPU parallelisation, and we use 

the construct parfor to parallelise the loops in the part of the Gabor filtering [9]. There 

are three loops nested in the original code for Gabor filtering as shown below: 

for i = 1:length(F) 

   for j = 1:length(psi) 

        for k= 1:length(phi) 

            [h,g] = gabor(F(i),B(i),psi(j),phi(k),1);  

             … 

         end 

     end 

end 
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However, the construct parfor cannot be nested [9]. Therefore, we try to combine the 

three loops into one loop, in order to make sufficient parallelisation. We can extend the 

arrays of F, B, psi, and phi, responding to the relevant loops, and then we can run a 

combined loop on the extended arrays. After that, we can parallel all the iterations in a 

parfor loop. The construct parfor can separate the tasks to different workers on 

either a shared memory system or a distributed memory system. Moreover, the parfor 

loop distributes all the iterations automatically to the workers. Using the parfor loop is 

very straightforward, we replace the for loop with a parfor loop. The optimised code 

is shown below:  

F_tmp = repmat(F, 1, length(psi)*length(phi)); 

B_tmp = repmat(B, 1, length(psi)*length(phi)); 

psi_tmp = repmat(psi, length(F), length(phi)); 

phi_tmp = repmat(phi, length(F)*length(psi), 1); 

% Combine the 3 nested loops. 

parfor iter = 1: (length(F)*length(psi)*length(phi)) 

[h,g]=gabor(F_tmp(iter),B_tmp(iter),psi_tmp(iter), 

      phi_tmp(iter),1);  

… 

end 

In order to run a parallelised MATLAB code, the MATLABpool has to be opened and 

configured [9]. The MATLABpool connects to a pool of workers, and creates a 

parallelised job on the pool. We should open a MATLABpool before running a parallel 

code, and close the pool after the code ends; otherwise it keeps occupying the multiple 

cores. The testing script in MATLAB is written as below: 

MATLABpool (12); % Open a pool with 12 workers 

load('../data/test_volumes','test_volume_64_64_37') 

begin=tic; 

test_results_64=calc_3d_stats(test_volume_64_64_37,64); 

t_64=toc(begin); 

clearvars test_vol* 

MATLABpool close;  

The procedure of using MATLAB PCT to parallelise the original code is very 

straightforward, and the parallelised code can be run on the local machine Fermi0 and 
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the cluster of Indy. Indy will be introduced in the next chapter. The results obtained are 

presented in Chapter 4. 

3.5 MATLAB Parallel Computing Toolbox with GPU 

MATLAB provides its PCT for parallel computing as mentioned in the previous section, 

and it is simple for programmers to use for parallelising and accelerating a serial code [9]. 

The PCT not only supports parallelisation with multiple CPUs, but also provides 

supports for GPU acceleration.  

It provides a function named gpuArray that can transfer CPU data to GPU data from 

the host to the device, and uses the function gather to return the GPU data to CPU data 

from the device to the host [11]. 

First, we tried to use the MATLAB built-in functions to accelerate the image filtering 

with GPUs. MATLAB has some built-in functions that support GPU computing, but the 

function imfilter is not available for 3D data on GPUs even in the latest version of 

MATLAB (at the time of writing this was R2013a).  

Another function convn, which is multiple dimensional convolution, is only available 

on the latest version MATLAB R2013a, and is not available on the version R2012a 

which was what was deployed on Fermi0 [8].  

The PCT also provides a method arrayfun that enable programmers to write their 

own GPU codes [11]. However, the arrayfun has strict limitations that can only 

support basic calculation code, and it cannot even support the for loops on GPUs. So it 

has difficulties to filter 3D images using the arrayfun. 

Finally, we also made use of FFT based convolution and FFT based cross-correlation for 

GPU acceleration. The GPU acceleration with the FFT based convolution is described 

below as an example:  
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Figure 3.7: The workflow of the FFT based convolution with PCT GPU 

1) First, the data of Gabor filter should be rotated 180 degrees. 

2) The 3D image and the 3D filter should be transferred from the MATLAB working 

space to a GPU, using the gpuArray: 

gpu_img = gpuArray (image); 

gpu_filter = gpuArray (filter); 

3) The 3D image and the 3D filter are padded with zeros through the use of the function 

fftn. Due to the limitation of the GPU memory on Fermi0 (2.7GB), the size of the 

FFTs cannot be a power of 2. For example, if we pad the 512 * 512 * 300 CT image 

with zeros to the size of a power of 2, the expanded size will become 1024 * 1024 * 

512. It will take 4GB space for double precision real data, 8GB for complex data, and 

16GB for computing point-wise product between two FFTs. It uses too much 

memory, and exceeds the GPU memory. Therefore, the size is just expanded to size 

(image) + size (filter) – 1. 



 27 

4) The 3D FFT based convolution is performed as below: 

result = ifftn ( fftn (image, size) .* fftn (filter, size) ). 

5) The results then can be extracted from the central part of the total results as the serial 

FFT based convolution code. 

6) Finally, the GPU results are transferred back to the MATLAB working space, using 

the function gather: 

result = gather (result). 

Although the Parallel Computing Toolbox currently only provides limited supports for 

GPU computing, its FFT functions for GPUs have already been highly optimised, and 

performed very well. The FFT functions in MATLAB are based on the FFTW and 

CUFFT [12], which have the very top performance in the FFT implementation on CPUs 

and GPUs respectively. For this project, the image filtering mostly relies on the FFTs, so 

it has already provided great help on the GPU acceleration to the 3D texture analysis 

code. 

The MathWorks Company has realised the power and importance of GPU computing, 

and their Parallel Computing Toolbox is being improved to support GPUs. There are 

more and more built-in functions that support GPU arrays being included in recent years 

[8]. In addition, the MathWorks has bought a GPU add-on Jacket from AccelerEyes, and 

is integrating the highly optimised GPU add-on Jacket into the Parallel Computing 

Toolbox. The PCT will have more supports and higher performance on GPU computing 

in the near future. Results obtained using this optimisation is discussed in Chapter 4. 

3.6 Jacket 

Jacket is a third party add-on from the AccelerEyes Company [13], and it provides 

greater supports and higher performance for GPU computing than the current MATLAB 

Parallel Computing Toolbox. Where the PCT has 171 built-in functions supporting GPU 

data, Jacket has provided 589 GPU functions [15]. Jacket not only provides a wider 

range of GPU functions, but also provides better acceleration with GPUs. Jacket has 

been tested that its GPU functions have been optimised and have higher performance 

than the PCT, according to a number of benchmark reports [16]. In addition, Jacket is 

much easier for GPU programming than CUDA or OpenCL. 

In addition, Jacket was purchased from AcclerEyes by the MathWorks in December 

2012 [13], and is being integrated into MATLAB Parallel Computing Toolbox. Jacket 

cannot be purchased any more but existing installed versions are being supported for a 

year. For this project, Jacket was still available on Fermi0 at version 1.8.2. 

In order to run a Jacket code with MATLAB, the path of the Jacket engine has to be 

added to MATLAB using the command “addpath <jacket_root>/engine”. On Fermi0, 

the “<jacket_root>” is “/usr/local/jacket/”. We need to add the path of Jacket before 

running a Jacket code, and then MATLAB can work with Jacket and find its libraries. 
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The path of Jacket will be removed after the code ends. We write a testing script to run 

the Jacket code in MATLAB, which is shown below: 

addpath /usr/local/jacket/engine 

addpath /usr/local/jacket/sdk 

load('../data/test_volumes','test_volume_64_64_37') 

begin=tic; 

test_results_64 =  

           calc_3d_stats(test_volume_64_64_37,64); 

t_64=toc(begin); 

clearvars test_vol* 

rmpath /usr/local/jacket/engine 

rmpath /usr/local/jacket/sdk  

Jacket provides two functions named gdouble and gsingle that transfer double and 

single precision respectively CPU data to the GPU from host to device, and in reverse, 

the function double and single return the double and single precision GPU data to 

CPU from device to host [13]. 

Taking a similar approach to using the PCT with GPUs, we first tried to use the Jacket 

built-in functions to accelerate the image filtering with GPUs. Although Jacket has as 

many as 589 built-in functions that support GPU computing, the function imfilter is 

not available for 3D data on GPUs, so we came across the same situation as with the PCT 

[13].  

Another function convn, which is a multiple dimensional convolution function, is 

available in Jacket [14], but we were more interest in FFT based convolution which can 

run much faster to produce a result. Therefore, the Jacket acceleration code with GPUs is 

based on the algorithm of FFT based convolution. The procedure of the FFT based 

convolution with GPUs is similar to the PCT approach, and is described below as an 

example:  
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Figure 3.8: The workflow of the FFT based convolution using Jacket 

1) First, the data of Gabor filter should be rotated 180 degrees. 

2) The data of the 3D image and the 3D filter should be transferred from host to device, 

and the data type should be transformed from double to gdouble using the 

gdouble function: 

gpu_img = gdouble (image); 

gpu_filter = gdouble (filter); 

3) Just like with the PCT strategy, the 3D image and the 3D filter are padded with zeros 

through the use of the fftn function. Due to the limitation of the GPU memory on 

Fermi0 (about 2.5GB), the size of the FFTs cannot be a power of 2. It uses too much 

memory, and exceeds the limitation of the GPU memory. Therefore, the size is just 

expanded to size (image) + size (filter) – 1. 

4) The 3D FFT based convolution is performed as below: 
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result = ifftn ( fftn (image, size) .* fftn (filter, size) ). 

5) The results then can be extracted from the central part of the total results as the PCT 

approach. 

6) Finally, the GPU results are transferred back to the MATLAB working space, using 

the function double: 

result = double (result). 

In addition, Jacket has its own parallel for loops on GPUs named gfor, which offers 

significant advantages over the PCT mentioned in the previous section. The PCT has no 

GPU for loops. The Jacket gfor loops can automatically apply data on the GPU, and 

executes calculation in the GPU. However, the gfor loop does not help improve 

performance of the code in the Gabor filtering, when we use it for the 144 independent 

iterations of the Gabor filtering. The gfor loops can be applied in other parts (e.g. 

Haralick features) for further optimisation in the future. 

The Jacket FFT is also based on the CUFFT (CUDA FFT library), which have the very 

top performance in the FFT implementation on NVIDIA GPUs. Thus, the Jacket FFT 

functions are also highly optimised for GPU computing as the PCT, and accelerate the 

3D texture analysis code greatly. 

Since the image filtering mostly relies on the FFTs in this project, many other GPU 

functions in Jacket have not been used. So the many advantages of Jacket are not so 

obvious in this project, but Jacket should still help improve the performance with GPUs 

in other parts of the code – a task for future work. 

3.7 CUDA 

The Compute Unified Device Architecture (CUDA) is a mature GPU programming 

model developed by the NVIDIA Company [17]. For NVIDIA GPU cards, CUDA gives 

the highest performance and flexibility for GPU programming, but it is much more 

difficult to program and requires much more effort than using the PCT or Jacket. We 

have to consider the data transfer between the host and device, 3D data memory access, 

number of threads, and many other relevant programming details. 

In order to develop CUDA codes, we need a CUDA enabled GPU card, the CUDA 

toolkit, and its relevant driver. Fermi0 already had the NVIDIA CUDA Toolkit installed, 

and also had the CUDA-capable driver for its Tesla C2050 GPU card.  

CUDA has its own FFT library named CUFFT [22]. The CUFFT library is in based on 

the FFTW, which is one of the most efficient CPU implementation of FFT [22]. The FFT 

uses a divide-and-conquer algorithm for efficiently calculating discrete Fourier 

transform.  

The CUFFT provides a simple API for parallel FFT implementation on a GPU card. It 

uses a handle named a “plan” to configure internal building blocks and GPU hardware 

resources before computing the FFTs, so that it can reduce the execution time as much as 
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possible [22]. The pre-configuration has advantages in that, once the plan has been 

created, it can be retained there and can be executed multiple times without 

re-configuration. After setting the plan, the execution function can then takes place 

according to the plan. This CUFFT mechanism works well, because it configures 

internal threads and GPU resources for different kinds of FFTs, and then can execute 

FFTs several times according to the plan. It makes good uses of the GPU resources [22]. 

CUDA code can be called from within MATLAB. MATLAB supports hybrid 

programming with other languages, such as C and CUDA [21], in order to get 

acceleration for part of the MATLAB code. We can select the most computational 

demanding part of the original code which is the image filtering, and implement this 

using CUDA. 

There are two methods calling CUDA codes from within MATLAB. One uses the PTX 

files, the other uses the MEX files [20]. Both of them are described respectively in the 

following section, and are compared to each other.  

3.7.1 MATLAB Calls CUDA through PTX Files 

Although MATLAB has some supports for GPU computing, many functions still could 

do with more optimisation, such as the imfilter. MATLAB can call a CUDA kernel 

through Parallel Thread Execution (PTX) files [19]. This section describes the workflow 

of making a kernel from CU and PTX files. 

1) A CUDA kernel code is written in a CU file. Because the CUDA kernel code cannot 

interact with host-side libraries, for example CUFFT, it cannot thus use the CUDA 

FFT library [19]. Therefore, we implement a basic 3D convolution instead, shown in 

Figure 3.9, which is not as good as an FFT based convolution. 

 

Figure 3.9: The CUDA kernel code of a basic 3D convolution 
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The directive “__global__” indicates that it is an entry point of the CUDA kernel. 

The code implements a basic convolution according to the definition of convolution, 

so its performance is not as good as the FFT based convolution. 

2) We can use the NVIDIA compiler (nvcc) to compile the CUDA kernel code (CU 

file) at the shell command line, and generate a PTX file, using the following 

command: 

nvcc –ptx testgabor.cu 

3) Then we create a kernel in MATLAB using the PCT. 

k=parallel.gpu.CUDAKernel('testgabor.ptx','testgabor.cu'); 

4) At last, we can set the number of blocks and threads, and run the kernel in MATLAB 

using the function feval: 

N=64; 

k.ThreadBlockSize = [N N N]; 

result = feval (k, image, filter, …); 

This example is an implementation of a basic convolution, which is not efficient enough. 

It is relatively easy to use the PTX files to call a CUDA kernel, but it has the limitation 

that it cannot use host-side library. Therefore, in the next section, we implement an FFT 

based convolution with CUFFT using the MEX files to call CUDA code, which has 

much better acceleration. 

3.7.2 MATLAB Calls CUDA through MEX Files 

The method of calling CUDA using MEX files is much more complicated than the 

method of using PTX files, but MEX files has more flexibility that it can interact with the 

host-side libraries [20]. In other words, we have to use MEX files to call CUDA code if 

we want to make uses of the CUFFT (CUDA FFT library). 

The MEX file is a MATLAB API used for interfacing CUDA code, or other languages, 

to MATLAB functions [21]. In this way, MATLAB is able to be extended through MEX 

files taking advantage of the computational power offered by CUDA and GPUs. 

This work shows the feasibility and benefits of using MEX files to call a CUDA code, 

which implements an FFT based convolution. The workflow describes the procedure of 

accelerating MATLAB with CUDA using MEX files, which is shown in Figure 3.10: 
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Figure 3.10: The workflow describes the procedure of accelerating MATLAB with 

CUDA using MEX files 

1) There are some header files which have to be included in the source CUDA code: 

#include <cuda_runtime.h> 

#include <cufft.h> 

#include "mex.h" 

#include "matrix.h" 

The “cufft.h” is used for the CUFFT, and the “cuda_runtime.h” is a common header 

file for CUDA codes. It is necessary to include the “mex.h” which is the interface 

between the MEX file and CUDA code. Lastly, the “matrix.h” is for the MATLAB 

data types, which will be converted into C data types. 

2) The gateway function in a MEX file is mexFunction, which is the entry point for 

MATLAB to access the CUDA code. The mexFunction is shown below: 

mexFunction(int nlhs, mxArray *plhs[ ],int nrhs, const 

mxArray *prhs[ ])  

{  
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… 

 } 

The mexFunction is equivalent to the main function in C code. The parameter 

nlhs is the number of output MATLAB arrays (left hand side). The parameter plhs is 

the array of pointers to the expected outputs. The parameter nrhs is the number of 

input arrays (right hand side). The parameter prhs is the array of pointers to inputs. 

3) Variables should be declared in the CU source file as shown in Figure 3.11. 

 

Figure 3.11: Variables declared in the CUDA code 

The CUFFT has complex value data type cufftDoubleComplex, and we create 

a plan using the cufftHandle.  

4) The input MATLAB data are converted into C data, as shown below: 

 

Figure 3.12: Getting input MATLAB data to C data 

The n is the number of elements of the input 3D arrays, and “nDim” gets the number 

of dimensions, which is 3 here. The “dimSize” is the size of each dimension, and the 

A is the pointer of the input 3D array. The “plhs[0]” is the pointer to the output 3D 

array. The “C_real” is the pointer of the real part of the output complex array, while 

the “C_img” is the point of the imaginary part of the outputs. 

The complex value array is stored in two separate arrays in C. 

5) The 3D data layout should be re-ordered, because the mechanisms of memory access 

are different between the MATLAB and C [23]. The MATLAB arrays are 

column-major, while C arrays are row-major. The ordering of 3D data arrays should 

be adjusted as shown in Figure 3.13. The complex data are stored in C_real and 

C_img separately, and the id is a counter. 
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Figure 3.13: Converting the ordering of 3D data arrays 

6) We allocate memory on the GPU using the CUDA function cudaMalloc, as 

described below: 

cudaMalloc((void**)&gpuA,sizeof(cufftDoubleComplex)*nx*ny*

nz); 

cudaMalloc((void**)&gpuC,sizeof(cufftDoubleComplex)*nx*ny*

nz); 

7) The C data is transferred from the host to the device using the CUDA function 

cudaMemcpy as shown below: 

cudaMemcpy(gpuC,C,sizeof(cufftDoubleComplex)*nx*ny*nz

, cudaMemcpyHostToDevice); 

8) Then we can create a 3D FFT plan, which configures the internal blocks and threads 

of the GPU resources. The plan is created as described below: 

cufftPlan3d(&plan, nx, ny, nz, CUFFT_Z2Z); 

9) After the plan has been created, we can execute the 3D FFT as shown below: 

cufftExecZ2Z(plan, gpuC, gpuC, CUFFT_FORWARD); 

10) We also do other calculations on the GPU, for example, point-wise product. 

11) The GPU data is transferred back from the device to the host using cudaMemcpy. 

12) The results of 3D data layout should be re-ordered back. The ordering of 3D data 

arrays should be adjusted as shown in Figure 3.14: 
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Figure 3.14: Re-order the 3D data layout 

13) Finally, the memory should be cleaned up, and the plan should be cleaned up: 

cufftDestroy(plan); 

   cudaFree(gpuA); 

   cudaFree(gpuC); 

The workflow shown above is the description of writing the CUDA code (CU file) with 

CUFFT. We have to compile the CU file into a MEX file at the next stage. The 

compilation is separated into 2 steps. The first step is to use the NVIDIA compiler nvcc 

to compile the CU file into an Object file, and the second step uses the MATLAB mex 

script to compile the Object file into a MEX file (mexa64 for Linux 64). 

In the MATLAB command window, we type the two lines of commands shown below: 

!nvcc -c cudaFFT3d.cu -Xcompiler -fPIC -I 

/usr/local/MATLAB/extern/include 

mex cudaFFT3d.o -L /usr/local/cuda/lib64 -lcudart 

-lcufft 

The first line of command is a shell escape with a “!” at the start, while the second 

command line has no “!”. At last, the MEX file cudaFFT3d.mexa64 is generated, and 

can be called from MATLAB. 

From the description of using MEX files with CUDA, we can find that it is complicated 

because of the data conversion. The MATLAB data is first converted to C data, and the 

indexing needs to be re-ordered for 3D arrays. Then the C data is transferred to the GPU, 

and the CUFFT has a specific complex data type. The CUFFT only supports interleaved 

format for complex data, while C stores all the real data followed by the imaginary data. 

The data conversion is complicated and one should be careful. 

3.7.3 Comparison between MEX files and PTX files 

MEX files provide a powerful API for MATLAB to call other language code, such as 

CUDA, C, or FORTRAN. Using MEX files can invoke CUDA codes on the GPU and to 

handle data transfer between the host and device. On the other hand, the use of PTX files 

provides an easier way to call a CUDA kernel, although it has some limitations. 
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There are two main advantages of using MEX files: 

 MEX files are more flexibility. They can interact with host-side libraries, like 

CUFFT, and also with the CUDA runtime library. 

 MEX files can allocate memory, and configure the internal blocks and threads. 

3.8 Comparison of the Different Approaches 

After the different kinds of optimisation to the original 3D texture analysis code were 

implemented, a comparison is given in this section. 

Improving the algorithm for the image filtering requires effort in understanding the 

underlying theory (and reading papers to gain this understanding). We have to learn 

some theories of image analysis and to understand the original texture analysis code. 

Furthermore, it takes quite a lot of time to do some research by reading papers. On the 

other hand, algorithm improvement brings huge acceleration. 

The optimisation using PCT with CPUs needs to combine the nested loops into one loop, 

because the parfor cannot be nested. It takes the least effort in this project. 

The optimisation using PCT with GPUs is quite straightforward, because MATLAB has 

provided a well optimised 3D FFT function for GPUs. The optimisation using Jacket has 

the similar situation to the PCT with GPUs. The implementation of these two approaches 

is easier than CUDA, and can get very high performance as the CUDA implementation. 

CUDA is the most challenge approach to optimise the 3D texture analysis code. It costs 

the most time and efforts among all the approaches. Since we want to use CUFFT, we 

have to use the MEX files to call CUDA. The method of using MEX files requires many 

data conversions, which are quite complicated. The data types are different among 

MATLAB, C, and CUFFT (complex data type). The 3D arrays layout is also different 

between MATLAB (column-major) and C (row-major). Furthermore, we have to 

consider the memory access and data transfer between the host and device. The approach 

of using CUDA needs much more programming efforts than the other approaches. 

 

This chapter presents the profiling, design and implementation of the optimisation to the 

original code, including algorithm improvement, multiple CPU-cores parallelisation, 

and GPU acceleration. The next chapter will illustrates and analyses the results and 

speedup, and compares the performance among different approaches, different testing 

sizes and different machines Fermi0 of Hydra and Comp002 of Indy. 
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Chapter 4 

 

Results and Analysis  

This chapter reports and analyses the results obtained for the different optimisation 

strategies applied to the original 3D texture analysis code.  

4.1 Machines and Platforms 

The different versions of optimised codes were tested on the backend node Fermi0 of 

Hydra and the backend node Comp002 of Indy.  

Fermi0 is a workstation which with 4 Intel Xeon X5650 2.67GHz CPUs, each CPU has 6 

cores. Fermi0 also hosts 4 NVIDIA Tesla C2050 GPU cards. Its operating system is 

Linux x64, and has MATLAB R2012a installed on it. 

The other machine Comp002 on Indy has 4 AMD Opteron 6276 2.24GHz CPUs, each 

CPU has 16 cores. Moreover, Comp002 has a GPU of NVIDIA Tesla K20. Its operating 

system is also Linux x64, and MATLAB R2013a is installed I it. 

There are 4 NVIDIA Tesla GPU cards on Fermi0. When a MATLAB GPU code 

executes it chooses the first one by default. If the first GPU card on Fermi0 is busy, it will 

exit, and we can then select another device, using the PCT function gpuDevice. For 

example, we can select the 3rd one by indexing: 

gpuDevice (3). 

If the device is available, MATLAB will show the device information as shown below. 
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Figure 4.1: GPU device information 

The performance of the original 3D MATLAB code is shown in Table 4.1. The Gabor 

filtering takes up most of the total time, and the optimisation effort here focuses on this. 

The other parts of the code only spend a little proportion of the total time, thus they have 

been left as is in the serial code. 

Image Size Total time(sec) Gabor (sec) Other routines (sec) 

64 * 64 * 37 776 771 5 

128 * 128 * 75 6473 6450 23 

256 * 256 * 150 53043 52846 197 

512 * 512 * 300 425011 423470 1541 

Table 4.1: The timing results of the Gabor filtering and other parts 

4.2 Checking Correctness 

It is crucial to check the correctness when optimising a code. We compare the results 

between the optimised codes and the original code. The relative error is defined as 

follows: 

Ro

RoRn
errorrelative


_

 

where Rn is the new results, and Ro is the original results. 

We start by verifying the texture features calculated by the multi-core code version (PCT 

with CPUs). All the output results are exactly the same to the original results. This 

indicates that the optimised code using PCT with CPUs works correctly. 
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For the codes using improved algorithms, we compare their outputs with the original 

results. Their relative errors are less than 10
-15

, which are probably due to the double 

precision rounding off. For example, for the FFT based convolution of the 64 * 64 * 37 

test case CT image the results of all the Gabor features are of order 10
36

, and the absolute 

errors (Rn-Ro) are about 10
21

. So the relative errors are 10
21

 / 10
36

 = 10
-15

, which are 

probably double precision rounding-off. Figure 4.2 shows the relative errors between the 

results of the FFT code and the original code, along the Gabor features. 

 

Figure 4.2: Relative errors between the results of the FFT code and the original one 

From Figure 4.2, it is clear that the errors along the Gabor features are periodic. In other 

words, relatively big errors happen every 24 Gabor features. The reason why this is the 

case is still not clear. 

For the GPU codes, the results are compared with the relevant CPU results. Their relative 

errors are also less than 10
-15

, which again are probably due to the double precision 

rounding off. Figure 4.3 shows the relative errors of the results between the GPU FFT 

code and CPU FFT version, along the Gabor features or the GPU FFT based convolution 

with the 64 * 64 * 37 test case CT image. 
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Figure 4.3: Relative errors of the results between the GPU FFT code and the CPU 

FFT version 

Figure 4.3 is similar to Figure 4.2. The errors along the Gabor features are also periodic. 

Relatively big errors happen every 24 Gabor features. Furthermore, the errors of the 

original code results between Fermi0 and Comp002 are shown in Figure 4.4. 

 

Figure 4.4: Relative errors of the original results between Fermi0 and Comp002 
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4.3 Performance of the Different Algorithms 

We have optimised the image filtering by using different algorithms, and now we 

compare their performance for the 4 different test cases. The serial image filtering codes 

which are compared are: 

 The original code using imfilter 

 Image filtering using convn 

 Image filtering using an FFT based convolution 

 Image filtering using an FFT based correlation 

The 4 test cases are 3D CT images with different sizes: 64 * 64 * 37, 128 * 128 * 75, 256 

* 256 * 150, and 512 * 512 * 300. 

The speedup is defined as  

speedup = Told / Tnew, 

where Told is the execution time of the original code, and the Tnew is the execution time of 

the optimised code. 

4.3.1 Acceleration of the Image Filtering 

The speedup of different algorithms for the part of image filtering is illustrated in Figure 

4.5. 

 

Figure 4.5: Speedup of the image filtering part of the original code by using 

different algorithms 
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For the image filtering part, using the MATLAB convolution function convn has 

resulted in a speedup of 2.4x for all the four test cases. This indicates that the MATLAB 

built-in function convn has more optimisations than the function imfilter. From 

the source code of imfilter and convn, imfilter works in a direct way as the 

basic definition, while the convn has the ability to separate a 3D kernel into 3 1D 

kernels. The convn judges whether a multiple-dimensional kernel is separable at the 

start, if it is, it will separate the 3D kernel and perform a 1D convolution 3 times. This 

will reduce the calculation complexity, and reduce the execution time. In the image 

filtering code, there are also Gaussian kernels, which are separable, so using the convn 

can get some speedup, although it spends extra time on separating kernels. 

The FFT based convolution produces a much larger speedup than using the convn 

routine. It has got more than 30 times faster than the original code, and even gets an 

increasing speedup as the test cases increase in size.  The FFT based convolution can 

largely reduce the calculation complexities as mentioned in Chapter 2. Moreover, the 

MATLAB FFT functions are based on FFTW, which has the top performance for FFT 

implementation.  

The FFT based correlation is the fastest among the image filtering algorithms. It gets best 

speedups of all: 87 times speedup for the 64 * 64 * 37 CT image, and 154 times speedup 

for the 512 * 512 * 300 test case. The larger a data set is, the more acceleration it 

achieves. It is faster than the FFT based convolution, because it performs a conjugation 

rather than a rotation as required for FFT based convolutions. Conjugation is an atomic 

operation for computers, while a rotation consumes memory and spends time on memory 

access. The FFT based correlation has achieved a significant acceleration to the original 

code. 

4.3.2 Acceleration of the Complete System 

We would also like to know what the benefit to the whole code execution is by 

improving the Gabor filter algorithm.  
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Figure 4.6: Speedup of the complete system 

The MATLAB convn function gives a steady speedup of 2.4, while the FFT based 

algorithms provide increasing speedup with the increasing size of test cases. That is 

because the FFT based algorithms reduce the calculation complexity. Assuming the 

image size is m * m * m, and the filter size is n * n * n, the FFT based algorithms have a 

calculation complexity of O ((m+n)
3 

log (m+n)), while the imfilter method is O 

(m
3
n

3
). When m and n increase, the advantage of FFT based algorithms is obvious. In 

this project, the FFT based convolution has 27.7 times speedup for the 64 * 64 * 37 test 

case, and a 38.1 times speedup for the 512 * 512 * 300 test case. The FFT based 

cross-correlation produces an even higher acceleration, a 56 times speedup for the 64 * 

64 * 37 test case, and 99 times speedup for the largest test case (512 * 512 * 300). 

Figure 4.6 shows the speedup for the whole system, and the performance comparison for 

using the different algorithms. 

4.4 Speedup with Multiple Cores (CPU) 

The benchmarking of the multi-cores code was done on the Comp002 node of Indy, as 

the Indy cluster allows up to 64 cores to work in parallel. However, the Indy cluster is so 

busy that we could only get up to 24 cores (also named labs in MATLAB), and could 

open a matlabpool of 64 or even 36 cores.  

The benchmarking used 3 test cases: 64 * 64 * 37, 128 * 128 * 75, and 256 * 256 * 150. 

The largest case costs too much time to run. We calculated the speedup and efficiency 

show in the figures below. 
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Figure 4.7: Speedup with different number of CPU cores 

 

Figure 4.8: Parallel efficiency with different number of CPU cores 

The speedup for different number of CPU cores is shown in Figure 4.7. The time running 

on 1 core for each case was 776 sec, 6473 sec, and 53043 sec respectively. The code runs 

faster as the number of cores increases. In other words, parallelisation with multiple 

cores brings improvements to the performance of the code. In addition, when 

benchmarking as the problem size is increased, the speedup still improves. That means 

the code can still run much faster in parallel as the input test cases become larger. 

The parallel efficiency with different number of CPU cores is shown in Figure 4.8. The 

parallel efficiency decreases as the number of cores increases. This is because the code 
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has serial part, and there are parallelisation overheads, such as jobs scheduling. In 

addition, we get higher parallel efficiency when the testing size becomes larger. 

According to the Figure 4.7 and Figure 4.8, the speedup is better and the efficiency is 

higher, when the input image has a larger size. That is because as the input image size 

becomes larger, the serial part of the code and the parallelisation overhead are 

proportionally relatively small. When the testing size is small, the serial part and 

parallelisation overhead will affect the total execution time. Therefore, parallelisation 

with multiple CPU cores is more appropriate in the test cases with larger size. 

4.5 Speedup with GPUs 

This section tests the performance of the three GPU codes on Fermi0 and Comp002. The 

three GPU codes were optimised using PCT, Jacket and CUDA. All the three GPU codes 

are based on the FFT convolution algorithm, as the GPU codes were implemented before 

I became aware of the FFT cross-correlation method which is more efficient than the 

FFT convolution used here. The FFT cross-correlation algorithm port to the GPU codes 

has been logged as future work.  

4.5.1 The Speed of Data Transfer 

In order to have a better understanding of the GPU performance, it is necessary to 

measure the speed of data transfer between the MATLAB working space and the GPU. 

Table 4.2 shows the results: 

Machine MATLAB to GPU (GB/s) GPU to MATLAB (GB/s) 

Fermi0 2.92 1.78 

Comp002 2.17 0.41 

Table 4.2: The speed of data transfer between the MATLAB working space and 

the GPU 

The results shown in Table 4.2 were timed using the MATLAB timer (tic and toc), 

since the GPU codes are implemented on the platform of MATLAB. The speed of data 

transfer between MATLAB and GPU contains two parts: one is data transfer between 

host and device, and the other is data conversion between the MATLAB working space 

and the GPU. 

If the data size is small, the overhead of data transfer between the host and device is 

relatively large. If the data size is large, it will cost much time on the data conversion 

between the MATLAB working space and the GPU.  

The speed of data transfer is higher on Fermi0 than Comp002. The possible reason for 

this is that the PCI-E interface on Comp002 has lower bandwidth than Fermi0. 

The speed of the data transfer from the GPU to MATLAB is slower than that from 

MATLAB to the GPU. That is because the MATLAB memory manager spends more 
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time allocating dynamic memory in its working space, while the GPU has more efficient 

memory allocation. 

4.5.2 Measuring Acceleration with GPUs 

Due to the limitation of the GPU memory, the GPU codes using the FFT algorithms can 

only run the 3 test cases: 64 * 64 * 37, 128 * 128 * 75, and 256 * 256 * 150. For the 

largest test case, if we pad the 512 * 512 * 300 CT image with zeros to the size of a power 

of 2, the expanded size will become 1024 * 1024 * 512 which will take 4GB space for 

double precision real data, 8GB for complex data, and 16GB for computing point-wise 

product between two FFTs. The testing is taken place on both Fermi0 and Comp002. 

Comp002 does not have Jacket installed. 

 

Figure 4.9: The GPU speedup of the complete system on Fermi0 

Figure 4.9 illustrates the speedup of the complete system with GPUs on Fermi0. The 

time of the original code running on 1 core for each case was 776 sec, 6473 sec, and 

53043 sec respectively. Compared with the original code, the GPU code using PCT has a 

speedup from 70 to 106. The Jacket code can achieve a speedup from 80 to 120, and the 

CUDA code can get a speedup from 70 to 103.  

All the three GPU codes have similar performance with each other. That is because the 

FFT convolution mostly relies on the FFT, and all the GPU codes are based on the 

CUDA FFT library (CUFFT), so they have similar performance.  

In addition, the speedup in the 256 * 256 * 150 test case is lower than the 128 * 128 * 75 

test case, because the GPU codes have too much data transfer, which is a huge overhead 

and should be optimised in further work.  
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Figure 4.10: The GPU speedup of the complete system on Comp002 

Figure 4.10 illustrates the speedup of the complete system with GPUs on Comp002. The 

time of the original code running on 1 core for each case was 776 sec, 6473 sec, and 

53043 sec respectively. Compared with the original code, the GPU code using PCT has a 

speedup from 70 to 111  and the CUDA code can get a speedup from 70 to 107.  

The two GPU codes have similar performance, because they are both based on the 

CUDA FFT library (CUFFT). In addition, the GPU performance is slightly better on 

Comp002 (Tesla K20) than on Fermi0 (Tesla C2050). Because the GPU codes have too 

much data transfer, which is a large overhead affecting the performance, so it should be 

optimised in future works.  

4.6 Performance of all Approaches 

Finally, we compare the performance of all the different approaches. Figure 4.11 and 

Figure 4.12 show all the speedup measurements obtained on Fermi0 and Comp002 

respectively. 
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Figure 4.11: The speedup of all approaches on Fermi0 

 

Figure 4.12: The speedup of all approaches on Comp002 

Both of the two machines produce similar speedup results. The algorithm improvements 

alone achieve a high speedup which is further enhanced by the parallelism obtained by 

the hardware used. Particularly, the FFT cross-correlation CPU serial code achieves a 

speedup from 57 to 80. However, this was developed at a late stage of this work, and 

there was not enough time to port it to GPU codes. The GPU codes with FFT 

convolution algorithm can achieve more than 100 times speedup. 
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This chapter illustrates and analyses the results and speedup, and compares the 

performance among different approaches, different testing sizes and different machines. 

In the next chapter, we will discuss a conclusion and further work. 
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Chapter 5 

 

Conclusions  

This dissertation investigated various approaches to optimising a three dimensional 

texture analysis code, provided by the Cancer Research Centre at the Western General 

Hospital in Edinburgh. The challenge of this project has been to process large data sets of 

three dimensional CT images. The 3D texture analysis code is much more 

computationally demanding than the 2D code used in another MSc last year [6]. In 

addition, the image filtering with Gabor filter which was not in the 2D code, is the most 

computational part in the 3D code taking more than 99% of the total execution time. 

Therefore, this project focused on optimising the Gabor filtering, and accelerated its 

performance using a number of different approaches. 

The implementation and testing were done on the backend node Fermi0 of Hydra and the 

backend node Comp002 of Indy. Fermi0 has 4 GPUs of NVIDIA Tesla C2050 cards, and 

Comp002 has a GPU of NVIDIA Tesla K20. The development environment was 

MATLAB. There were 4 3D test case CT images with sizes: 64 * 64 * 37, 128 * 128 * 75, 

256 * 256 * 150 and 512 * 512 * 300. 

This project aimed to accelerate the original MATLAB code using different kinds of 

approaches, and focused on how to process large data set in a faster way. We improved 

the image filtering algorithm, and applied both multi-cores and GPU parallelisation 

techniques. The original MATLAB code was optimised largely by the algorithm 

improvements and GPU techniques, and has achieved a large speedup of 120 times. 

For algorithm improvement, we have tried: convolutions (a MATLAB built-in function), 

FFT based convolutions, and FFT based cross-correlations. The MATLAB convolution 

had a 2.3 time speedup. The algorithm of FFT based convolution run 27 times faster than 

the CPU serial code. Furthermore, we also improved the transform from convolution to 

correlation, using conjugation approaches instead of rotating three-dimensional arrays, 

which benefited the memory usage and reached 57 times faster than the original code. 

After that, we used the MATLAB Parallel Computing Toolbox (PCT) to parallelise the 

original code. The multi-cores code got a reasonable speedup, and its performance 

results were used to analyse the speedup from using different numbers of cores. Based on 

the original algorithm, the parallelised code can get 8 times speedup when it is run on 12 

cores. 
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We then ported the FFT based convolution code to the GPU based codes. The first GPU 

technique we used was the MATLAB Parallel Computing Toolbox (PCT). The PCT 

provides some support for GPU computation. It provides the FFT built-in functions that 

support GPU computation, which have performed very well in this case and are based on 

CUFFT [22]. The GPU based code using PCT run more than 100 times faster than the 

original code. 

The second GPU technique we applied was Jacket, a product of AccelerEyes. It is a GPU 

add-on for MATLAB. It has done deep optimisations for GPU calculation, and it 

provides a much easier way for GPU programming compared to using CUDA in 

MATLAB. Jacket achieved the highest performance (a speedup of 120) in this project, as 

its FFT performs well. The CUDA code called by MEX files has too much data 

(complex data types) conversion between MATLAB, C and CUDA. In going from each 

of these to another, a data conversion was involved. 

The third GPU technique used CUDA to try to accelerate the original MATLAB code. 

CUDA has a professionally optimised FFT library for GPU computation named CUFFT, 

which gives great performance and convenience. The FFT functions in PCT and Jacket 

are based on CUFFT as well [12, 16]. However, the CUDA code called by MEX files has 

too much data (complex data type) conversion taking place between MATLAB, C and 

CUDA, and thus does not have a high efficiency. 

There are a number of potential performance improvements for the 3D texture analysis 

code that there was insufficient time to do during this project and could be done in future 

work. The data transfer is not well optimised in the current GPU codes. In addition, the 

FFT based cross-correlation algorithm, which has much higher performance than the 

FFT convolution, has not been ported to the GPU codes yet. The GPU codes can get 

much higher speedup with the FFT cross-correlation algorithm. Finally, we could also 

try to develop a multiple GPUs code with MATLAB PCT, using parfor loops. If this 

work were to be progressed it would be good to try some of these things. 
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