
Finding Wally
Parallel Object Recognition

Cian Booth
MSc. Dissertation Report

Abstract

A report on the potential of parallel computer vision for everyday
use. Discussed within are algorithms and libraries that could make this
a possibility. Special focus is put on the computer vision library OpenCV.
Where’s Wally? puzzles are used as a test case for parallel object recogni-
tion, with OpenMP used for parallelism. The program experiences mod-
erate speedup up to 16 cores. The reliability of the program’s solutions
was not generic, requiring tweaking to become correct.

Contents
1 Introduction 1

1.1 Computer Vision . 1
1.2 High Performance Computer Vision 2
1.3 Potential Use Cases . 2
1.4 Where’s Wally? as a Test Case 4
1.5 Goals . 4
1.6 Overview of Report . 5

2 Background Information 6
2.1 Computer Vision . 6
2.2 Object Recognition . 6
2.3 Shape and Colour Analysis 6

2.3.1 Feature Analysis . 8
2.4 Computer Vision Libraries 8
2.5 Parallel Programming . 9
2.6 Parallel Computer Vision 10
2.7 Shared Memory Parallelism 11

3 Algorithms 14
3.1 Colour Analysis . 14

3.1.1 Colour Extraction . 14
3.1.2 Blur . 15
3.1.3 Sharpen . 17

3.2 Region Detection . 17
3.2.1 Naive Solution . 17
3.2.2 Flood Fill . 18
3.2.3 Connected Component Labelling 20

3.3 Line Width Estimation . 22
3.3.1 Average Distance to a Zero Valued Pixel 23
3.3.2 Standard Deviation in Distance to Zero Valued Pixels 26
3.3.3 Combining the Methods 28
3.3.4 Testing . 31
3.3.5 Parallelism . 31

3.4 Shape Analysis . 32
3.5 Feature Detection . 32

3.5.1 Scale-Invariant Feature Transform 32
3.5.2 Speeded Up Robust Features 33
3.5.3 Matching: Brute Force Matcher 33
3.5.4 Matching: FLANN 33
3.5.5 Matching: Relative Keypoint Distances 34

4 Implementation 36
4.1 Function Implementation 36
4.2 Pattern: Red and White Stripes 38

4.2.1 Weaknesses . 39
4.2.2 Testing . 41
4.2.3 Parallelism . 41

4.3 Pattern: Blue Trousers . 41
4.4 Find Glasses . 42

4.5 Find Features . 42

5 Results 44
5.1 Extracting Greyscale from Image 44
5.2 Line Width . 45
5.3 Region Detection . 46
5.4 Find Features . 46

5.4.1 Reliability . 47
5.4.2 Speedup . 50

5.5 Red And White Stripes . 50
5.5.1 Reliability . 51
5.5.2 Speedup . 51

5.6 Find Glasses . 52
5.6.1 Speedup . 52

5.7 Blue Trousers . 52
5.8 Speedup . 53
5.9 Using All Techniques . 53

5.9.1 Speedup . 53
5.10 Genericism . 54

6 Conclusion and Evaluation 57

7 Evaluation 58

List of Figures
1.1 A map of Edinburgh . 3
1.2 Characters from Where’s Wally? 4
3.1 Gaussian Blurring . 16
3.2 Steps in a naive region detection algorithm 18
3.3 The Flood Fill Algorithm . 19
3.4 The Connected Component Labelling Algorithm 21
3.5 Graphic description of parallel region detection 22
3.6 Examples of the zero-distance of black lines 24
3.7 Relationship between line width and mean zero-distance 25
3.8 Relationship between line width and standard deviation . 27
3.9 Maximum zero-distance reduction to produce sane mask 29
3.10 Sensitivity of mean and standard to errors 30
3.11 Test images for estimate_black_line_thickness 31
4.1 Isolating yellow from an image using get_colour_in_image 38
4.2 Example of finding red and white striped regions 39
4.3 Fail case for the ‘Red and White’ pattern 40
4.4 Test images used to check the red and white pattern . . . 41
5.1 Time and speedup of extracting greyscale from an image 44
5.2 Time and Speedup of parallel line width analysis 45
5.3 Time and Speedup of parallel region detection 46
5.4 Find Features example output 47
5.5 Find Features stripes example output 47
5.6 Reliability of the Find Features pattern for known Objects 48
5.7 A Comparison of Object Resolutions 49
5.8 Reliability of the Find Features pattern for unknown Objects 49
5.9 Time and speedup of the Find Features pattern 50
5.10 Reliability of the Red and White Stripes pattern with opti-

mal settings . 51
5.11 Reliability of the Red and White Stripes pattern with sub-

optimal settings . 52
5.12 Time and speedup of the Red and White stripes pattern . 53
5.13 Speedup of the Find Glasses Pattern 54
5.14 Speedup of the Blue Trouser Pattern 55
5.15 Complete program speedup 56
5.16 Extending the program to find Odlaw 56

List of Tables
3.1 Example of Colours in Hexadecimal format 14
3.2 Process of sharpening an image 17
3.3 Table of estimated line widths of test images 31

Acknowledgements
Many thanks go to my supervisor, Alistair Grant, for directing me to
such an interesting project, and keeping me on the rails.

1 Introduction
The field of computer vision studies the use of computers to process
and analyse images. Some aspects allow robots and other machines to
process visual data. Others are an attempt to simulate the human ability
to perceive visual information. This portion of computer vision allows
users to reduce the time taken to produce information about an image.
It can also help to increase the confidence that results related to that
information is correct.

1.1 Computer Vision
Recognising an object is one of the most important things that human
vision is able to do. This means that the brain is able to decipher the in-
formation received from the eyes, identifying any objects the information
describes. For the average human can expect to see the local environment
and immediately recognising objects within. The act of object recogni-
tion is a subconscious one[1]; humans do not have to actively think about
their environment to understand what objects exist there. As a subcon-
scious act, the complexity associated with human object recognition is
not known, but can be estimated. The level of information contained in
a single ‘frame’ of vision is extremely high. A normal room can contain
many thousands of distinct shapes and surfaces, which must be pieced
together to form a cohesive whole. Light levels vary from one position
in a room to another, so objects may appear different at different angles.
The human brain is able to analyse this data in real time while making
decisions about objects in the image.

The adage “a picture is worth a thousand words” is particularly
meaningful here; creating and expressing a logical definition of an object
would be an extensive and verbose task. This logical expression would
have a high level of complexity, needing precise descriptions including
colour, shape and texture. It is a complex task to begin to define these
values in a meaningful way.

Implementing this on a computer is complex. The normal description
of a computer is a machine that is designed to calculate mathematical
operations more accurately or faster than a human could. Modern com-
puters are binary devices, designed to store and act upon precise values.
Human vision, as currently understood, does not readily map onto the
types of operations computers excel at.

Despite these difficulties, computer vision is an impressively mature
field. Algorithms including Scale-Invariant Feature Transform (SIFT)[2]
have been developed, which are able to find known objects under vari-
ous transformations. It is used in numerous areas, from robotics control,
automation defect recognition in manufacturing and tracking user mo-
tions with devices like the Kinect. Computer vision has the potential to
be useful in countless fields, and in many aspects of everyday life.

1

1.2 High Performance Computer Vision
One of the major obstructions for widespread use of computer vision
is the limiting relationships between speed, accuracy and genericism.
For this report, speed is defined as the wall time (externally measured
time taken to complete) of the program. Accuracy is the confidence with
which results can be said to be true, and genericism is how easily the
techniques can be adapted to different problems. The human eye can
detect most objects quickly, accurately and generically. Computer vision
is not so advanced. Achieving real time speeds comes at the cost of
accuracy or generality. Conversely, creating a fast or generalised system
comes at the cost of greatly increased completion time.

For each way that a human can describe an object, multiple tech-
niques emerge to locate the object. Each technique has varying require-
ments and reliability. Some need specific descriptions (e.g. a sample
image) and produce very reliable results. Others do not require such
precise descriptions, but can produce results that are not as dependable.
By combining these techniques, the reliability and robustness of com-
putational object recognition should be improved. Using all available
techniques can considerably increase the runtime of the program. This
can be mitigated by computing techniques in parallel.

An suitable method of parallelism for this type of problem is the task
farm. This means that tasks (here, identification methods) will be run
concurrently. Task farming is useful in this case, as it allows the use
of serial libraries and algorithms that can complicate or prevent paral-
lelism. Computing results this way, a task farm allows computer vision
programs to produce results quickly, reliably and generically.

1.3 Potential Use Cases
Parallel object recognition is a powerful technique that could be useful
for many different areas.

The UK Missing Person Bureau released data on missing persons in
2010-2011 [3]. During this period, two thirds of missing people in the
UK were under the age of 18. This group is particularly vulnerable to
abduction and abuse when left unsupervised. Although the majority of
missing people were found within the 5 miles of their homes, up to 21%
of people were further out. A 5 mile radius is a large area to look for
one person, especially in an urban area. Further out it becomes very dif-
ficult to search efficiently. Figure 1.1 shows the area that a 5 mile radius
contains encompasses most of the urban area of Edinburgh city. Almost
4/5 of missing people would likely be found within the first 16 hours
within a 5 mile radius. According to information released from a survey
of young runaways [4], 34% of said they had been harmed or in a risky
experience more than once, and 11% expressly said they had been hurt or
harmed. It is critical to find at risk individuals before they are harmed.
Although computer vision is to facilitate searches, the volume of data
produced can exceed the capabilities of existing programs and systems.
Furthermore, surveillance data from CCTV equipment produces data at
real time speeds, so faster than real time processing speeds are desired.
Real time speeds means that the program is able to analyse the data as

2

Figure 1.1: A map of Edinburgh, with 5 and 10 mile radius areas displayed. A 5 mile
radius circle includes the majority of the urban areas of Edinburgh city. Base image
courtesy of Google Maps.

fast as it is being produced. This may involve reducing the amount of
data being input i.e analysing 1 in every 30 images. Implementing a
parallelised version of image recognition tools should greatly reduce the
time an image takes to search. Governmental agencies, such as the po-
lice, have access to very large computer systems[5], potentially allowing
for a high degree of parallelism.

Another potential use can be found with surveying populations of
wild animals. Wildlife conservation is a delicate task, which could bene-
fit from rapid computer vision techniques. To accurately know which
species are endangered, it is important to have an accurate count of
the members of the species for a given region. Actively surveying the
population by means of physically interacting with members can have
adverse effects on the population. Nielsen [6] discusses the negative ef-
fects of electrofishing on rare fish populations. She discusses the lack of
non-invasive methods of surveying the population, without which pop-
ulation counts cannot be maintained. Directly surveying endangered
species can be inefficient, slow or dangerous to either the researcher or
the animal in question. Passive techniques, such as photography, allow
the researcher to estimate populations without interacting with the en-
vironment. Ideally a researcher would be constantly vigilant and able
be to immediately identify each species correctly. This is rarely the case;
a single human is fallible and a team is often beyond the funding of
the endeavour. Instead, with access to any modern laptop and a digital
camera, parallel computer vision may be able to assist in many ways. A
video feed would allow observation for as long as the battery lasts, and
a database of the features of regional species would help with identifi-
cation. Parallel species recognition would allow multiple species to be
surveyed at a time. It would allow laymen to monitor the survey of the

3

populations, freeing up experts for more specialised tasks.
An everyday use of parallel object recognition is nationwide traffic

monitoring. Using existing roadside cameras, such as CCTV or speed
cameras, a network could be built that monitors traffic on a large scale.
This would help to improve commute times and general congestion is-
sues, by advising drivers of congested areas and providing alternate
routes. Parallelism could be applied to this situation. The sheer quantity
of data for a large scale system like this would prevent real time analysis
for a serial program.

An use that is both simple and approachable can be found in Where’s
Wally? puzzles. This will be examined closely in the following section.

1.4 Where’s Wally? as a Test Case
Where’s Wally? puzzles are a good test for parallel computer vision.
Each puzzle is a cartoon image filled with various characters, who wear
simply coloured clothing, see Figure 1.2(a). One of these characters is the
eponymous Wally, who dresses distinctly from most others characters,
see Figure 1.2(b). Similarly dressed characters exist, Figure 1.2(c), to
add complexity in finding Wally correctly. The cartoon nature of the
characters means that shapes are boldly coloured and generally bordered
by a black line. As Where’s Wally? is a puzzle, Wally will be hard
to find; he can be obscured, camouflaged or simply small. Creating a
program to solve Where’s Wally? is non-trivial, requiring a combination
of computer vision techniques. Thus the puzzle provides a good base to
develop parallel object recognition.

(a) A normal person (b) Wally (c) Wenda
Figure 1.2: Characters from Where’s Wally?

1.5 Goals
This report presents Where’s Wally? as a testbed to determine if High
Performance Computer Vision can feasible used in in everyday life. This
includes the production of a suite of functions that, though tuned to lo-
cating Wally, could be used to find other characters. The use of directive
based parallelism, will be added, to determine if a user-friendly system
is viable. Directive based parallelism uses preprocessor flags to indicate
areas that can could use parallel techniques. This is as opposed to using
specific libraries and function calls to implement the parallelism.

A system that is intended for everyday use, must be simple and us-
able. This means that any developer should be able to produce a program

4

for general use. For example, HTML is an extremely simple and usable
tool, it requires very little expertise and can be used in a large number of
situations.

The more expertise required to implement parallel computer vision
techniques, the fewer people are capable of creating solutions. In turn,
this limits the man-hours available for producing programs, restricting
implementations to the most pressing of problems. This limits the ev-
eryday usability of parallel computer vision, as there would be far fewer
everyday programs.

The genericism of the suite of functions will be tested on non-Wally
puzzles, to determine how generic the solution is.

1.6 Overview of Report
This report will begin by discussing the underlying information required
to comprehend parallel object recognition. This includes literature re-
views. The next section discusses the patterns used to recognise Wally.
Each includes an analysis of the algorithm selection and a details of the
level of parallelism which can be exposed. This will be used to produce a
Where’s Wally? solver, which examines the parallelism used to increase
the speed of the Where’s Wally solver.

The report will comment on the results produced by the patterns and
the solver. Following this, will be the concluding statements and ideas,
along with recommendations for future use. The report will close with an
evaluation of the project as a whole. Differences between the preparation
phase and the actual report period will be noted here.

5

2 Background Information

2.1 Computer Vision
Computer vision is a wide ranging field with a large variety of algo-
rithms and libraries available for use. It is involved with topics such as
artificial intelligence[7], machine vision[8], and image processing. Com-
puter vision draws upon a large range of established fields, such as math-
ematics, physics and neurobiology. Many of the most complicated tasks
use techniques developed for linear algebra, such as the transpose oper-
ation. Others rely on the understanding of human cognition to produce
algorithms that far outperform previous efforts.

Computer vision techniques can be used for numerous tasks, includ-
ing motion analysis, image restoration and object recognition.

Motion analysis is used to determine object velocities in an image
stream. This could be due to the motion of the camera, motion of visible
objects or a combination of the two. This has a number of applications,
but has seen a rise in public use with devices like the Xbox Kinect[9].
The Kinect enables the user to interface with the Xbox through by track-
ing the motion of their body. Users do not need additional controls to
select menu options, scroll windows or even play games. This is a good
example of how computer vision can be applied, and a good indication
of how ready it is for everyday use.

Image restoration is the recovery of corrupt or otherwise marred im-
ages. An interesting application is the recovery of medical images[10].
Obtaining high resolution images from MRI scans normally requires a
large number of measurements. This is time consuming, which is dis-
tressing for the patient and expensive for the hospital. Taking a smaller
number of measurements on purpose can help to improve the situation
without forgoing quality. This is because image restoration allows the
construction of high resolution images with only a small amount of in-
put data.

The computer vision topic that concerns Where’s Wally? images the
most is object recognition. This is covered in depth in the section 2.2.

2.2 Object Recognition
Object recognition is a key technique in computer vision. In 1965, Roberts
wrote the first known paper on computer vision[11].

Finding Wally in these puzzles is by definition a problem of object
recognition. Wally must be correctly identified from other characters,
furniture and even food. The image needs to be analysed so that the
correct Wally can be located. Three of the most directly useful techniques
for defining objects in a cartoon style image are shape analysis, colour
analysis and feature analysis.

2.3 Shape and Colour Analysis
One way of analysing an image is to break it down into shapes and
colours. In linguistic terms, it is often simplest to depict an object by

6

describing it’s shape and colour, i.e. "the red box" or "the green hand".
This is conceptually simple to explain, understand and program.

Everyday object recognition is generally be done through digital cam-
eras, scanners and similar devices. Most images saved this way are stored
as raster images (e.g. PNG, BMP, GIF), which is a 2D array of colours that
directly map to pixels on the screen. This is because the input devices
do not have the capability of recognising objects in the images they pro-
duce. This is differs from vector images (e.g. PDF, SVG, SWF), which
store the location and colour of geometric primitives (squares, circles,
triangles etc.). It is often much simpler to perform shape and colour
analysis on vector images. This is because the shapes and colours are
explicitly stored, so no work is needed to be done to locate them.

Regardless of format, methods of colour analysis can be implemented
programmatically. This is because colour is intrinsic to all methods of
storing the properties of an image. It is nearly impossible to describe a
specific object without discussing some aspect of it’s colour, even it that
colour is greyscale.

Shape analysis is more complex for raster images. Unlike vector im-
ages, shape boundaries are not clearly defined. The global boundary can
normally found through edge detection. The global boundary is defined
here as a single object composed of every boundary in the image. De-
tecting the shapes requires the specific boundaries to be found which
requires further analysis. The global boundary is analysed to find points
of boundary intersection, and the curvature between those points. Group
of curves must examined to find combinations that produce shapes.

Shape and colour analysis allows for more linguistic method for lo-
cating objects. In Where’s Wally puzzles, this means no previous image
of Wally is needed. All that is required is a basic description, such as
"red and white stripes" or "black glasses". This allows users to extend the
solution past Wally, to other characters, who have not previously been
seen. This form of analysis can lead to false positives, because a single
description could encompass several different characters or objects. To
prevent this, many different types of analysis should be combined. For
example, a match for "red and white jumpers" that also has a nearby
match for "skin colour" would produce a result that has more likelihood
of being correct.

An example of the usefulness of shape and colour analysis, beyond
Where’s Wally, could be found in augmented reality (AR) technology.
Google is currently developing this technology with the Google Glass
device[12].

A common experience is the misplacement of keys. Users with access
to AR devices could use colour and shape analysis to enhance their own
searching (i.e. if they are visible, but in a cluttered area). As keys, with
some exceptions, have a few well defined shapes and possible colour
schemes; the device would not have to store what the specific keys look
like in advance. Assuming that parallelism is available in such devices,
this technique could potentially provide real time analysis of the scene,
significantly helping the user.

7

2.3.1 Feature Analysis

Some of the most reliable computer vision algorithms (such as SIFT[2])
were developed while considering the neuroscience of human vision.
Tanaka[13] and Perrett and Oram[14] studied this in detail. They found
that human vision identifies objects with features that are invariant to
brightness, scale and position. Humans are able to recognise the same
objects under differing light levels, at different distances and in different
positions in a room. These results have been used as a basis for feature
analysis.

This technique finds ‘features’, which are points in an image that
are scale, rotation and illumination invariant. These features are most
immediately useful when compared with the features of another image.
The features from a solo image Wally can be used to locate the same
Wally in a group image.

The image that is being searched is often referred to as the Scene.
Images that are being searched for in the Scene are known as Objects
1. The keypoints of Objects are known properties, and can be searched
against the unknown keypoints of the scene.

This method requires an existing image to find Wally, restricting the
flexibility of the search. When correctly implemented, this method is
very reliable, as a high number of nearly unique keypoints must be
matched to obtain a match. If Wally is not obscured, results found can be
assigned high confidence. Normally Wally is obscured, so this method
should be combined with other techniques. Combination helps to pro-
vide more flexible and reliable solution.

Feature analysis is useful in the manufacturing industry. Mass man-
ufactured products need to be checked for defects. Due to the regularity
of most merchandise produced this way, this is ideal for feature analysis.
If products in the Scene do not match the features of the list of Objects,
then the product can be determined to be faulty. This can simply be par-
allelised; multiple production streams can be scanned simultaneously.
Using a centralised system could be cheaper than implementing per-line
machines. This is because it could be integrated with existing systems,
and help to centralise maintenance.

2.4 Computer Vision Libraries
Since the advent of computer vision, many libraries have been developed
to implement and group computer vision techniques. One of the most
extensive is OpenCV.

OpenCV[15] is an open source library used for implementing a wide
range of computer vision techniques. Using in-built functions, users have
immediate and simplified access to complicated algorithms. OpenCV is
available for three major operating systems, Linux, Windows and Mac
OS. The library is aimed at developing real-time solutions to computer
vision problems[16]. The online documentation for OpenCV is extensive,
including tutorials for common topics such as image recognition, ma-

1Scene and Object are capitalised here to avoid confusion with the more general term of
object

8

chine learning and image processing. These properties make OpenCV
ideal for implementing computer vision on a wide scale. OpenCV has
some drawbacks. It makes use of bespoke classes for dealing with ar-
rays, called Mat. The Mat class helps to minimise the memory usage of
programs using large arrays. Direct pixel access to Mat classes is not
accessible in the normally expected C++ fashion. A template function,
Mat::at<type>(x,y), provides the method of access. This could confuse
new users.

Another computer vision library is libCVD[17], based in Cambridge
University. This is a versatile library, designed for speed and portabil-
ity. It is often used to access streams of video data. Unlike OpenCV, it
stores in pixels in readily accessible STL vectors. This is useful, because
it makes accessing pixels more intuitive. However, libCVD does not have
the range of implemented computer vision techniques found in OpenCV.
It lacks the level of documentation that OpenCV offers. LibCVD can be
used in combination with OpenCV[18]. This allows the user access to the
breadth of functions available in OpenCV, as well as the speed of input
that libCVD brings.

OpenCV will be the sole library used to implement the Where’s Wally?
solver. Using multiple libraries complicates the task, where a key aim is
to produce a simple everyday implementation. OpenCV has many attrac-
tive properties for non-expert users, when compared with other libraries.
LibCVD, for example, does not have the documentation or community
to help with developmental issues.

2.5 Parallel Programming
When implementing parallelism, it is desirable to speed up a program
and use an efficient number of cores. A useful definition is speedup;
the scale to which a parallelised version of a program is faster than an
efficient serial implementation.

Speedup(P) :=
Tserial

Tparallel(P)
(2.1)

Equation 2.1 describes the speedup of a system. Here P is the number
of computing units (threads, processors etc.), Tserial is the time the serial
program takes and Tparallel is the parallel time. For most systems, the
maximum speedup possible is equivalent to P, known as linear speedup.

Most implementations do not achieve linear speedup, especially for
large numbers of computing units. A program that solves a problem of
fixed size with near-linear speedup is said to experience ‘strong scaling’.
In general, scaling will be limited being strong long before this happens,
due to Amdahl’s law, seen in equation 2.3.

Tparallel(P) = Tserial

(
α− 1− α

P

)
(2.2)

Here, α is the portion of the code that is purely serial. Inserting this into
the previous definition of speedup in equation 2.1, we see Amdahl’s Law
emerge.

Speedup(P) =
Tserial

Tparallel(P)
=

Tserial

Tserial (α− f rac1− αP)
=

1
α + 1−α

P

(2.3)

9

As P tends to large numbers the speedup approaches the constant value
of 1/α.

Parallel programs instead often aim for to achieve ‘weak scaling’, de-
scribed by Gustafson’s law. This is the case if the problem size scales with
the number of cores for a fixed amount of work per computing unit.

T(P, N) = Tserial + Tparallel,N = α +
N(1− α)

P
T(1, N) = Tserial + NTparallel,N = α + N(1− α)

Here, P is the number of computing units, and N is the size of the prob-
lem. Defining T(P, N) as the time for the program to complete the purely
serial sections. Tserial is the time it takes for each of the P processors to
complete one task of size 1/N, Tparallel,1/N . The time for 1 processor to
do an equivalent amount of work is defined in T(1, N). This is the sum
of the serial time Tserial and every bit of work the processors would do,
i.e. NTparallel,N .

Speedup(P, N) =
T(1, N)

T(P, N)
=

α + N(1− α)

α + N(1−α)
P

Speedup(P, βP) =
α + βP(1− α)

α + β(1− α)
∝ P (2.4)

Here, β is some scaling constant. It is clear that Gustafson’s Law pro-
duces better scaling, as long as N scales with P.

Everyday users have most regular access to computer vision tech-
niques through mobile devices, such as phones, laptops and ipads. These
devices rarely have more than 4 cores. The most cores that can be ex-
pected is within a home computer, having no more than 8 cores Any par-
allelism applied should not require the typically large number of cores.

2.6 Parallel Computer Vision
Computer Vision poses an interesting challenge for parallelisation. In
some regards, computer vision is a typical data parallel problem. Data
parallelism uses the available computing units to act on subsets of the
total data. Such program simply needs to act as efficiently as possible
on multi-dimensional arrays (normally 2 physical dimensions each with
3 colour dimensions). This is a common form of parallelism, imple-
mented in applications such as parallel Fourier transforms, simulation of
crystalline matter and database analysis. Image processing, a subset of
computer vision, normally falls under this category.

More complicated elements of computer vision fit task parallelism
better. This is because they require several independent tasks to be com-
pleted.

Downton[19] discusses the use of pipeline processing farm in com-
puter vision. This is similar to a task farm, but has a continuous flow of
data to process. By parallelising independent tasks, the latency of image
analysis can be reduced. This would reduce the delay between the im-
age being input, and the result being output. This paper was written in

10

1994 and does not take into account modern technology when discussing
potential uses. The advent of multi-core camera phones broadens poten-
tial implementations beyond the encoding algorithms and handwriting
recognition discussed by Downton.

A current trend in parallel computing is to use accelerators to improve
performance. Graphical Processing Units (GPUs), are the most common
choice, due to their good performance/price ratio. Fung[20] implements
the GPU based acceleration for several computer vision techniques in-
cluding feature detection. The features are detected using Harris detec-
tors, which are often not used in favour of SIFT-like keypoints. The paper
does not discuss the details or the benefits of implementing parallel Har-
ris detectors.

Parallel implementations exist for many algorithms, such as SIFT and
Speeded Up Robust Features (SURF), discussed further in section 3.5.2.
Yimin Zhang[21] implements two forms of parallelism for SIFT, showing
large increases in the amount of frames that can be calculated per second.
At 640x480 pixels, the image size used to obtain these speedups is small
in comparison to an average Where’s Wally? puzzle. A full Where’s
Wally? image is typically larger than 2000x1000 pixels, which has 6 times
the area. Current digital cameras, which might be used with everyday
computer vision, typically offer images that are an order of magnitude
larger.a Digital cameras frequently list their resolutions in the 10s of
mega-pixels, which is a 32 times increase in pixels. Despite speedups,
the size of these images might inhibit analysis at a useful speed.

Expanding on previous work, Zhang et. al. discuss in depth the ef-
fects that limit scalability [22]. The paper shows the purely serial portion
of the code takes up less than 2% of the runtime. This shows that re-
duced scalability is due to more complicated factors, which should be
avoided by novice users.

Nan Zhang presents the multi-core implementation of parallel SURF[23].
Within, Zhang shows that the multi-core implementations can have speed
comparable to GPU implementations. Low-end computers (and by ex-
tension, cheap mobile devices) are suggested to lack the quality of GPU
that can implement high speed algorithms. This implies that CPU based
implementations are preferable for widespread usage.

The existing parallel implementations of SIFT/SURF algorithms are
not directly available. This adds complexity to the project, which aims to
maintain simplicity to ensure a wide development base.

2.7 Shared Memory Parallelism
This project will implement parallelism through the shared memory mul-
tiprocessing API known as OpenMP.

Shared memory is a region of memory that can be accessed equally
by several processors. Normal examples of this are in multi-core systems,
which have a shared L2 or L3 cache. Having shared memory allows data
to be quickly shared amongst processors. This removes redundant and
temporally expensive copying of data from main memory, and reduces
the overall cache usage. Using less of the available cache means that a
larger amount of other values can be stored, also reducing calls to main

11

memory. In a similar way, messages can also be passed between proces-
sors at high speeds. Communication through a local cache is consider-
ably faster than typical messaging systems. Most recently manufactured
computers are multi-core, so it is likely that everyday devices will be able
to benefit from shared memory parallelism.

OpenMP implements shared memory multiprocessing through the
use of directives and routines. A directive is a compiler flag that informs
the compiler that the user intends for a specific behaviour to occur. These
are simple to include into a program, often requiring little to no changes
to a serial program to parallelise it. Listing 1 shows the simplicity of
implementing parallelism.

Listing 1: ’A simple loop parallelised with OpenMP’

/ / a s i m p l e s e r i a l f o r l o o p
i n t x [4] ;
for (i n t i =0 ; i <4 ; i ++) {

x [i] = i ;
}

/ / and a g a i n p a r a l l e l i s e d with OpenMP
i n t y [4] ;
#pragma omp p a r a l l e l for default (none) shared (y)
for (i n t i =0 ; i <4 ; i ++) {

y [i] = i ;
}

There are some issues that come with the use of shared memory mul-
tiprocessing. The main one is that scaling is often poor. This is due to
the fact that there is a fixed amount of processors attached to any block
of shared memory. Once the system is scaled beyond this amount, the
program starts to become dominated by the speed of message between
the two memory systems. Furthermore, the speed at which the CPU can
write to the memory is limited. Increasing the number of processors at-
tempting to write to memory through the same CPU causes a bottleneck
to occur.

Another popular form of parallelism is through message passing.
This is passing messages between processors. In this way data can be
shared between processors, allowing for processors to interact. Unlike
shared memory parallelism, message passing protocols typically do not
rely on shared memory. Messages are instead sent over the bus, meaning
that the processors being used can be in different nodes.

One of the most commonly implemented message passing standards
is the Message Passing Interface (MPI). MPI scales to very large numbers
of processors. However, converting existing code for use in MPI is time
consuming, often considerably increasing the maintenance requirements
for the code. Listing 2 shows one potential way to parallelise the same
loop from listing 1 using MPI.

Listing 2: ’A simple loop parallelised with MPI’

/ / a s i m p l e s e r i a l f o r l o o p
i n t x [4] ;

12

for (i n t i =0 ; i <4 ; i ++) {
x [i] = i ;

}

/ / and a g a i n p a r a l l e l i s e d with MPI
i n t y [4] ;
i n t rank ;
MPI_Status s t a t u s ;
MPI_Comm_rank(&rank) ;
i f (rank == 0) {

y [0] = 0 ;
MPI_Recv(&y [1] , 1 , MPI_INT , 0 , 0 ,MPI_COMM_WORLD, &s t a t u s) ;
MPI_Recv(&y [2] , 1 , MPI_INT , 0 , 0 ,MPI_COMM_WORLD, &s t a t u s) ;
MPI_Recv(&y [3] , 1 , MPI_INT , 0 , 0 ,MPI_COMM_WORLD, &s t a t u s) ;

} e lse {
MPI_Send (rank , 1 , MPI_INT , 0 , 0 , MPI_COMM_WORLD) ;

}

MPI requires experienced developers to produce efficient code. Un-
trained developers may have difficulty implementing an appropriate model
of parallelism for a given problem. Users of a parallel computer vision
system may have to produce custom functions as they go. The complex-
ity of MPI restricts the amount of users who could generate new defi-
nitions. This opposes the idea of an everyday use of parallel computer
vision. Expertise would be required to tailor parallel computer vision to
each new problem.

OpenMP is a good fit for implementing everyday parallel computer
vision. Existing code requires only a small amount of modification, and
basic parallelism does not require much expertise in parallel techniques.
The scalability issues associated with shared memory parallelism are un-
likely to be prominent in everyday systems.

13

3 Algorithms
This section discusses the algorithms used to implement object recogni-
tion. These are broken up into three sections

• Colour Analysis

– Region detection
– Line Width Estimation

• Shape Analysis

• Feature Recognition

•

They are require more in-depth discussion that the other topics in colour
analysis. Special focus is given to the algorithms that will be used for
solving Where’s Wally puzzles.

3.1 Colour Analysis
The functionality of analysing the colours of an image is critical for object
recognition. Colour extraction is one of the primary ways of analysing
the information contained by colour. Manipulation of pixels, such as
blurring or sharpening an image, is a useful technique.

3.1.1 Colour Extraction

Extracting specific colours is one of the most important techniques in
colour analysis. In raster images, extracting shades of the primary colours
(red, green and blue) is a trivial task. Colours are stored as combinations
of these colours, so extracting the specific values is simple.

For non-primary colours, a technique is needed to clearly describe
them. A commonly used notation is the hexadecimal format, also known
as a hex triplet. Values are stored in the form ‘#RRGGBB’, where RR, GG
and BB are the hexadecimal values for the red, green and blue compo-
nents of a pixel. Examples of this can be seen in table 3.1.

Colour Common Name Hexadecimal

White #FFFFFF

Black #000000

Crimson #DC143C

Sea Green #2E8B57

Orchid #DA70D6

Table 3.1: An example of common colours with hexadecimal outputs

By finding the regions of the image that satisfy the red, green and
blue colour values described in a hexadecimal value, specific colours can
be located within an image.

This extends to searching for ranges of colours. This is useful, be-
cause images are regularly not in blocks of a single colour. For example,

14

gradients (one colour gradually shifting into an other) are commonplace
in many images. Attempting to highlight gradient with a single colour
would reveal a small subsection of the desired area.

The ability to search ranges of colours enables the user to search more
generally. If the precise colours used changes between images, using a
colour range extends the generality of the function it is used in.

3.1.2 Blur

Another useful tool in colour analysis is blurring. Blurring allows the
merging of nearby colours, or to help mitigate the effect of compression
artefacts. Compression artefacts are visual distortions of the image, due
to the intentional loss of data.

Two common methods of blurring are Median and Gaussian blurring.
A median blur[24] causes a given pixel to take the median value of it’s
neighbouring pixels. The ’size’ of the blur describes the radius within
which the median is calculated. Median blurs are often used for reducing
the noise in an image, such as a photo taken in low light.

The Gaussian blur uses the Gaussian function (equation 3.1) to de-
velop a weighted average of neighbouring pixels.

G(x, y) =
1

2πσ
e−

x2+y2

2σ2 (3.1)

This produces an image that appears to be blurred more smoothly than
with the median blur, see figure 3.1. This is useful for Laplacian edge
detection schemes, which is sensitive to noise.

15

(a) An image with no
blur

(b) 4 pixel blur (c) 8 Pixel blur (d) 16 pixel blur

(e) Horizontal blur (f) Vertical blur
Figure 3.1: Gaussian blur of an image

For this project, blurring will be done with Gaussian blurs. Features
with fine detail, as regularly occurs in Where’s Wally? puzzles, can lose
important information with the median blur. For example, a line that is
a single pixel wide could be completely removed by a median blur. In
Where’s Wally puzzles, a fine detail could be critical to locating Wally.

The Gaussian method avoids this, as a pixel in strong contrast with
it’s neighbour will maintain a level of contrast. As seen in section 4.2,
Gaussian blurs are also useful for blending nearby masks. This is be-
cause Gaussian blurs will rapidly ’spread’ binary values that are grouped
together.

Blurring is not a trivially parallel task. For each pixel that is to be
blurred, a large group of neighbouring pixels are required. Pixels on the
border can often develop visual errors known as artefacts. Decomposing
the image into subimages could produce artefacts on interior borders. To
avoid this, each subimage would need a halo of data that it could read
but not write to. The size of the halo would be dependent on the size of
the blur being performed.

16

0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.36 0.00 0.00
0.00 0.36 1.00 0.36 0.00
0.00 0.00 0.36 0.00 0.00
0.00 0.00 0.00 0.00 0.00

a An image to be sharpened

0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

b An ideally sharpened image
0.00 0.00 0.13 0.00 0.00
0.00 0.11 0.30 0.11 0.00
0.13 0.30 0.62 0.30 0.13
0.00 0.11 0.30 0.11 0.00
0.00 0.00 0.13 0.00 0.00

c The blurred image

0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.17 0.00 0.00
0.00 0.17 1.00 0.17 0.00
0.00 0.00 0.17 0.00 0.00
0.00 0.00 0.00 0.00 0.00

d The sharpened image
Table 3.2: The process of sharpening an image. The arrays represent images in the
process of sharpening. The sharpened image is obtained by subtracting the blurred
array from the original with equal weighting. The result was then rescaled

3.1.3 Sharpen

The sharpen technique is another useful tool for colour analysis. Sharpen
is intended to allow an image to be made more focused[25]. This is
very useful for when details in an resized image have been blurred or
compressed.

Sharpening an image is, in many ways, the opposite of blurring an
image. Noting this, the most common method of sharpening, known as
"unsharp mask" creates a blurred copy of the image, and remove it from
the original using a weighting. Table 3.2 shows this process numerically.
With an appropriate choice of weighting, the ideally sharp image can be
obtained using the unsharp mask.

The unsharp mask method is sufficiently simple to implement for any
developer.

Sharpening, like blurring, requires some message passing when par-
allelised. Though subtracting the weighted blur can be done indepen-
dently, blurring subimages will lead to artefacts at the borders on the
main image.

3.2 Region Detection
Region detection is a tool that allows the discrete labelling of connected
pixels in a binary image. To the human eye, the connected regions of a
binary mask are obvious. However, the masks does not explicitly contain
information about the connectivity of it’s pixels. Thus the tasks is not
simple computationally.

3.2.1 Naive Solution

A computationally naive way to do detect regions is shown in Figure
3.2. Each non-zero pixel is assigned a unique integer value. Each pixel
in the image is assigned the maximum value of itself and it’s four near-
est neighbours. This is repeated until the image is stable and no pixel

17

changes value. This method takes the maximum value of neighbouring
pixels, and ignores non-zero pixels, so maximal values can not be spread
outside of a region’s boundary.

Within a region, it is evident that every pixel will have the value of the
maximum pixel within that region. As each pixel has a unique value, it
follows that each regional maximum must also be unique. The number
of regions can be found by counting the unique values in the matrix.
Similarly, properties of a region can be calculated by analysing pixels
that have the same value as each other. For example, the mean position
of the pixels within the region, the size of the region, and the bounding
box around the region can be calculated this way.

This method is suitable for shared memory parallelism, but is not
efficient. To determine if a pixel should have it’s value changed, 4 other
pixels must be read. This must be done an indeterminate number of
times, as stability is dependent on the arrangement of the mask.

(a) Input A

1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20

(b) B, such that Bij = iY + j

1 2 0 0 0
6 0 0 9 10
0 0 13 14 15
0 17 18 19 20

(c) C0
ij = Aij · Bij

6 2 0 0 0
6 0 0 14 15
0 0 18 19 20
0 18 18 19 20

(d) Ct+1
ij = max

(
Ct

ij, nbr(Ct
ij)
)

for

Ct
ij 6= 0

6 6 0 0 0
6 0 0 20 20
0 0 20 20 20
0 20 20 20 20

(e) The final result, when Ct+1 = Ct
(f) A colour representation of the re-
gions

Figure 3.2: Steps in a naive region detection algorithm

3.2.2 Flood Fill

Flood fill[26] is an algorithm commonly used in ’paint’ programs for fill-
ing an indicated region with colour. The algorithm can be implemented
in several ways. The simplest to understand is the recursive version.

The recursive algorithm is initialised with a starting pixel. Pseudo
code can be seen in listing 3.

Listing 3: ’Pseudo code for the flood fill algorithm’

void f l o o d _ f i l l (i n t mask [] [] , i n t x , i n t y , i n t region_array [] [] , i n t region_number) {
i f (i s _ z e r o (mask [x] [y] || region_array [x] [y] == region_number) {

re turn ;

18

} e l s e {
region_array [x] [y] = region_number ;
f l o o d _ f i l l (mask , x +1 , y , region_array , region_number] ;
f l o o d _ f i l l (mask , x−1, y , region_array , region_number] ;
f l o o d _ f i l l (mask , x , y+1 , region_array , region_number] ;
f l o o d _ f i l l (mask , x , y−1, region_array , region_number] ;
re turn ;

}
}

i n t mask [1 0] [1 0] ;
i n t region_array [1 0] [1 0] ;
f l o o d _ f i l l (mask , 0 , 0 , region , 1) ;

The flood fill algorithm can also be implemented in a queue based
system (last in, first out), which avoids recursion. A graphical example
of the flood fill algorithm can be seen in figure 3.3.

(a) Initial mask (b) First step in mask

(c) Second group of steps (d) Midway step

(e) Another midway step (f) Final step
Figure 3.3: Various steps in the flood fill algorithm

19

The flood fill algorithm is useful when a hint is available for a good
starting point. When trying to detect all the regions in a mask, the start-
ing point needs to be automatically calculated.

Flood fill can be parallelised, but needs halo data to be passed. When
the image is decomposed, regions could be split along a subimage bor-
der. This means that halo data must be analysed to match regions that
are equivalent.

3.2.3 Connected Component Labelling

Lifeng [27] describes the method of connected-component labelling.
The algorithm, seen graphically in figure 3.4, works as follows;

Listing 4: Pseudo code for the Connected Component Labelling algo-
rithm

i n t region_count = 0 ;

f o r (i n t i =0 ; i <rows ; i ++) {
f o r (i n t j =0 ; j < c o l s ; j ++) {

i n t north , west ;
i f (i ==0) { north = 0 ; }
e l s e { north = array [i −1][j] ; }
i f (j ==0) { west = 0 ; }
e l s e { west = array [i] [j −1]; }

i f (west > 0 \&\& north > 0 \&\& west != north) {
l i s t _ e q u i v a l e n c e (west , north) ;

}

i f (north > 0) { array [i] [j] = north ; }
e l s e i f (west > 0) { array [i] [j] = west ; }
e l s e { array [i] [j] = region_count ; region_count ++; }

}

merge_equivalent_regions () ;
}

A pixel pi,j that has zero-valued or non-existent neighbours pi−1,j and
pi,j−1 is assigned a new temporary label. Otherwise, if the upper pixel
pi,j−1 is non-zero, it has a label (thanks to the ordering of the algorithm).
The pixel pi,j is then assigned with the label of pi,j−1. If the label of pi,j
has not been set, then it gets the label of the non-zero left pixel pi−1,j. If
pi−1,j = pi,j−1 but they do not have the same label, then a label equiv-
alence is established. Once the matrix has been traversed, equivalent
labels are merged, and all regions have been detected.

20

(a) Initial mask (b) First group of steps

(c) Second group of steps (d) Midway group of steps

(e) Penultimate group of steps (f) First iteration complete
Figure 3.4: The steps in the first iteration of the connected component labelling algo-
rithm

This method is both simple and memory efficient enough to be suit-
able for parallelism in this project. The algorithm maintains correctness
on decomposed images, as long as halo data is passed between the pro-
cessors. To find label equivalence across threads, only a single row
or column is needed to be read. Between threads, the process is one-
directional; data is only required to travel north and west of the current
thread. This can be seen graphically in figure 3.5. In the case of shared-
memory parallelism, accessing the necessary data is a minimal overhead.
Critically, this process is largely the same as the serial version of the code.
This provides a simple platform to enable parallelism.

21

Figure 3.5: A diagram explaining parallel region detection. The initial image is
split into two sections, and each region inside the subimage is given a unique id.
One thread sends halo data to the other, which then calculates what threads are
the equivalent. The main image is then put back together, with the parallel region
equivalences applied.

Connected component labelling will be used for region detection in
the Where’s Wally? solver. It maintains simplicity under parallelism
when compared to the flood fill algorithm. It is considerably more ef-
ficient than the naive solution. The naive solution requires 4 elements
of data for every pixel analysed, and each pixel must be analysed until
stability is reached. In a worst case scenario, this is an O(n2) problem.
Connected component labelling is O(n) for all cases.

3.3 Line Width Estimation
In cartoon images, characters and objects are regularly bounded by black
lines. Within a given image style, these lines can be taken as a reference
point for the scale of the image. For example, take one image with lines

22

that are 4 pixels wide and another with lines that are 2 pixels wide. It
can be inferred that the first image is twice the scale of the second. This
can be used to put an upper limit on how large a match between an
Object and a Scene can be. Estimating the line width can be done using
a combination of a few techniques.

For images with no intersecting lines, only a few steps need be fol-
lowed.

• Produce a mask of all the black in the image.

• Count the distance to the nearest zero-valued pixel (called zero-
distance hereafter). This can be done with the OpenCV distanceTransform

function.

• Find the maximum zero-distance in the image.

Black lines are chosen here, due to their regularity as a boundary. Other
colours can be similarly implemented.

In the example image, figure 3.6(a), a 7 pixel wide line has a max-
imum zero-distance of 4. For an 8 pixel wide line, it follows that the
zero-distance would be 4. The maximum zero-distance can resolve line
width of simple images to within 1 pixel.

For images with intersecting lines, this method will fail to produce
correct results. Figure 3.6(b) shows a situation where the method fails.
Two orthogonal 3 pixel wide lines cross over each other, creating a max-
imum zero-distance of 4. This would indicate that the line width of this
image is 7 or 8, which is wrong by nearly a factor of 3. Images with large
regions of black shading would cause this method to fail with larger
errors.

A more complicated method, described in section 3.3.1, relies on two
statistical properties of the image.

3.3.1 Average Distance to a Zero Valued Pixel

Inspecting figure 3.6(a), it is clear that the average distance is dependent
upon something approaching a sum of incremental integers. Lines with
even and odd widths will differ slightly; even values have two maximum
zero-distances, odd values only have one. This can be seen in equations
3.2, where PixelDistance(n) lists the zero-distances in an n pixel wide
line.

PixelDistances(4) = {1, 2, 2, 1}
PixelDistances(5) = {1, 2, 3, 2, 1}
PixelDistances(6) = {1, 2, 3, 3, 2, 1} (3.2)

For a general N-pixel wide line, the sum of all values is in the range
[0, N/2] on one side, and [N/2, 0] on the other. This has the mathemat-
ical form of a geometric series. This particular geometric series can be
conveniently expressed as simple formula, described in equation 3.3.

Sum(N) :=
N

∑
i=0

i =
N(N + 1)

2
(3.3)

23

4321 3 2 10 0

(a) A representation of a line that is seven pixels wide, broken down into
reach region with different zero-distances

0 1 12 0

0 1 12 0

2 2

2 23

3 3

3

42

1

1

0

0

2

1

1

0

0

(b) Two intersecting lines, that are 3 pixels wide. The point of intersection
produces a maximum zero-distance of 4

Figure 3.6: Two examples of lines with their zero-distances calculated.

Even valued widths are considered first, as this is the simplest case to
analyse. This can be calculated as twice the sum of integers in the range
[0, N/2], as seen in equation 3.4.

EvenSum(N) : = 2 Sum(N/2)

= 2
N/2

∑
i=0

i

= 2
(N/2)(N/2 + 1)

2

= N
(

N
4
+

1
2

)
=

N2 + 2N
4

(3.4)

For an odd-valued N, the sum is in the range [0, (N + 1)/2] and [(N −
1)/2, 0]. This can be reduced to twice the sum of integers in the range

24

[0, (N − 1)/2] plus (N + 1)/2, shown in equation 3.5.

OddSum(N) : =
N + 1

2
+ 2 Sum((N − 1)/2)

=
N + 1

2
+ 2

(N−1)/2

∑
i=0

i

=
N + 1

2
+ 2

((N − 1)/2)((N − 1)/2 + 1)
2

=
N + 1

2
+

N − 1
2

N + 1
2

=
N + 1

2
N + 1

2

=
N2 + 2N + 1

4
(3.5)

These values are very close, differing by only 1
4 of a pixel. When these

formulas are used to calculate the average zero-distance, this difference
further decreases. Equation 3.6 demonstrates this. The estimation for-
mula loses reliability for N < 1. As pixels are positioned on a discrete
grid, the only possible value for N < 1 is zero, which represents no line.

AvgDist(N) : =

{
EvenSum(N)

N = 1
4 (N + 2) if N even

OddSum(N)
N = 1

4

(
N + 2 + 1

4N

)
if N odd

=
N + 2

4
+ O(N−1) (3.6)

For large values of N, the average distance approaches the EvenSum
formula. This can be seen in figure 3.7. The background shading repre-
sents the values bounded by the values of OddSum and EvenSum. The
figure also shows the maximum error for any given value of N is at most
a quarter of a pixel.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 1 1.5 2 2.5 3 3.5 4 4.5 5

D
is

ta
nc

e

Line Width

Error Range in Prediction
Predicted Average Distance

Actual Average Distance
Maximum Error in either Odd or Even formula

Figure 3.7: Graph showing the estimation of the average distance to a zero valued
pixel using the Odd and Even formulae.

25

Equation 3.6 shows that there is an approximate linear relationship
between the average zero-distance and the width of the line drawn. It is
possible to invert this equation. This produces a formula, equation 3.7,
to calculate line width from the average zero-distance.

LineWidth(avg) := AvgDist−1(avg) =
avg− 0.5

0.25
(3.7)

Using this equation, the line width can be approximated using an
easily calculable property of the image; the average distance to a zero-
valued pixel. The maximum error in equation 3.6 was a quarter of a pixel.
Equation 3.7 accordingly has an maximum error of 1 pixel (at N = 1).
The formula has a minimum error of 0 for all even valued widths. An
unusual effect of this is that the method cannot determine a difference
between a line of width 1 pixel and a line of width 2. This means that
this method can be used only as a upper bound on the scaling between
two images.

3.3.2 Standard Deviation in Distance to Zero Valued Pixels

The line width can be deduced from another calculable property of the
system; the standard deviation. Standard deviation, here, is defined to
be the normalised deviance of all pixels from the average position of each
pixel, xi.

StdDev(N) :=

√
∑ (xi −AvgDist(N))2

N
The sum, here called Deviance within the square root can be simpli-

fied.

Deviance(N) :=
N

∑
i=0

(xi −AvgDist(N))2 =

{
DevEven(N) if N is even

DevOdd(N) if N is odd

As before, xi will take values from [0, .., N, ...0], and AvgDist(N) is de-
fined in equation 3.6. The method for finding the standard deviation for
even valued widths will be shown, odd values follow from above. The
even equation is written as

DevEven(N) = 2
N/2

∑
i=0

(
i− N + 2

4

)

= 2
N/2

∑
i=0

(
i2 − 2i

N + 2
4

+
(N + 2)(N + 2)

16

)

= 2

(
N/2

∑
i=0

(i2)− 2
N + 2

4

N/2

∑
i=0

(i) +
N/2

∑
i=0

(
(N + 2)(N + 2)

16

))

= 2

(
N/2

∑
i=0

(i2)− N + 2
4

N(N/2 + 1)
2

+
N
2
(N + 2)(N + 2)

16

)
(3.8)

The sum in equation 3.8 is, as with equation 3.3, easily expanded us-
ing geometric identities. In this case, the formula is described in equation
3.9.

N

∑
i=0

i2 =
1
6

N(N + 1)(2N + 1) (3.9)

26

Continuing the expansion of DevEven(N);

DevEven(N) =
1
3

N
2
(N/2 + 1)(N + 1)− N(N + 2)(N + 2)

4
+

N(N + 2)(N + 2)
16

=
1
48
(

N3 − 4N
)

(3.10)

Using this formula for DevEven, the even width standard deviation be-
comes

StdDevEven =

√
DevEven(N)

N

=

√
N3 − 4N

48N

=
N

4
√

3
+ O(

√
N) (3.11)

Using similar calculations for odd widths, StdDevOdd has a value of

StdDevOdd =

√
DevOdd(N)

N

=

√
N2

16N
+

N2 − 3N + 2
48N

=
N

4
√

3
+ O(

√
N) (3.12)

As these functions are equivalent (up to O(
√

N)), the Standard Devi-
ation approximation is defined as

StdDev(N) :=
N

4
√

3
(3.13)

Figure 3.8 shows the comparison of these formulae with actual data.
The data and approximate standard deviation are well bounded inside
the Odd and Even standard deviations. The maximum error that can be
expected from the approximation is less than 0.3 pixels. This is at the
boundary case of 2 width pixels. At all other points, the error is a small
fraction of the actual value.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 1.5 2 2.5 3 3.5 4 4.5 5

D
is

ta
nc

e

Line Width

Error Range in Approximation
Approximate StdDev

Actual Standard Deviation
Maximum Error in approximation

Figure 3.8: Graph showing the relationship between line width and the Standard
Deviation of pixel distance to zero valued pixels.

27

Again, as a linear formula has been produced, the relationship can be
reversed, to get line width from standard deviation.

LineWidth(stddev) := StdDev−1(stddev) = 4
√

3 · stddev (3.14)

Equation 3.14 can not give an exact estimation of line widths; it will
overestimate odd widths and underestimate even widths. For the correct
standard deviation, it will give the correct line width to within ±1 pixel,
for all values. Thus the standard deviation method can put an upper
bound on the scaling between two images.

3.3.3 Combining the Methods

Each of these methods is flawed when introduced into an image with
overlapping lines, as in figure 3.6(b). This can be compensated for by
successively removing the pixels with the largest distance from the map.
At some point during this removal, it is expected that a "sane" mask will
be produced. A sane mask is one that displays only the boundary lines
of an image. For example, a filled in square would be reduced to the
4 border lines that define it’s shape. A visual example can be seen in
figure 3.9. The sane mask should produce the most correct line width
estimations from either formula. Determining which mask is the sane
one is not immediately obvious, but can be deduced using a combination
of both methods.

28

(a) The original image, with an equation distorting solid block of black in
the center

(b) The sane mask, replacing solid circle in the center with it’s border

(c) The image after too many maxima have been removed, which would also
distort the equation

Figure 3.9: A representation of the removal of the highest zero-distance pixels, to
reveal a sane mask

Each method reacts differently to the removal of the largest zero-
distance pixels. This can be seen in figure 3.10, the mean and the stan-
dard deviation have very different responses. These differences allow a
combination of the two methods; only when they agree can a mask be
described as sane.

29

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

N
um

er
ic

al
 V

al
ue

Value of abnormal element

Mean value of all elements
Standard Deviation of all elements

(a) Changing the value of a single abnormal element in a list

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 10 20 30 40 50 60 70 80 90 100

N
um

er
ic

al
 V

al
ue

Number of Equal Elements in List

Mean value of all elements
Standard Deviation of all elements

(b) Changing the ratio of normal data to abnormal data
Figure 3.10: The response of mean and standard deviation to various types of erro-
neous data

It is unlikely a perfectly sane mask will be located. In this case, the
mask with the minimal difference between the two estimations of line
width will be the sane mask. The average of the two methods will be
the line width estimation used. The line width is reliable to the nearest
integer, rounded up, except in the case that the line width is 1 pixel. This
is because a 1 pixel width line is indistinguishable from a 2 pixel width
line, using the mean and standard deviation. To demonstrate this, we
define Zn as the list of zero distances of each pixel in the slice of an n
wide pixel.

Z1 = {1}, Mean(Z1) = 1, StdDev(Z1) = 0

Z2 = {1, 1}, Mean(Z2) = 1, StdDev(Z2) = 0

This being the case, a 1 pixel line may be interpreted to be a 3 pixel line.
Using this method, a maximum line width can be estimated. Compar-
ing these line widths, the scaling between two cartoon images can be
approximated.

30

3.3.4 Testing

This method was tested with an image with several thickness. The base
image contains vertical lines that are increasingly further apart from each
other, with lines connecting each point. This can be seen in figure 3.11.
There are two types of test, solid lines, which have clearly defined bound-
aries, and aliased lines, which are more realistic. The results of using this
method of each of these images is listed in table 3.3. The line widths are
almost all correctly predicted to within 1 pixel, with the exception of 1
pixel on a solid line. As discussed earlier, this has been anticipated.

(a) 1 pixel solid (b) 2 pixel solid (c) 3 pixel solid (d) 4 pixel solid

(e) 1 pixel
aliased

(f) 2 pixel
aliased

(g) 3 pixel
aliased

(h) 4 pixel
aliased

Figure 3.11: Images used to test estimate_black_line_thickness. They are designed
to stress estimation, with lines that overlap regularly. The top row are solid pixels,
with clear boundaries. The bottom row show aliased lines, which are more realistic.

Line Width Solid Line Predicted Width Aliased Line Predicted Width
1 2.42688 1.31487
2 2.74886 2.75531
3 3.05320 2.87646
4 4.21705 4.33824

Table 3.3: A comparison of the line width analysis technique on images from 3.11 All
but one of the values are within 1 pixel of the actual value. The anomalous 1 pixel
result can be mistaken as a 2 pixel width. The technique cannot guarantee distinction
between 1 and 2 pixels.

3.3.5 Parallelism

Analysing the line width is a parallelisable task. Calculating the zero-
distance of each pixel in the map needs to be done in serial. This is
because bisecting a line could make a large change to the standard de-
viation, if there aren’t many lines. The bisection can’t easily be avoided
without knowing the width of the lines, so using halo data is not viable.
However, splitting the mask after the zero-distance has been calculated is
parallelisable. The average can be calculated with a reduction operation,
as can the summation of the standard deviation. The overhead of using

31

OpenMP for small images is likely to reduce usefulness of parallelism.
Large images may benefit from this, as OpenMP is initialised only once
for a larger proportion of data.

3.4 Shape Analysis
Shape analysis is a computer vision technique used to analyse shapes
contained in a binary mask.

Suzuki[28] discusses two closely related techniques for border follow-
ing. This is the method of ’following’ edges that are defined in a binary
image. By following these edges and recording the path taken, all shapes
defined within the mask can be located. As the recorded path contains a
large number of points, it may be preferable to simplify the shape before
analysis.

The Ramer-Douglas-Peucker algorithm[29][30] can be used to ap-
proximate curves. This algorithm removes points on the curve that don’t
sufficiently alter the shape of the line. The algorithm, which is recursive,
can be seen below

1. Begin with first and last points on a curve, A and B.

2. Locate the point, C, that is furthest from the the line that joins the
two points.

3. If it is greater than ε away from the line, then it contributes impor-
tantly to the shape of the line, and is kept. Otherwise the point does
not contribute, and can be removed.

4. The curve AB is now split into two curves, AC and BC. Repeat
steps 1-4 on these curves until all curves have been approximated

This function is computationally expensive, as it is recursive and
requires large numbers of perpendicular distance calculations for each
point calculation. The complexity of this algorithm is, in worst case sce-
narios, O(n2)[31]. For large images, which would contain large numbers
of complex shapes, this could dramatically increase the runtime.

OpenCV has an inbuilt function, findContours, which implements
Suzuki’s border following. It has an implementation of the Ramer-Douglas-
Peucker algorithm, approxPolyDP.

3.5 Feature Detection
There exists a large number of algorithms for locating features[2][32][33][34].
Two of the most prominent algorithms, SIFT and SURF, will be analysed
in detail. These were considered more thoroughly than the others, be-
cause OpenCV provides implementations that are ready to use.

3.5.1 Scale-Invariant Feature Transform

Scale Invariant Feature Transform (SIFT)[2], as discussed in section 2.3.1,
is an algorithm to detect keypoints in an image. These keypoints are
chosen as to be invariant under changes in scale, translation and rotation.
They are designed to be partially invariant to affine changes and varying
illumination.

32

Each keypoint has a corresponding descriptor, which is a feature vec-
tor. A feature vector attempts to describe an area around the keypoint,
helping to create a unique identifier.

Direct keypoint matching provides a very reliable method of find-
ing a given Object within a larger Scene image. Some of the techniques
required to produce reliable results require unexpected amounts of mem-
ory. To recreate the image in scale space, four versions of the image must
be produced, one of which is scaled to be twice the size of the original.

This is not a problem when analysing a single image, or analysing
multiple images linearly. If the algorithm is used for analysing multiple
images concurrently, memory constraints could limit it’s efficiency. This
can be seen with Zhang’s parallel implementation of SIFT [21], where
the scale-space creation is one of the areas the program spends most
time on. This paper shows reasonable parallel efficiency, with results up
to 32 cores, far beyond the goal of this course. The paper only solves
5 images at a time, which gives a 7 times speed-up over an optimised
version of SIFT. This number of images is not large enough to show the
true limits of shared memory parallelism.

3.5.2 Speeded Up Robust Features

Speeded-Up Robust Features (SURF), developed by Bay et. al.[32], offers
a similarly robust solution, but with greater efficiency. This algorithm
replaces Laplacian of Gaussian filters used in SIFT with box filters, which
calculate in constant time, once an integral image has been produced. It
has greater potential for parallelism than SIFT; versions of the image for
the scale space that need to be calculated are independent of the previous
level and can be done in parallel.

In some cases, SURF can have less reliable results than SIFT. As such
this project will use SIFT.

SIFT and SURF both lack the direct means of actually matching key-
points. It is left to the user to make use of the invariance provided with
each keypoint.

3.5.3 Matching: Brute Force Matcher

Brute force matching is the standard ’naive’ implementation of keypoint
matching. It matches Scene keypoints by comparing the corresponding
Scene descriptor with all Object descriptors. The brute force matcher
then returns the keypoint with the best match.

This is a reliable, if slow method of detecting matching keypoints. It
is also deterministic, which is useful for getting repeat results.

3.5.4 Matching: FLANN

The Fast Library for Approximate Nearest Neighbours[35] (FLANN) matcher
is a matcher that outperforms the brute force matcher for large images.
The library automatically chooses an approximate nearest neighbour al-
gorithm depending on the nature of the dataset. All of the algorithms
share one thing in common; they do not guarantee optimum matches

33

between keypoints. Instead, they provide a large (Lowe claims order of
magnitude) speedups, by selecting matches randomly.

Often this is done with some variation on an approximate kd-tree.
The k-d (as in 3D) tree allows the user to partition a high dimensional
problem, and enables efficient searching. Approximating this can pro-
vide large speedup.

The downside to this is that results are not deterministic. This can
be an issue if properties of the system are sensitive to the parameters of
given results.

For direct comparison of descriptors, the brute force matcher will be
chosen. This is because this project will be tested for correctness, and
noisy results could inhibit measurement. Both matchers are available
through OpenCV, so future users would be able to choose the FLANN
matcher, if determinism wasn’t important.

3.5.5 Matching: Relative Keypoint Distances

A potentially more flexible method of detecting Wally can be found in
relative keypoint distances. This records the structure of an object in
a matrix containing the relative distances between all keypoints. This
matrix could be stored within the program, for comparison with a similar
matrix generated from the Sene’s keypoints.

Well matched keypoints correspond to rows of each matrix ’match-
ing’. Matched rows contain the same elements in the same order. A
group of keypoints matched this way would strongly imply that the Ob-
ject was present in the Scene.

Comparing the two rows from different matrices was an interesting
problem. Matching will occur between matrices of different size. A good
match here would imply that a row of a small matrix is a subset of a
row from the large matrix. Extraneous keypoints could appear inside
an otherwise ideally matched row. Rows could also match well, without
matching perfectly. Thus some method was desired for comparing the
rows without requiring that one be a contiguous subset of the other. This
is possible through the naive method of creating a list of all ways a row
can match. There exists a better solution.

The problem appears similar to locating the ordered intersection of
two unordered multisets {groups of numbers with non-unique elements}.
We act on the order that each element appears in the intersection, as the
value itself does not hold any particular meaning. This means that our
unordered sets can now be described as ordered.

A = {0, 1, 2}, B{0, 1, 2} → {0, 1, 2}

A = {0, 2, 1}, B{0, 1, 2} → {0, 2}, {0, 1}

A = {2, 1, 0}, B{0, 1, 2} → {0}, {1}, {2}

A = {0, 1, 2}, B{0, 1, 2, 3, 4} → {0, 1, 2}

A = {0, 1, 2}, B{0, 1, 2, 1, 0} → {0, 1, 2}

A = {0, 1, 2}, B{0, 2, 1, 2} → {0, 1, 2}

34

For this problem, we only need to know the size of the largest ordered
intersection, referred to here out as the matching number. Worth noting
is that the values not held within the Object matrix have no effect on the
matching number and can be removed.

Finding the largest ordered intersection is equivalent to determining
the disorder in a set. Consider a perfectly ordered set of unique numbers,
which is the product of removing extraneous data from the Scene matrix.
We define M(A∩̂B) as the matching number of two sets A and B.

A := {1, 2, 3, 4} B := {1, 2, 3, 4}

M(A∩̂B) = 4 = Size(A ∩ B)

The largest matching number is clearly the size of the set. Introducing
non-unique values, but maintaining the ordering, we can see that the
matching number remains unchanged.

B = {1, 2, 2, 3, 4, 4}, M(A∩̂B) = 4 = Size(A ∩ B)− Size(A\B)

We permute any two elements of the set.

B = {4, 2, 2, 3, 1, 4}, M(A∩̂B) = 3 = Size(A∩B)−Size(A\B)−Disorder(B)

Multiple permutations increase the disorder, and decrease the matching
number, as expected.

Algorithmically, this is as simple as counting the number of strictly
ordered neighbours in the Scene row that also appear in the Object row.
This means that determining how well matched two rows are is an O(n)
problem, where a naive solution could be O(n!), which is exponential
complexity.

35

4 Implementation
The Where’s Wally? solver was implemented in C++. This was due to
familiarity with the language, it’s availability in OpenCV and the auto-
mated memory handling it provides.

The program was written in a modular fashion, with the understand-
ing that it could be extended easily. One aspect of this involves imple-
menting a blueprint Search_Pattern class, which contains basic informa-
tion needed for any search pattern. By extending this, and defining it’s
virtual functions, new search patterns can easily be added to the pro-
gram.

The program has three main sections, the framework, I/O and the
search patterns. I/O parses command line input, and displays the re-
quested forms of output, including results, graphical displays and tim-
ings. Graphical output was done using OpenCV’s image display com-
mand, imshow. The framework section handles the flow of data, as well
as the analysis of results before they are sent to I/O. Search patterns are
the varying methods used to find Wally, and are called by the framework
to analyse the input image.

Described within the following sections are the functions required to
implement the search patterns, and the search patterns themselves.

4.1 Function Implementation
Before the patterns that locate Wally can be put together, some algo-
rithms must be implemented. Listed below are these algorithms and the
technicalities to their implementation.

Get Colour in Image A function was developed to extract a specific range
of colours from an image. Two hexadecimal colours were required,
as well as 6 colour ratio numbers. The ratio numbers made sure
that each combination of colour was within a certain ratio. The first
two numbers represent the ratio between red and green

R >= rg · G

G >= gr · R

Similar relationships exist for the other combinations of colours,
using rb, br, bg and gb. In this way, it is possible to define colours
generically. For example, blue colours can be defined as ones with
high bg and br ratios. The extraction of a yellow image can be seen
in figure 4.1.
This was designed to assist finding Wally’s red stripes. Although
his stripes are red, the precise shade cannot be known before hand.
The ratio functionality allows this imprecision to be mitigated.
Parallelism was implemented by decomposing into vertical slices.
To maximise potential parallelism, the images is sliced for each
thread running in the program. This allow the function to make
full use of any available threads.

Get Greyscale in Image A similar function was developed for finding
greyscale in images. Technically, the colour extractor is equally

36

capable of doing finding grey in an image. This interface can be
simplified for greyscale images.
This function defines a range of colours between two numbers, in
the range of 0-255. It also defines a tolerance for colourfulness.
This allows the location of nearly grey colours, which is useful for
finding whites or blacks that have been blurred on a boundary.

Parallelism was implanted in the same was as the colour extractor.

Estimate Black Line Width As discussed in section 3.3, a line width al-
gorithm has many uses. This was implemented, as mentioned, us-
ing OpenCV’s distanceTransform function.

The estimation was parallelised through the decomposition of the
image into slices. To maintain equivalent correctness with the serial
case, calculating the zero-distance should be done within a critical
section. However, calculating the zero-distance for a subsection, in
general, will not affect the calculated distance by more than 1 pixel.
As this function is intended to give resolution within a pixel, the
decrease in accuracy is worth the increase in speed.

Find Regions in Image Using the Connected-Component Labelling al-
gorithm from section 4, a region detection function was created.
The region equivalence list made use of the map functions, found
in C++’s standard template library. This is a simple way to create
such a list, allowing array-like syntax with non-sequential keys.
This function was parallelised by vertical decomposition. Boundary
data was synchronised after the parallel region, as the memory was
shared.

37

(a) A typical colour spectrum

(b) The mask produced by the function. White represents a pixel
that was considered to be yellow.

(c) The mask overlayed on the original image, revealing "yellow"
colours.

Figure 4.1: Isolating yellow from an image using get_colour_in_image

4.2 Pattern: Red and White Stripes
When trying to locate Wally, one of his most prevalent features is his
red and white jumper. Few other elements of the puzzles use the colour
scheme of red and white, and less use red and white stripes. Finding
regions with red and white stripes is one of the most immediate ways to
identify Wally. This can be done by following these steps, seen graphi-
cally in figure 4.2;

1. Create a mask that shows all white pixels in the image, figure 4.2(b)

2. Create a mask that shows all red pixels in the image, figure 4.2(c)

3. Blur or displace white mask in vertical direction, figure 4.2(d)

38

4. Blur or displace red mask in vertical direction, figure 4.2(e)

5. Multiply binary masks together, producing an area that shows where
the blurs overlap,figure 4.2(f))

6. Create a binary version of multiplied mask, such that any non-zero
value takes the ’on’ value.

7. Blur the binary mask in the vertical and horizontal directions, to
merge nearby values.

Optional. Repeat with horizontal blur and remove common elements from
the vertical mask.

(a) Red and White Stripes (b) White Mask (c) Red Mask

(d) White Mask + Blur (e) Red Mask + Blur (f) Red and White blurs
Figure 4.2: Example of finding red and white striped regions

Following the optional step allows the removal of non-horizontal
stripes from the results.

Certainty, the likelihood that a given result is correct, is derived from
the expected size of Wally. There is a ratio between the bounding box
surrounding Wally, and the size of his jumper. Results that do not fit this
ratio are removed from the results. Scale can be inferred from the width
of the black lines in the image. The thickness of the lines implies a rough
size to Wally. Certainties are taken from a Gaussian distribution centered
about the estimated size of Wally.

4.2.1 Weaknesses

Finding Wally by his stripes is not wholly reliable. Although Wally is one
of the few characters to wear red and white, he is not the only one. A
good example of this is Wenda, figure 1.2(c), who wears a similar jumper.
Furthermore, objects in the image regularly have a red and white motif,
such as skirts, umbrellas and cakes. Without user intervention, it is hard
to prioritise results based solely on this information. One method is to
identify the largest regions of red and white stripes in the image as most
likely to be Wally. This is often incorrect because of the presence of large
red and white objects, see figure 4.3.

39

Figure 4.3: The Red and White Stripes pattern failing to find Wally. The blue ring in-
dicates the top result (an umbrella). The green ring indicates Wally’s actual location,
which is not even ranked in the top 100 results.

One way to mitigate this is to remove ’horizontal’ matches from the
vertically blurred mask. Wally is normally found standing upright, and
so his jumper normally is striped horizontally. Vertical stripes are un-
likely to be from potential Wallys, so they are removed from the search.
This involves repeating the same techniques required to find the regions
originally, but with a horizontal blur. Pixels that match the horizontal
blur can be removed from the original mask, preventing their inclusion
in the region detection.

Good values for the blur used for merging nearby regions are de-
pendent on the size of Wally’s stripes. If the value is too small, Wally’s
jumper as a whole is never located. Too large and too many incorrect re-
gions are included in the definition of Wally’s jumper. The size of Wally’s
stripes are not a known property, so a guess must be made as to a good
value. One way of doing this is by estimating the average line width
of the image, and extrapolating the size of stripes from there. For low
resolution images, however, the ratio of stripe size to line width varies
wildly, making it hard to estimate correct values.

40

4.2.2 Testing

(a) R&W test 1 (b) R&W test 2

(c) R&W test 3 (d) R&W test 2
Figure 4.4: Test images used to check the red and white pattern

4.2.3 Parallelism

Finding red and white stripes should be very parallelisable. The image
can be split into parallel subimages to find the red and white masks. The
creation of the masks is a per-pixel operation, so requires no informa-
tion from neighbours. This means that each parallel thread is entirely
independent of it’s neighbours, reducing the need for synchronisation.

The vertical blurring only needs a small amount of information from
any vertical neighbour, due to the vertical blurring. Choosing to de-
compose the image horizontally avoids the need for any halo data to be
swapped. The optional stage in the algorithm can be done by switching
the decomposition, or by simply ignoring the halo data. This is because
the bulk of usable information should come from the vertically blurred
mask.

As with the creation of the red and white masks, the matrix mul-
tiplication is per element. This again means that the problem can be
decomposed into subimages to give large speedup.

4.3 Pattern: Blue Trousers
This pattern is much like the Red and White pattern discussed in section
4.2. It uses colour analysis to locate Wally’s trousers, by searching for
blue areas in an image.

41

This pattern shares the same weaknesses as the Red and White pat-
tern. There is no guarantee that a correctly found pair of blue trousers
will belong to Wally. This pattern is expected to be unreliable, as Wally’s
legs are regularly obscured.

Certainty will be defined in the same way as the Red and White pat-
tern.

Any parallelism that occurs here is much the same as could occur in
the use of the colour analysis functions.

4.4 Find Glasses
Finding Wally’s glasses is done using shape analysis.

Making use of the estimate_width_of_black_lines function, the ap-
proximate size of Wally’s glasses can be predicted. This is because the
width of lines in a Wally image scale approximately with the rest of the
size of the image. Using OpenCV’s findContour and approxPolyDP, the
contours in the image can be found and accessed. Contours that have an
area that is much less or much greater than the predicted size of Wally’s
glasses can be discarded.

Approximately circular contours can be searched for by assuming
that circular curves are formed like regular polygons. There is a well
defined relationship for the interior angle between two points in a regular
polygon. Thus we can define the irregularity of a curve; the average
angular deviation from the angles of a regular polygon with the same
number of points. Curves with high irregularity can be removed from
the glasses candidate list. The list is populated with single circles. The
next step is to find pairs of circles that are the same size, very close
vertically, and within a specific range horizontally. That is, we look for
pairs of circles that are arranged as glasses would be.

As noted in section 3.4, finding these contours can be an O(n2) prob-
lem. In large images, contours exist with high values of n that are very
unlikely to be Wally’s glasses. Furthermore, large images likely contain
large numbers of contours. The circle matching step is also O(n2). It is
desirable to keep these calculations as short as possible. Thus the image
is decomposed into subimages that are twice as big as the prediction of
Wally’s glasses. This removes needless long range matching of circles
pairs, and prevents overly large contours from becoming a problem.

As the program already decomposes the image into independent task,
it is natural to parallelise this pattern.

The certainty will be defined by how much the two lenses of the
glasses are similar. This is not a very efficient metric, Wally’s eyes are
expected to be slightly dissimilar.

4.5 Find Features
This pattern uses feature detection to locate Wally. As decided in sec-
tion 3.5, the feature detection was done with the Scale-Invariant Feature
Transform algorithm. Using these keypoints generated for a built-in list
of Objects and the Scene, matches are produced. These matches are anal-

42

ysed, and good matches are used to create a homography. A homogra-
phy is a matrix that defines a perspective change on a 2D surface.

~b = H ·~a bx

by

1

 =

 H00 H01 H02

H10 H11 H12

H20 H21 H22

 ·
 ax

ay

1

bx = H00ax + H01ay + H02

by = H10ax + H11ay + H12

1 = H20ax + H21ay + H22

By inspection, we can see that H03 and H12 represent the translational
displacement. The elements H00, H01, H10 and H11 are the values for
scale and rotation. The bottom row doesn’t hold any information about
the perspective change. We can infer that H22 should be equal to 1, and
the values H20 and H21 should be 0.

Matches were made using the Brute Force Matcher supplied by OpenCV.
The quality of matches was assessed by the relative distance between
them. If the distance was within some multiple of the smallest relative
distance, then the match was considered a good one.

An attempt was made to locate Wally using features without requir-
ing a list of Objects. This was done by using the Relative Keypoint Dis-
tance technique discussed in section 3.5.5. The implementation of this
was not flexible enough to provide a useful method of grouping key-
points.

The homography is an estimate of the perspective change between the
Object and the Scene. The last values in the homography matrix can be
used to develop the certainty of a match being Wally. A real perspective
change will have H22 = 1 and H20 = 0, H21 = 0. Thus the certainty can
be defined as something of the form

Certainty(H) = 1−
(

H22 ∗ (H2
20 + H2

21)
)2

43

5 Results
For this project, it is important to obtain results for reliability as well as
speedup. Functions that directly attempt to find Wally had their reliabil-
ity tested for a variety of images. All tests for parallelism are conducted
for various data sizes as well as core count. All timing results were mea-
sured on the Morar cluster.

Reliability results are measured using scans from two Where’s Wally?
puzzle books; "The Fantastic Journey" and "The Wonder Book". The scans
were scanned at the largest resolution available. Technical difficulties
with highly uncompressed scans meant that the high resolution images
were highly compressed, resulting in compression artefacts.

5.1 Extracting Greyscale from Image
The line width technique experienced good speedup to 8 cores, which is
the maximum a home computer is expected to have. Figure 5.1 shows
the results. The algorithm was repeated 100 times on a 2000x2000 pixel
test image. The greyscale extractor is extremely similar to the colour
extractor, so the similar speedup behaviour can be expected.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70

ti
m

e
(s

)

Number of Threads

relative problem size=1
relative problem size=2
relative problem size=3
relative problem size=4

(a) Wall time

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70

Sp
ee

du
p

Number of Threads

relative problem size=1
relative problem size=2
relative problem size=3
relative problem size=4

linear speedup

(b) Speedup
Figure 5.1: Time and speedup of extracting greyscale from an image 100 times

The greyscale analyser shows a speedup that fits well to Amdahl’s
laws. The solution time increases approximately linearly with problem
size. The speedup is slightly higher for smaller images. This is because

44

it hasn’t completely filled the available cache. This is inferred from the
fact that problem sizes 1 and 2 share the same profile, but three and four
have reduced speedup. This implies that somewhere between size 2 and
3, the cache is filled. The parallel slopes at the end of the graph are likely
due to coincidental noise in the timing data.

5.2 Line Width
The line width algorithm discussed in section 3.3 was implemented in
parallel. The results can be seen in figure 5.2. The algorithm was re-
peated 100 times on variously sized sections of a 2000x2000 pixel test
image.

The line width calculation has experiences a linear increase in wall
time for an increase in work. However, the maximum speedup is larger
for smaller problem sizes. This reflects the fact that there is more cache
available for The speedup is efficient up to 8 cores, which is the largest
number home computers can reasonably have. This speedup appears to
fit the limits imposed by Amdahl’s law. This is to be expected, as the
zero-distance calculation is strictly linear.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70

ti
m

e
(s

)

Number of Threads

relative problem size=1
relative problem size=2
relative problem size=3
relative problem size=4

(a) Wall time

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 10 20 30 40 50 60 70

Sp
ee

du
p

Number of Threads

relative problem size=1
relative problem size=2
relative problem size=3
relative problem size=4

linear speedup

(b) Speedup
Figure 5.2: Speedup of an image’s linewidth being estimated

45

5.3 Region Detection
The parallel implementation of region detection has poor speedup. Fig-
ure 5.3 shows that the maximum speedup achieved is less than 2. This is
due to the relatively low level of parallelism in this function. The regions
boundaries must be calculated in serial, and creating a full region equiv-
alence map was done in serial. Better speedup could be obtained from
utilising more parallelism in this section.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

ti
m

e
(s

)

Number of Threads

relative problem size=1
relative problem size=2
relative problem size=3
relative problem size=4

(a) Wall time

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 10 20 30 40 50 60

Sp
ee

du
p

Number of Threads

relative problem size=1
relative problem size=2
relative problem size=3
relative problem size=4

linear speedup

(b) Speedup
Figure 5.3: Speedup of an image’s regions being detected

5.4 Find Features
Finding Features requires given Objects to search a Scene with. Object
images were taken from "The Fantastic Journey", a set of Wally puz-
zles. The pattern is correctly able to recognise Wally in some situations,
as seen in figure 5.4. Despite the apparent strictness of the algorithm,
strange false positives can be produced, see figure 5.5. This is likely due
to the low amount of keypoints that can be found in the relatively low
resolution Object images. These false positives do not resemble Wally,
and often highlight areas that do not contain people, obfuscating the
results.

46

Figure 5.4: An example of correct output from the Find Features pattern

Figure 5.5: An example of the output of the Find Features pattern

5.4.1 Reliability

Figure 5.6 shows the results from this pattern, when using Object images
that are known to be in the Scene.

47

 0

 20

 40

 60

 80

 100

Gobbling Gluttons pg. 1

Gobbling Gluttons pg. 2

Battling M
onks pg. 1

Battling M
onks pg. 2

Carpet Flyers pg. 1

Carpet Flyers pg. 2

Great Ball-Gam
e Players pg. 1

Great Ball-Gam
e Players pg. 2

Ferocious Red Dwarves pg. 1

Ferocious Red Dwarves pg. 2

C
er

ta
in

ty
 %

Puzzle being searched

Best match
2nd result
3rd result
4th result
5th result

cutoff

(a) Results from the first half of "The Fantastic Journey" book

 0

 20

 40

 60

 80

 100

Fighting Foresters pg. 1

Fighting Foresters pg. 2

Deep Sea Divers pg. 1

Deep Sea Divers pg. 2

Knights Of M
agic Flag pg. 1

Knights Of M
agic Flag pg. 2

Unfriendly Giants pg. 1

Unfriendly Giants pg. 2

Underground Hunters pg. 1

Underground Hunters pg. 2

Land Of W
allys pg. 1

Land Of W
allys pg. 2

C
er

ta
in

ty
 %

Puzzle being searched

Best match
2nd result
3rd result
4th result
5th result

cutoff

(b) Results from the second half of "The Fantastic Journey" book
Figure 5.6: The reliability of the Find Features Stripes pattern. Results are taken from
"The Fantastic Journey", and each Object that is scanned for is taken from this book.
A green background means that the match correctly discerned whether or not Wally
was present. A red background means the opposite.

The pattern produces results that are correct for 87.5% of the pages
in The Wonder Book. Wally only appears in half of those pages, so the
algorithm gave 25% false negatives. The false negatives likely appear
due to a number of factors. A major one is that some of the Object
images are very low resolution, figure 5.7. These images will produce
only a small number of matches. In an attempt to make the pattern as
generic as possible, the backgrounds of each Object were removed. SIFT
attempts to use boundaries to locate keypoints. In low resolution images,
the useful keypoints may not exist on the interior of a Wally Object. Thus
by removing the background, the boundary keypoints are lost and the
Scene and Object cannot be usefully compared.

The correctness cut-off is very distinct. Values that are described as
over 90% certain are always seen to show Wally correctly. This implies
that the certainty algorithm could be made more strict.

Figure 5.8 shows the set of Object images derived from "The Fantastic
Journey", but in Scenes from "The Wonder Book". In this way, it was
possible to test how well the pattern can be extended to arbitrary cases.

48

Figure 5.7: A comparison of Wally Resolutions from the same book. There is a large
difference, the face in the second image is almost completely blurred.

 0

 20

 40

 60

 80

 100

Gobbling Gluttons pg. 1

Gobbling Gluttons pg. 2

Battling M
onks pg. 1

Battling M
onks pg. 2

Carpet Flyers pg. 1

Carpet Flyers pg. 2

Great Ball-Gam
e Players pg. 1

Great Ball-Gam
e Players pg. 2

Ferocious Red Dwarves pg. 1

Ferocious Red Dwarves pg. 2

C
er

ta
in

ty
 %

Puzzle being searched

Best match
2nd result
3rd result
4th result
5th result

cutoff

(a) Results from the first half of "The Wonder Book" book

 0

 20

 40

 60

 80

 100

Fighting Foresters pg. 1

Fighting Foresters pg. 2

Deep Sea Divers pg. 1

Deep Sea Divers pg. 2

Knights Of M
agic Flag pg. 1

Knights Of M
agic Flag pg. 2

Unfriendly Giants pg. 1

Unfriendly Giants pg. 2

Underground Hunters pg. 1

Underground Hunters pg. 2

Land Of W
allys pg. 1

Land Of W
allys pg. 2

C
er

ta
in

ty
 %

Puzzle being searched

Best match
2nd result
3rd result
4th result
5th result

cutoff

(b) Results from the second half of "The Wonder Book" book
Figure 5.8: The reliability of the Find Features pattern with unknown Objects. These
results were taken from the solutions of puzzles found in "The Wonder Book". This
compares known Wally Objects from "The Fantastic Journey" and attempts to apply
them to unknown objects.

49

5.4.2 Speedup

The speedup was measured using variously sized subsections of an im-
age. The image was chosen such that a serial version correctly locates
Wally. The results are show in figure 5.9. Peak speedup is obtained at 16
cores. Behaviour after this point is dependent on the size of the problem.
Large problems seem to continue, albeit at a markedly lesser efficiency.
Reducing the problem size decreases the scaling, meaning for smaller
images it is more better to use less cores. This is likely due to the in-
creasing amount of communications and cache synchronisations caused
by critical regions.

 0

 20

 40

 60

 80

 100

 120

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

ti
m

e
(s

)

Number of Threads

relative problem size=1
relative problem size=2
relative problem size=3
relative problem size=4

(a) Wall time

 0

 5

 10

 15

 20

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Sp
ee

du
p

Number of Threads

relative problem size=1
relative problem size=2
relative problem size=3
relative problem size=4

linear speedup

(b) Speedup
Figure 5.9: Time and speedup of the Find Features pattern

5.5 Red And White Stripes
The results for the Red and White Stripes pattern are presented below.
The pattern requires some tweaking to optimally find Wally. This makes
producing a generic solver difficult. The colours between puzzle books
changes slightly. Thus focusing in on the red found in Wally’s stripes in
one puzzle might lock them out in another. This can be seen in section
5.5.1, where the reliability is non-existent.

50

5.5.1 Reliability

When tuned to find Wally in a specific set of images, this pattern works
well, as seen in figure 5.10. In images that contain low amounts of red
and white, this pattern is capable of reliably finding Wally’s lost hats.
These are small red and white hats that are hidden through the puzzle.
Conversely, images with large amounts of red and white stripes, such as
the Deep-Sea Divers puzzle, complicate the problem considerably.

 0

 20

 40

 60

 80

 100

Gobbling Gluttons pg. 1

Gobbling Gluttons pg. 2

Battling M
onks pg. 1

Battling M
onks pg. 2

Carpet Flyers pg. 1

Carpet Flyers pg. 2

Great Ball-Gam
e Players pg. 1

Great Ball-Gam
e Players pg. 2

Ferocious Red Dwarves pg. 1

Ferocious Red Dwarves pg. 2

C
er

ta
in

ty
 %

Puzzle being searched

Best match
2nd result
3rd result
4th result
5th result

(a) Results from the first half of "The Fantastic Journey" book

 0

 20

 40

 60

 80

 100

Fighting Foresters pg. 1

Fighting Foresters pg. 2

Deep Sea Divers pg. 1

Deep Sea Divers pg. 2

Knights Of M
agic Flag pg. 1

Knights Of M
agic Flag pg. 2

Unfriendly Giants pg. 1

Unfriendly Giants pg. 2

Underground Hunters pg. 1

Underground Hunters pg. 2

Land Of W
allys pg. 1

Land Of W
allys pg. 2

C
er

ta
in

ty
 %

Puzzle being searched

Best match
2nd result
3rd result
4th result
5th result

(b) Results from the second half of "The Fantastic Journey" book
Figure 5.10: The reliability of the Red and White Stripes pattern. Results are taken
from "The Fantastic Journey", and the program was tweaked to find Wally more
often. A green background means that the match correctly discerned whether or not
Wally was present. A red background means the opposite.

When the settings that are optimised for "The Fantastic Journey" are
used to locate Wally in "The Wonder Book", any reliability is lost This
can be seen in figure 5.11. As can be seen in both figures, the indicated
certainty has no bearing on whether or not Wally can be found in the
image. The "Underground Hunters" in figure 5.10 shows the particu-
lar weakness of this certainty. Despite correctly highlighting Wally, the
results are never more than 1% certain.

5.5.2 Speedup

The Red and White pattern achieves peak speedup at 8 cores. The
speedup is not efficient, around 25% at peak. This is due to the preva-
lence of strictly linear code, such as the Gaussian blurs.

51

 0

 20

 40

 60

 80

 100

Once Upon A Page pg. 1

Once Upon A Page pg. 2

M
ighty Fruit Fight pg. 1

M
ighty Fruit Fight pg. 2

Gam
e of Gam

es pg. 1

Gam
e of Gam

es pg. 2

Toys! Toys! Toys! pg. 1

Toys! Toys! Toys! pg. 2

Bright Lights and Night Frights pg. 1

Bright Lights and Night Frights pg. 2

Cake Factory pg. 1

Cake Factory pg. 2
C

er
ta

in
ty

 %

Puzzle being searched

Best match
2nd result
3rd result
4th result
5th result

(a) Results from the first half of "The Wonder Book" book

 0

 20

 40

 60

 80

 100

Battle of the Bands pg. 1

Battle of the Bands pg. 2

Odlaw Swam
p pg. 1

Odlaw Swam
p pg. 2

Clown Town pg. 1

Clown Town pg. 2

Fantastic Flower Garden pg. 1

Fantastic Flower Garden pg. 2

Corridors Of Tim
e pg. 1

Corridors Of Tim
e pg. 2

Land of W
oofs pg. 1

Land of W
oofs pg. 2

C
er

ta
in

ty
 %

Puzzle being searched

Best match
2nd result
3rd result
4th result
5th result

(b) Results from the second half of "The Wonder Book" book
Figure 5.11: The reliability of the Red and White Stripes pattern. Results are taken
from "The Wonder Book", and the optimal settings for "The Fantastic Journey" are
kept.

The first problem size decreases in speedup because the parallel work
done is outweighed by the communications needed to pass the data.

5.6 Find Glasses
This method could not find Wally correctly. This was due to the large
amount of paired circles in every image. These would often produce a
higher certainty than Wally’s glasses. A reliability chart has not been
presented because no information is contained within.

5.6.1 Speedup

The Find Glasses pattern finds peak speedup at 32 cores. The speedup
increases slightly for larger problem sets. The end of the data is noisy,
but this is likely due to problems in the timing system of Morar.

5.7 Blue Trousers
As expected, this method has no ability to directly find Wally. Again, no
reliability chart will be presented.

52

 0

 1

 2

 3

 4

 5

 6

 7

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

ti
m

e
(s

)

Number of Threads

relative problem size=1
relative problem size=2
relative problem size=3
relative problem size=4

(a) Wall time

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Sp
ee

du
p

Number of Threads

relative problem size=1
relative problem size=2
relative problem size=3
relative problem size=4

linear speedup

(b) Speedup
Figure 5.12: Time and speedup of the Red and White stripes pattern

5.8 Speedup
The speedup, seen in figure 5.14, is similar to that of the Red and White
Stripes pattern. This is to be expected, as they are almost the same func-
tion.

5.9 Using All Techniques
There will be no reliability analysis for this section. This is because the
certainties from each pattern do not translate to each other. Thus, the
reliability plots from before are full of noisy points that say nothing about
the information.

5.9.1 Speedup

The program experiences super linear speedup at 4 and 8 cores, figure
5.15. This is likely due to timing errors in Morar, as the previous test of
the Patterns do not show super linear behaviour. However, it is clear that
there is good speedup at 16 cores, which is beyond the scope of regular
computers. The speedup increases when the problem size is increased,
which means that it is efficient to run large images. Worth noting, is that
the running time is regularly dominated by a single pattern, either Find
Features or Find Glasses. This means that more patterns could be used,
or that a weighting of threads could improve the run time.

53

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

ti
m

e
(s

)

Number of Threads

relative problem size=1
relative problem size=2
relative problem size=3
relative problem size=4

(a) Wall time

 0

 5

 10

 15

 20

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Sp
ee

du
p

Number of Threads

relative problem size=1
relative problem size=2
relative problem size=3
relative problem size=4

linear speedup

(b) Speedup
Figure 5.13: Speedup of the Find Glasses Pattern

5.10 Genericism
The solution was found to be capable of genericism. Implementing a
"Yellow and Black" pattern to find Odlaw simply required copying the
Red and White pattern, and changing the relevant ratios. The result can
be seen in figure 5.16.

54

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

ti
m

e
(s

)

Number of Threads

relative problem size=1
relative problem size=2
relative problem size=3
relative problem size=4

(a) Wall time

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Sp
ee

du
p

Number of Threads

relative problem size=1
relative problem size=2
relative problem size=3
relative problem size=4

linear speedup

(b) Speedup
Figure 5.14: Speedup of the Blue Trouser Pattern

55

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Pe
rc

en
ta

ge
 o

f T
ot

al
 T

im
e

Ta
ke

n
(%

)

Number of Threads

image load
red and white
blue trousers

find glasses
find features

(a) Wall time

 0

 5

 10

 15

 20

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Sp
ee

du
p

Number of Threads

relative problem size=1
relative problem size=2
relative problem size=3
relative problem size=4

linear speedup

(b) Speedup
Figure 5.15: Speedup of entire program

(a) The Odlaw Character
(b) Odlaw as a result

Figure 5.16: Extending the program to find Odlaw

56

6 Conclusion and Evaluation
The goal of this report was to test the development of parallel com-
puter vision for everyday use. Object recognition was selected as an
appropriate topic within parallel computer vision for this. A Where’s
Wally? puzzle solver was created using readily available techniques and
libraries, such as OpenCV. This was parallelised using OpenMP, allowing
for an unintrusive inclusion of parallel techniques. The solver aimed to
be generic, reliable and fast.

As seen in section 5, using parallel computer vision can improve the
speed at which a complete solution can be found. In a limited time
frame, it can also help to increase the accuracy of a solution by combining
multiple techniques.

When tailored to a specific group of puzzles, the solutions found by
the program can be very reliable. The feature recognition and colour
analysis techniques were particularly reliable. The shape analysis per-
formed could not specify clearly enough what a valid pair of glasses
were, and so did not contribute considerably. Similarly, finding Wally
by his blue trousers was not useful, as Wally’s trousers are normally ob-
scured.

When the program was not optimised for a set of puzzles, the relia-
bility suffered. This prevented the program from being fully generic in
it’s goal, as it could not always reliably find Wally.

The program developed was able to find characters other than Wally,
with only slight changes to the patterns. Finding Odlaw, who is essen-
tially Wally with a different colour palette, was done through the same
functionality that provided the Red and White pattern.

Future development in this area should consider the definition of the
certainty of a result with care. Most of the patterns developed suffer from
too many false-positives. Reducing these through a more discerning def-
inition of certainty could help to increase the reliability of the program.

The program has potential as an example learning tool for parallel
programming. Many of the parallel techniques used within can be un-
derstood by any developer who understands computer vision. The inclu-
sion of OpenCV enables most developers to learn some computer vision
through their documentation and tutorials.

If the results could be broken down visually, this program could also
serve as an outreach device for HPC. Where’s Wally? has a place in the
popular culture, helping to give light hearted relevance to the discus-
sions.

57

7 Evaluation
This project suffered from having a scope that was too large. Object
recognition, even as a subset of computer vision, is too complex a topic
to produce high quality code that encompasses all subtopics. A lack of
experience working in projects meant that the disparity between work-
load and time was not recognised. This highlights the importance of
following a work plan and overestimating completion time.

The project was designed as a test-driven development. After the
implementation of test driven I/O, the project degenerated into a code-
like-hell project.

This project was begun with little knowledge of computer vision tech-
niques. Through the repeated use and analysis of results, a broader ap-
preciation of the discipline has been gained.

58

Glossary
A list of terms used within

Object A known image, being searched for inside a Scene, feature anal-
ysis term

Scene An image that may or may not contain an Object, feature analysis
term

OpenCV A computer vision library

libCVD A computer vision library

SIFT Scale-Invariant feature transform; A feature recognition algorithm

SURF Speeded Up Robust Features; A feature recognition algorithm
based on SIFT

Extra Reading
The OpenCV documentation is extremely helpful. Of particular use, is
the OpenCV cheatsheet[36].

References
[1] D. Hofer and W. Perrig, “Subconscious image recognition].,”

Zeitschrift für experimentelle und angewandte Psychologie, vol. 37, no. 4,
p. 580, 1990.

[2] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Computer vision, 1999. The proceedings of the seventh IEEE interna-
tional conference on, vol. 2, pp. 1150–1157, Ieee, 1999.

[3] UK Missing Persons Bureau, “Missing persons data and anal-
ysis 2010-2011.” missingpersons.police.uk/en/resources/

missing-persons-data-and-analysis-2010-2011, August 2013.

[4] The Children’s Society, “Still running 3 full report,” 2011.
makerunawayssafe.org.uk/sites/default/files/tcs/u24/

Still-Running-3_Full-Report_FINAL.pdf.

[5] Home Office, “National dna database annual report,” 2012.
https://www.gov.uk/government/uploads/system/uploads/

attachment_data/file/200407/NDNAD_Annual_Report_2011-12.pdf.

[6] J. L. Nielsen, “Scientific sampling effects: Electrofishing california’s
endangered fish populations,” Fisheries, vol. 23, no. 12, pp. 6–12,
1998.

[7] Y. Sun and R. Fisher, “Object-based visual attention for computer
vision,” Artificial Intelligence, vol. 146, no. 1, pp. 77–123, 2003.

[8] J. Leitner, S. Harding, M. Frank, A. Förster, and J. Schmidhuber,
“An integrated, modular framework for computer vision and cog-
nitive robotics research (icvision),” in Biologically Inspired Cognitive
Architectures 2012, pp. 205–210, Springer, 2013.

missingpersons.police.uk/en/resources/missing-persons-data-and-analysis-2010-2011
missingpersons.police.uk/en/resources/missing-persons-data-and-analysis-2010-2011
makerunawayssafe.org.uk/sites/default/files/tcs/u24/Still-Running-3_Full-Report_FINAL.pdf
makerunawayssafe.org.uk/sites/default/files/tcs/u24/Still-Running-3_Full-Report_FINAL.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/200407/NDNAD_Annual_Report_2011-12.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/200407/NDNAD_Annual_Report_2011-12.pdf

[9] Microsoft, “Kinect for xbox 360,” august 2013. http://www.xbox.

com/en-GB/KINECT.

[10] V. M. Patel, R. Maleh, A. C. Gilbert, and R. Chellappa, “Gradient-
based image recovery methods from incomplete fourier measure-
ments,” Image Processing, IEEE Transactions on, vol. 21, no. 1, pp. 94–
105, 2012.

[11] L. G. Roberts, “Machine perception of three-dimensional solids,”
tech. rep., DTIC Document, 1963.

[12] Google, “Google glass,” august 2013. http://www.google.com/

glass/start/.

[13] K. Tanaka, “Mechanisms of visual object recognition: monkey
and human studies,” Current opinion in neurobiology, vol. 7, no. 4,
pp. 523–529, 1997.

[14] D. I. Perrett and M. W. Oram, “Visual recognition based on temporal
cortex cells: Viewer-centred processing of pattern configuration,”
Zeitschrift fur Naturforschung C-Journal of Biosciences, vol. 53, no. 7,
pp. 518–541, 1998.

[15] OpenCV, “Opencv home website,” august 2013. opencv.org.

[16] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with
the OpenCV library. O’reilly, 2008.

[17] Edward Rosten, “libcvd homepage,” august 2013. http://www.

edwardrosten.com/cvd/.

[18] V. Fragoso, S. Gauglitz, S. Zamora, J. Kleban, and M. Turk, “Trans-
latar: A mobile augmented reality translator,” in Applications of Com-
puter Vision (WACV), 2011 IEEE Workshop on, pp. 497–502, IEEE,
2011.

[19] A. C. Downton, R. W. Tregidgo, and A. Cuhadar, “Top down struc-
tured parallelisation of embedded image processing applications,”
IEE Proceedings-Vision, Image and Signal Processing, vol. 141, no. 6,
pp. 431–437, 1994.

[20] J. Fung and S. Mann, “Openvidia: parallel gpu computer vision,”
in Proceedings of the 13th annual ACM international conference on Mul-
timedia, pp. 849–852, ACM, 2005.

[21] Q. Zhang, Y. Chen, Y. Zhang, and Y. Xu, “Sift implementation and
optimization for multi-core systems,” in Parallel and Distributed Pro-
cessing, 2008. IPDPS 2008. IEEE International Symposium on, pp. 1–8,
IEEE, 2008.

[22] H. Feng, E. Li, Y. Chen, and Y. Zhang, “Parallelization and charac-
terization of sift on multi-core systems,” in Workload Characterization,
2008. IISWC 2008. IEEE International Symposium on, pp. 14–23, IEEE,
2008.

[23] N. Zhang, “Computing optimised parallel speeded-up robust fea-
tures (p-surf) on multi-core processors.,” International Journal of Par-
allel Programming, vol. 38, no. 2, pp. 138 – 158, 2010.

[24] D. Brownrigg, “The weighted median filter,” Communications of the
ACM, vol. 27, no. 8, pp. 807–818, 1984.

http://www.xbox.com/en-GB/KINECT
http://www.xbox.com/en-GB/KINECT
http://www.google.com/glass/start/
http://www.google.com/glass/start/
opencv.org
http://www.edwardrosten.com/cvd/
http://www.edwardrosten.com/cvd/

[25] H. Malepati, Digital media processing [electronic resource] : DSP algo-
rithms using C / Hazarathaiah Malepati. Burlington, Mass. : New-
nes/Elsevier, [2010], Âl’2010., 2010.

[26] S. BURTSEV and Y. KUZMIN, “An efficient flood-filling algo-
rithm.,” COMPUTERS AND GRAPHICS, vol. 17, no. 5, pp. 549 –
561, n.d.

[27] L. He, Y. Chao, K. Suzuki, and K. Wu, “Fast connected-component
labeling,” Pattern Recognition, vol. 42, no. 9, pp. 1977–1987, 2009.

[28] S. Suzuki et al., “Topological structural analysis of digitized binary
images by border following,” Computer Vision, Graphics, and Image
Processing, vol. 30, no. 1, pp. 32–46, 1985.

[29] U. Ramer, “An iterative procedure for the polygonal approxima-
tion of plane curves,” Computer Graphics and Image Processing, vol. 1,
no. 3, pp. 244–256, 1972.

[30] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction
of the number of points required to represent a digitized line or
its caricature,” Cartographica: The International Journal for Geographic
Information and Geovisualization, vol. 10, no. 2, pp. 112–122, 1973.

[31] J. E. Hershberger and J. Snoeyink, Speeding up the Douglas-Peucker
line-simplification algorithm. University of British Columbia, Depart-
ment of Computer Science, 1992.

[32] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust fea-
tures,” in Computer Vision–ECCV 2006, pp. 404–417, Springer, 2006.

[33] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, vol. 27, no. 10, pp. 1615–1630, 2005.

[34] N. Dalal and B. Triggs, “Histograms of oriented gradients for hu-
man detection,” in Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, vol. 1, pp. 886–893,
IEEE, 2005.

[35] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration.,” in VISAPP (1), pp. 331–340,
2009.

[36] OpenCV, “Opencv 2.4 cheat sheet (c++).” docs.opencv.org/trunk/

opencv_cheatsheet.pdf, august 2013.

docs.opencv.org/trunk/opencv_cheatsheet.pdf
docs.opencv.org/trunk/opencv_cheatsheet.pdf

	Introduction
	Computer Vision
	High Performance Computer Vision
	Potential Use Cases
	Where's Wally? as a Test Case
	Goals
	Overview of Report

	Background Information
	Computer Vision
	Object Recognition
	Shape and Colour Analysis
	Feature Analysis

	Computer Vision Libraries
	Parallel Programming
	Parallel Computer Vision
	Shared Memory Parallelism

	Algorithms
	Colour Analysis
	Colour Extraction
	Blur
	Sharpen

	Region Detection
	Naive Solution
	Flood Fill
	Connected Component Labelling

	Line Width Estimation
	Average Distance to a Zero Valued Pixel
	Standard Deviation in Distance to Zero Valued Pixels
	Combining the Methods
	Testing
	Parallelism

	Shape Analysis
	Feature Detection
	Scale-Invariant Feature Transform
	Speeded Up Robust Features
	Matching: Brute Force Matcher
	Matching: FLANN
	Matching: Relative Keypoint Distances

	Implementation
	Function Implementation
	Pattern: Red and White Stripes
	Weaknesses
	Testing
	Parallelism

	Pattern: Blue Trousers
	Find Glasses
	Find Features

	Results
	Extracting Greyscale from Image
	Line Width
	Region Detection
	Find Features
	Reliability
	Speedup

	Red And White Stripes
	Reliability
	Speedup

	Find Glasses
	Speedup

	Blue Trousers
	Speedup
	Using All Techniques
	Speedup

	Genericism

	Conclusion and Evaluation
	Evaluation

