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Abstract

The Coarray model is an extension to Fortran which implements a Partitioned Global
Address Space programming model on top of standard Fortran constructs by providing
a simple notation for data decomposition and single sided data transfers. This project
investigates the feasibility of implementing this model as an object oriented library on
top of C++ - providing a similar ease of use without having to modify the language or
any of its tools. The library will make use of the OpenSHMEM API for single-sided
communications, which will allow the code to be ported to a variety of High Perfor-
mance Computing systems. The performance of this library will also be investigated on
the UK national supercomputing system HECToR.
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Chapter 1

Introduction

High Performance Computing (HPC) systems continue to provide more and more raw
computing power to academia and industry, and the sort of computing power that was
formerly the domain of large and extremely expensive supercomputer systems is be-
coming readily available to small businesses and individual research groups. There is a
great deal of legitimate concern that it will be difficult, if not impossible, to keep pro-
ducing faster and more affordable systems at the rate at which they have been developed
so far.[17] However, a potentially more serious problem is that current HPC systems are
often severely underutilized, with only a handful of applications available to exploit the
full performance of today’s most capable machines.[1] The root cause of this problem
is that the sort of machines that are being built are different to those that have gone be-
fore them. There has been a move away from small numbers of specialized processors
towards large numbers of low cost and low power commodity processors. This requires
applications to scale to processor counts that were inconceivable at the time of their cre-
ation. Another issues is the increasing complexity of memory systems required for these
large scale parallel machines. They have complicated hierarchical memory structures
where certain portions of memory within a shared memory node are quicker to access
than others, and network limitations cause certain remote memory regions to be slower
to access than others. Many pre-existing programming models do not adequately ad-
dress these issues, and thus make it difficult for the programmer to write efficient code
that takes them into account. There are two main issues that limit this scalability - one
is algorithmic, some software is not designed in such a way that exploits large-scale
parallelism. The other lies in the programming models used themselves - some of them
incur too much overhead when dealing with large numbers of processors. Some are
too awkward or difficult to use, and waste the programmer’s time on trying to solve
the problems of the programming model instead of the problem that their application is
trying to solve.

In the search for better ways of programming HPC systems, much research has gone
into so-called Partitioned Global Address Space languages (PGAS) which combine the
relative simplicity of shared memory programming, with the support for distributed and
hierarchical memory that traditional message passing programming provides. While
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the exact design varies from language to language, these languages make the notion of
remote and hierarchical memory into first class constructs in the language, and allow
the programmer to access remote data in much the same way that local data is accessed.
There is also an emphasis on single-sided communications, which allow one processor
to modify another processor’s data without co-ordination between the two processors.
In order to make these languages as easy to use as possible, they have either been de-
signed from scratch, or more commonly, by modifiying and extending a language that
has already found favour in the HPC community. In modifying the base languages,
the language designers have allowed the PGAS constructs to feel like a proper part of
the language, in constrast to some of the unwieldy APIs that have been used for HPC
programming, such as MPI. It has also allowed them to create compilers that are aware
of the PGAS constructs and that can optimize the PGAS code to exploit the underlying
hardware as efficiently as possible. All this comes at a cost - the implementers must
maintain separate compilers and debuggers for these PGAS languages, and the compat-
ibility between these languages and legacy languages (and between each other) is often
limited. Often the limiting factor in the performance and usability of these develop-
ment tools is how much time and money has been expended in their development. With
a relatively large amount of different languages serving a relatively niche field, it can
be difficult for vendors to create efficient tools, and potential users can be put off using
the languages by doubts as to whether the language will ever gain commercial traction.

In this context, a library that implemented PGAS semantics on top of an unmodified
language could prove to be quite useful. While it be difficult to provide automatic op-
timization compared with a solution that used a special compiler, it would potentially
allow fewer disruptive changes to existing software toolchains, allow a more straight-
forward means of adding PGAS semantics to a piece of software, or create means of
prototyping a port to a dedicated PGAS language from a legacy language.

In order to provide a compelling alternative to existing HPC programming libraries, the
library should work in way that is as unobtrusive as possible, and if possible, feels like
an inbuilt part of the language. The C++ language provides certain facilities which are
useful in this regard:

• Object Orientated Programming: This allows an encapsulation of concerns which
hides the inner workings of a library from the programmer who uses it.

• Operator Overloading: This allows the behaviour of certain inbuilt language op-
erations to be redefined by the programmer for data types that they have defined.
This reduces some of the syntactic burden associated with third party libraries.

• Template Metaprogramming: This allows programmer-defined container types,
such as arrays, to be defined in general terms that are not tied down to any specific
types. In other words, programmer-defined data structures can be made to make
with arbitrary data types without any need for duplicated code.

This project sets out to create a library in C++ that offers similar behaviour and func-
tionality to Coarray Fortran - one of the original and most popular PGAS programming
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languages. Coarray Fortran was created with the explicit aim of making as being as
simple and unobtrusive while still being useful. This aspect of its design allows a large
portion of its behaviour to be imitated as a library, and the feasibility of implement-
ing its feature set as a C++ library has been validated elsewhere. This project differs
from previous efforts not only by specific implementation details, but by the underly-
ing communications library - previous efforts either used a custom MPI-based single
sided communications layer that required dedicated threads for each image[5], or a pro-
prietary single sided library[6]. This project uses the standard OpenSHMEM library,
which provides straightforward PGAS-like semantics, and has implementations that
will run on a wide variety of machines, from SMP machines to commodity clusters
linked by Ethernet or Infiniband, to highly specialized HPC machines with specialized
networks.

Chapter 2 of this paper will provide background detail on parallel programming models,
PGAS languages, and communications libraries. Chapter 3 will describe certain details
of the C++ programming language that are pertinent to the project. Chapter 4 describes
the implementation of the library and its features. Chapter 5 will discuss how the library
was tested and benchmarked. Chapter 6 will discuss the conclusions from this work,
and the opportunities for future work.
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Chapter 2

Background - Programming Models

2.1 Traditional Parallel Programming Models

Parallel computer architectures are split into two categories depending on the organi-
zation of their main memory[19] - Shared Memory and Distributed Memory. Shared
memory machines have a single address space that is shared between all processors in
the parallel system. This category can be further subdivided into symmetric multipro-
cessor (SMP) systems, where all processors can the entirety of the main memory at the
same rate. SMP systems do not scale well as contention for the single memory bus
causes the average latency for a memory access to become unacceptably high. Con-
sequently, large scale shared memory systems use a so-called Non-Uniform Memory
Access (NUMA) model where there is a notion of memory locality, whereby a given
processor can access certain memory addresses quicker than others. In hardware terms,
this is due to the fact that the memory is split into several portions, and certain proces-
sors are attached directly to teach. In order for a processor to access memory outside
of its local region, it must go through one or more additional buses to reach it. Thus,
accessing remote memory is slower than accessing local memory.

Distributed Memory differs by the lack of a common address space between all pro-
cessors in the parallel system. Removing the requirement for a common address space
allows the avoidance of problems associated with large-scale Shared Memory systems,
such as maintaining acceptable latency for accessing local memory, and implementing
cache coherency. This allows for scaling that is limited only by the interconnect and
the ability of the system’s applications to make use of the large number of processors
available. While the largest Shared Memory systems only allow a few thousand proces-
sors, distributed memory machines with over a million processors have been built, and
consequently these machines dominate the Top 500 list of fastest supercomputers. The
downside of Distributed Memory systems is that processors cannot share data without
the use of explicit transfers over the network initiated by software.

Generally, Shared Memory architectures are associated with a threaded (or fork/join)
programming model, and Distributed Memory architectures are associated with the Sin-
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gle Program, Multiple Data (SPMD) execution model, and either a message passing or
single-sided data transfer models.

In a threaded model, the parallel program is started as a single process, which spawns
multiple threads of execution, which are executed asynchronously (i.e. there are no
guarantees that they will progress towards completion at the same rate), and scheduled
on the available processors by the operating system. As the threads are spawned within
the context of a single process, they all share the same address space, and thus data
can be passed between them through the use of pointers, or global data structures. This
leads to low overhead of execution. Thus the threaded model describes both the means
by which code is executed in parallel, and how data is shared between the processors
executing the parallel programming. The disadvantages of this model are that the asyn-
chronous nature of exectuion, and the visibility of the same memory to all processors
can lead to race conditions, and that there tend not to be any provisions for modelling
locality of access in NUMA systems.

Due to the fact that Distributed Memory machines do not share an address space (and
consequently do not share other things such as operating system instances) it is not pos-
sible to have a single process controlling multiple threads of execution. Instead, in the
SPMD model, a process is started on each processor taking part in the execution of the
parallel program. As with threaded programming, each process runs asynchronously,
unless explicit attempts are made to synchronize them. Each process runs a full copy
of the program, which requires a fundamentally different approach to software design
compared with the threaded model - in the threaded model, the process starts out with
a single thread which at some point spawns more. Thus, at least part of a threaded pro-
gram is serial, whereas in SPMD the program is entirely parallel. This means that the
code must be written in a way to make sure each processor does different work. This is
usually accomplished by using the process’s ID to control the operations it carries out.

The SPMD model does not state anything about how the programs communicate with
each other. There are two models - the first is message passing, which is the commonly
used method in HPC codes, primarily in the form of the standard Message Passing
Interface (MPI) API. The message passing model views the transfer of data between
two processors as a send-and-receive operation, where both the sender and receiver
need to involved in the data transfer at the application level. This model has several
advantages - it neatly maps on to the semantics of most computer networking protocols.
If synchronous messages are used, there is implicit synchronization between the two
processes, which minimizes the chances of creating race conditions in the code. The
main disadvantage is that the requirement for both processors to be actively involved in
the data transfer makes it difficult to model certain data transferral patterns, particularly
in the case where the transfer patterns are only known at runtime (such as the case where
dynamic load balancing is being carried out). MPI implementations also face certain
issues - such as matching up corresponding send/receive pairs when there are many
messages being sent around the network at once, and the reliance on buffering messages
until the receiving process is ready to receive them, which is likely to be problematic
as the amount of memory per core decreases on future machines due to power and

5



cost limitations. There is also a reliance on internal data structures whose size grows
proportionate to the number of processes available, in particular, MPI communication
groups require each processor in a group to have local information on all the other
processors in the group.[12]

The other option is to use single sided transfers, where one processor can place data
into a remote processor’s memory, or copy a piece of remote data into its local memory.
This allows for more flexible code at the expense of requiring more explicit synchro-
nization operations to prevent race conditions from occurring. The performance of
single sided transfers depends on how well their semantics map on to certain types of
network better than others. They originated on special HPC machines where the inter-
connects were capable of Remote Direct Memory Access (RDMA) operations, where
I/O devices (such as the interconnect controller in this context) could copy data from
local memory straight into remote memory without the operating systems at either end
being involved. On interconnects that do not support this, this has to be emulated on
top of a conventional two-sided messaging model, and thus the performance benefits are
negated (however, the programmer can still program in a single-sided manner, which
may make it easier for them to implement their application.) However, the availability
of RDMA support in both Infiniband and ten-gigabit Ethernet (10GBE) means that this
sort of capability is more commonly available than it was before.

The prevalence of multi-core processors has led to HPC machines that feature both
Shared Memory parallelism, and Distributed Memory parallelism, and are sometimes
called Shared Memory clusters. It has become common to make use of a hybrid model
for programming these systems, where threads are used within nodes, and message
passing is used across nodes. This can make the code quite complicated due to the
mixture of different models that were not designed to interoperate, and is one of the
main motivations behind the PGAS model - to provide a single model for all situations.

2.2 Coarray Fortran

“We designed Co-Array Fortran to answer the question ‘What is the smallest change
required to convert Fortran 95 into a robust, efficient parallel language?’. Our answer
is a simple syntactic extension to Fortran 95. It looks and feels like Fortran and requires
Fortran programmers to learn only a few new rules" - Numrich and Reid.

Coarray Fortran (CAF) originated as an extension to Fortran (specifically the Fortran
95 standard) but was later incorporated into the Fortran 2008 as an official part of the
language. It uses the SPMD model, where each copy of the program (called an image)
is executed asynchronously. Each image has its own set of variables and data structures
which independent of those on other images, even if they share the same name.[9]

Data sharing between images is carried by use of Coarrays, a data structure that behaves
like a standard Fortran array, except that the programmer is allowed to access another
image’s copy of the given Coarray by specifying the remote image’s identifier.
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A Coarray is required to have the same dimensions and type on each image in the Coar-
ray program. If the programmer wishes to have Coarrarys of different size on different
images, they are permitted to have Coarrays of pointers to local standard arrays.

Coarrays can make use of Fortran array syntax. Certain implementations may optimize
Coarray expressions with array syntax to make use the bulk or strided transfers of the
underlying network library.

All synchronization between images must be carried out explicitly by the programmer,
and the language specification makes no guarantees about timing between synchroniza-
tion points - this is to simplify optimization of the code by the compiler. Coarray Fortran
provides several synchronization intrinsics - the most fundamental one is sync_memory,
which is used to flush changes to remote processors, and to retrieve any changes made
to the local data from memory. sync_images is used to synchronize a set of specified
images, and sync_all is used to synchronize all images in the program.

The language also provides intrinsics for finding the current image number, the number
of images in the program, and for synchronizing file I/O between images.

2.3 Unified Parallel C

Unified Parallel C (UPC) is an extension to C99 which originated at the University
of California Berkeley and the Lawrence Berkeley National Laboratory. Like Coarray
Fortran, it uses the SPMD programming model (it uses the term ‘threads’ instead of
‘images’, even though the underlying implementation may not use threads to implement
the parallel execution).[8]

As with Coarray Fortran, data sharing between threads is accomplished by declaring
certain variables and data structures to be shared. However, the way in which the sharing
takes place differs from that in Coarray Fortran:

• When declared as shared, scalar variables are only allocated on the first thread.
In Coarray Fortran, they exist on each image of the program.

• A shared array in UPC has its elements split across all images in a round robin
manner. This is in contrast with Coarray Fortran, where the array is allocated
separately on each program image. By default the elements are distributed one
at a time, but it is possible for the programmer to specify a ‘blocking factor’ so
that that more than one element is distributed at once. It is possible to specify
blocking factors such that the array is either located entirely on the first thread,
or that the array is distributed in evenly sized contiguous blocks. If the latter is
used to split an array of size N by the number of threads, for some N that is a
multiple of the number of threads, it is equivalent to declaring a Coarray of size
N in Coarray Fortran.
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As such, UPC’s arrays provide a global view of the distributed data which provides
an abstraction over the distribution of the data, whereas CAF’s Coarrays require the
programmer to manually distribute the data across images. While UPC arrays are po-
tentially easier to use, they also make it easier for the programmer to write code that
performs poorly due to excessive remote memory accesses.

In order to minimize the number of remote accesses, UPC provides a special for loop
construct (upc_forall) where operations on a given element are only carried out by the
thread where that element is local to.

UPC also provides barrier and locking facilities, as well as a split phase barrier, where
the barrier is split into a notify and wait phase. This allows threads to notify eachother
and carry out further computation before waiting. If given enough work to do between
the two stages, it is effectively possible to ensure that no thread will ever wait, thus
allowing non blocking synchronization.

UPC also provides special pointers that allow data on remote threads to be accessed and
dereferenced.

2.4 Asynchronous PGAS languages - X10

A separate category of PGAS languages, named asynchronous PGAS (APGAS) lan-
guages have also been developed. These are also known as High Productivity Comput-
ing Systems (HPCS) languages, name for a DARPA project and tender to build a next
generation supercomputing system at Oak Ridge National Laboratory, for which the
APGAS languages were developed. The best known APGAS languages are X10 from
IBM, and Chapel from Cray. Another language that is often mentioned in this context
is Fortress from Oracle (originally Sun Microsystems) but this language is no longer
developed.[4]

The PGAS languages described so far use the SPMD execution model. This model
is familiar to those who have worked with legacy HPC programming libraries such as
MPI, but imposes certain problems - for one it tends to assume that there is one process
per available processor in the system, and does not elegantly handle the situation where
parallelism is dynamically added or removed from the program. It assumes that all
processes in the program are heterogenous, and does not handle the case where different
processes are running on different hardware (and if it did, the languages would have
no features to allow the programmer to reason about the differences). Finally, while
the langauges (to varying extents) support data parallelism, and some global notion of
distributed data, there is no global view of the flow of the program, which can make
task parallelism difficult to implement.

APGAS languages differ by offering a programming model that is more similar to the
fork-join model commonly associated with shared memory programming (in practise,
the runtime may be implemented in an SPMD manner, but this is hidden from the pro-
grammer). The APGAS languages are based around two concepts that are represented
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as first class objects in the language - sites of execution, and tasks that can be executed
on them. Instead of writing code that is executed on all processes, an APGAS contains
a description from a high level viewpoint of how tasks are mapped onto places, and how
synchronization is carried out. In the X10 languages, the tasks are called ‘asyncs’ and
the execution sites are called ‘places’. When an ‘async’ is assigned to a place, it is car-
ried out asynchronously with respect to the place where the task assignment was carried
out. The programmer may choose to wait on its completion with the finish keyword, or
specify that the task is to be carried out in an atomic manner.

In constrast with the conventional PGAS languages which generally assume one thread
per process, an APGAS site of execution may contain one or more threads, allowing for
multiple asynchronous tasks to be executed at once.

There is no requirement for the places to be of homogeneous type, and the developers of
both X10 and Chapel have explored different types of place to represent accelerators,
and have proposed hierarchical places to represent execution sites with complicated
memory or execution structures (such as the Cell Broadband Engine processor.)

2.5 OpenSHMEM

SHMEM (Symmetric Hierarchical MEMory) is a library for C, C++ and Fortran which
allows the programmer to carrying out single-sided remote memory accesses. Whereas
MPI uses a two-sided send-receive model of communication which features implicit
synchronization, SHMEM allows the transfer to or from remote memory to be car-
ried out by the calling processor without the involvement of the remote one. This is
useful where the implicit synchronization of MPI is unrequired, or in situations where
two-sided communcations make the given algorithm difficult to express (specifically al-
gorithms that require load balancing or dynamic distribution of workload, and thus the
communication patterns are not known in advance.) This comes at the cost of having to
explicitly synchronize communications to prevent race conditions from happening.[20]

SHMEM was originally developed by Cray for their T3D architecture, and was further
developed by SGI when they acquired Cray and incorporated SHMEM into their Mes-
sage Passing Toolkit. As it was a proprietary tool designed specifically for Cray and
SGI hardware, other vendors and academic institutions developed their own implemen-
tations. OpenSHMEM was created as an open definition of the SHMEM interface by a
group of vendors and users, and is based on the SGI SHMEM implementation.

SHMEM implements many of the PGAS constructs seen in the previously described
languages - it uses an SPMD programming model where each processing element (PEs
- equivalent to the CAF image or UPC thread) has a set of private and shared variables.
It differs from UPC and CAF by the fact that it does not modify or extend the underlying
language, it is simply a library for standard versions of the aforementioned languages
that it supports. In this manner, it does not require any special tools, but the compiler
is unaware of what the library is doing, and thus cannot optimize the programmer’s
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use of it. It also uses function calls to transfer data, and thus accessing remote data
requires more programmer effort than accessing local data, which is something that the
dedicated PGAS languages have strived to avoid.

As with CAF and UPC, certain rules exist about the sort of data that can be shared
under SHMEM. Data that lives in the global or static sections of program memory
can be shared, as the addresses that these items will occupy in memory is known at
compile time. Variables residing in either the stack or regular program heap cannot
be shared. However, SHMEM provides special versions of the standard C memory
allocation functions that allow data to be allocated on a ‘symmetric heap’ which is a
portion of the program heap which the SHMEM library allows transfers in and out of.
Certain rules exist regarding allocation on the symmetric heap - any time memory is
allocated from the symmetric heap, it must be done by all processing elements at the
same time, and they are all required to allocate the same amount of memory. Similarly,
if a block of memory is freed from the symmetric heap, it must be done by all the PEs
at the same time. The specification for SHMEM states that failure to follow these rules
results in undefined behaviour. One consequence of these restrictions is that a given data
item will have the same address on the symmetric heap of each processing element.

SHMEM provides a variety of barrier and synchronization functions. There are barrier
functions equivalent to the sync_all and sync_images from CAF. There are wait and
wait_until functions which cause the calling processing element to stall until a speci-
fied shared memory location on a specified processing element meets a certain condition
(which is specified by the programmer.) The is a fence function which guarantees that
all writes to remote memory locations will be completed before those initiated after
the fence (but it does not guarantee when they will be completed.) The quiet function
does something similar, except that it forces the completion of all outstanding writes
to remote processors (this differs from a barrier in that it is not a collective operation,
and thus there are no guarantees that outstanding writes to the calling processing el-
ement have been completed by the end of the function call.) As with other PGAS
languages, SHMEM also provides collective and locking functions, and like UPC, it
supports atomic operations on remote memory, with the condition that the operations
are only guaranteed to be atomic if the targeted memory locations are only written to
using atomic operations. If there is a mixture of non atomic and atomic operations used
to write to the memory location at the same time, the atomicity is not guaranteed.[13]

2.6 GASNet

The PGAS languages are dependent on a high performance interconnect, preferably
one capable of remote memory accesses. Many of the runtimes and libraries are built
on top of GASNet (Global Address Space Networking), a library that supports single-
sided semantics on top of a variety of different network types (referred to as ‘conduits’).
The library consists of two parts, the GASNet Core API, which is implemented directly
on top of the underlying conduit API, and the GASNet Extended API, which is im-
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plemented purely in terms of the Core API. This allows new networks to be supported
by implementing the Core API on top of the network, which is similar to the Abstract
Device Interfaces used by MPICH2. Some of the GASnet conduits available include
shared memory, MPI (which has poor performance, but is highly portable) various In-
finiband implementations, as well as the proprietary IBM and Cray networks - includ-
ing the Gemini network used by HECToR and the Aries network that will be used by
ARCHER. However, on the Cray systems, many of the PGAS libraries and runtimes (in-
cluding Cray SHMEM) are implemented on top of their proprietary Distributed Shared
Memory Application (DMAPP) API which interacts with the hardware directly[7]. The
GASNet Extended API is based around a notion of Active Messages - messages which
execute when they are received instead of simply carrying data. This interface is quite
low level, and consequently is intended for compiler writers and library implementers
as opposed to application developers.[18]
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Chapter 3

Background - Relevant features of the
C++ language

3.1 C++ Templates

Templates are a mechanism in C++ that facilitate generic programming, a style of pro-
gramming where algorithms, data structures and/or libraries are written in a manner that
does not tie their use to a particular type of data.[16] Consider the following C++ class
declaration which represents an array of integers:
class Array
{
private:
int * startOfArray;
size_t lengthOfArray;
public:
Array(size_t length);
~Array();
int & operator[] (size_t index);
};

Note that in this declaration the behaviour of C++’s array subscription operator (i.e.
[]) has been overloaded. This means that if the [] operator is applied to an instance of
this object, it calls the method defined by the programmer. In this context, that method
would be as follows:
int & operator[] (size_t index)
{
return startOfArray[index];
}
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In absence of this overloading, the application of the [] operator to an instance of this
array would be undefined, and would result in a type error at compile time if the pro-
grammer attempted to use this in their code.

It should be reasonably clear that the only difference between this declaration, and an
equivalent declaration of an array of double-precision floating-point values is that all
instances of ‘int’ would be replaced with ‘double’ (this would also apply to the code
that implements the class’ methods). Instead of duplicating the code for each type, C++
templates can be used which allow the data structure to be described in terms of a type
that will be declared later.
template <typename T>
class Array
{
private:
T * startOfArray;
size_t lengthOfArray;
public:
Array(size_t length);
~Array();
T operator[] (size_t index);
};

When instantiating an instance of this class, the programmer would use the following
statement to create an array of ten integers:

Array<int> array(10);

The type is said to be parameterized, which means that it is effectively passed as an ar-
gument to the template-using code. This is carried out at compile time, and the compiler
effectively creates an internal class which looks like the previous declaration with the
hard coded type. It is also possible to have a template function which is not a member
of a class, for example:
<typename T>
void sort(T * array, int length);

It is also possible to alter the behaviour or even the entire definition of a template class
for a manually specified type. To give a somewhat contrived example, imagine if a pro-
grammer wanted to specify that for character arrays, the class should have a method that
returns a string, but not have this behaviour available for other types. The behaviour for
type ‘char’ would be defined as follows.
class Array<char>
{
private:
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T * startOfArray;
size_t lengthOfArray;
public:
Array(size_t length);
Array();
T operator[] (size_t index);
string toString();
};

This is called template specialization. No code is shared between specialized templates
and the non specialized class.

3.2 Arrays in C and C++

In considering the design of a library that mimics the behaviour of arrays in C and
C++, it is useful to consider the semantics and behaviour of the native arrays of those
languages. First, consider the most basic case - a single dimensional array in C (and
C++). A single dimensional C array consists of a contiguous block of bytes in memory.
The array is represented as a pointer to the first byte of the array, and the array subscript
operator (i.e. []) is an operation which adds the specified index to the base address to
get the address of the desired item. The portion of program memory in which the array
is stored is dependent on how the array is allocated - it can either be allocated in the
stack frame of the function that declares it, on the heap through the use of a library call,
or in the read-only static section of memory if the contents of the array are initialized
at run time. For simple single dimensional arrays, these largely behave the same except
for the statically initialized arrays whose contents cannot be changed at run time.[10]

Multi-dimensional arrays are slightly more subtle. When dealing with statically initial-
ized and statically declared arrays, the arrays are laid out in row-major order in memory
- in other words, if we have a 4x4 array of a single-byte type, the compiler will create
space for sixteen bytes - the first four of which will represent the first row, the next four
the second row and so on. In effect, the two-dimensional array is an array of rows. This
pattern can be applied recursively to deal with N dimensional arrays, which is treated
as an array of N-1 dimensional arrays, which are treated as an array of N-2 dimensional
arrays and so on. Ultimately, for any number of dimensions, the array is represented
in memory as an array of rows. When such an array is indexed, the compiler generates
object code which indexes into the array from the address of the first element using
information about the extents of the dimensions that are known at compile time.

In order to index into such an array, it stands to reason that we need to know about the
extents of the array’s dimensions, as well as the index. Consider the previous 4x4 array.
If we wish to access the 2nd element of the 3rd row, we would need to know where
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the 3rd row starts, which we can get by multiplying the number of elements per row by
three. We would then add two to get the starting addressing of element [3, 2]. In more
general terms, a two dimensional array is indexed by:

(Row index * length of a row) + column index

As mentioned above, this process can be generalized to n-dimensional arrays by treating
an N dimensional array as an array of N-1 dimensional arrays, and thus applying this
formula recursively till it becomes a one dimensional array.

The ability to index arrays using the above method is dependent on the compiler know-
ing the extents of the array dimensions at compile time. In C, this information in en-
coded in the type of the array, that is to say if declare an array foo as follows -

int foo[4][4]

Foo’s type is

int[4][4]

An a pointer named bar to foo would be declared as -

int (*bar)[4][4] = &foo;

An interesting consequence of this is that a pointer to an array of size can be used in C
and C++ to treat a block of memory allocated on the heap like a statically defined array.

int (*foo)[4][4] = (int (*)[4][4])malloc(4 * 4 * sizeof(int))

At no point does the compiler need to know the extent of the inner-most dimension (i.e.
The number of columns per row). This means that the extent of the first dimension can
be left out to provide a degree of flexibility, for example, given an integer variable x
equal to four, the following statement is equivalent to the previous one (in that it creates
a 4x4 array)

int (*foo)[4][] = (int (*)[4][])malloc(4 * x * sizeof(int))

If the extents of the outer dimensions of the array are not known at compile time, nei-
ther C++ nor ANSI C provide any mechanism to allow compiler-assisted indexing into
a multidimensional array. The standard method to create arrays of arrays (or arrays of
arrays of arrays and so on for greater numbers of dimensions). This is accomplished
with code as follows:
int * foo = (int *)malloc(sizeof(int *) * 4);
for (int i = 0; i < 4; i++)
{
foo[i] = malloc(sizeof(int) * 4);
}
The above implementation is not ideal as there are no guarantees that all the rows are
located contiguously in memory, which is bad for cache performance. It also means that
several free operations are required to deallocate the array. This can be solved by allo-
cating all the required memory at once, and iterating over the resulting memory block.
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Even doing this, the requirement to have arrays of pointers causes several problems:

As a certain portion of the allocated memory is required for pointers, there is a storage
overhead associated with arrays of arrays, that increases exponentially with the number
of dimensions.

The address of the start of the array of arrays is pointer, not a data element, in other
words &foo is not the same as &foo[0][0]. This means the arrays are not inter-
changeable with statically defined arrays.

C99 introduces so called Variable Length Arrays (VLAs) which allows the declaration
of statically-declared arrays whose extents are not known at compile time.[11] In other
words, it is possible to declare the following for variables x and y whose values are set
at run time:

int foo[x][y];

As statically defined arrays are allocated on the stack frame of the current function
call, the compiler implements this construct by resizing the size of the stack frame at
run time, an operation equivalent to the C standard library alloca function. Use of
VLAs (and similarly use of alloca) is considered by some to be bad practise as it can
lead to stack overflows during the middle of a function call. However, it is possible
to create pointers with VLA types, which allows multidimensional arrays whose size
is not known at compile time to be allocated on the heap while retaining the ability to
index into the array without having arrays of arrays:

int (*foo)[x][y] = (int (*)[x][y])malloc(sizeof(int) * x *
y);

These pointers can be passed to functions as long as the extents are declared in the func-
tion parameter list before the pointer: void some_function(int x, int
y, int (*array)[x][y]); //Allowed
void some_other_function(int (*array)[x][y], int x, int y);
//Will not compile

One advantage of arrays of arrays over pointers to VLA types is that arrays of arrays
allow the programmer to create arrays where the number of dimensions is not known at
compile time.

VLAs are not supported in the current C++11 standard. There are proposals to sup-
port VLAs in the next C++ standard, C++14. However, pointers to VLAs will not be
supported, nor is it possible to apply the sizeof operator.
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Chapter 4

Implementation

4.1 Array Semantics

To create a library that implements the Coarray model, we need to provide a data struc-
ture that lets the programmer specify which image’s copy of the array they wish to ac-
cess. It needs to behave consistently irrespective of whether the programmer accesses
local data, or remote data. It must also provide synchronization routines as well.

The issue arises of how to implement array indexing in a C++ library, knowing that the
same method must be suitable for indexing both a local array, or one that is located on
a remote processor. Indexing a local array is a relatively straightforward procedure, so
the choice should be made around accommodating the remote case.

C++ allows the programmer to overload the array subscript operator. The operator is
represented as a function that takes a single argument (usually an unsigned integer type)
and returns a C++-style reference to the item that has been indexed, for example, for a
class MyArray that represents an array of integers, the programmer may overload the
subscript operator by declaring (and implementing) the following function:

int& MyArray::operator[] (size_t index);

There are two things to note here - first is that the function returns a C++ reference
instead of returning the item by value, or returning a pointer. A C++ reference (which
is declared like a pointer, but using & instead of *) is a named alias for a piece of data
(somewhat similar to Fortran’s notion of pointers). It is not possible to apply pointer
arithmetic to a reference, nor is it possible to have a pointer or a reference to a reference
(as the reference does not exist as a separate entity in memory.) It is also not possible
to dereference a reference, instead, all operations carried out on the reference act as if
they are carried out on the original variable. In other words, the following code:

int x = 5; //Standard scalar variable
int & y = x; //Declare a reference y which refers to x
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y = y + 1;
cout « x « endl;

Will print ‘6’, as any time y is used, it is treated as if x has been used. The purpose of
returning a reference from the subscript operator is to allow the subscripted object to be
used on both the left and right hand side of an assignment statement (in C++ parlance,
it can be used as an ‘lvalue’ or an ‘rvalue’[15]). Consider the below code where x is an
instance of the previously described MyArray class which holds at least two elements:

x[0] = 3;
int y = x[1];

The above code would not work if the operator returned a value or a pointer.

However, there is a problem with this system - there is no notion of overloading multiple
array subscripts that have been chained together. In other words, we can’t define a single
function that handles the following case:

x[4][3] = 9;

Ultimately, the subscript operator is designed with an ‘array of arrays’ mentality - in
order to make the above statement work, we would have to break the subscription of x
into two - first we have x[4] which returns an intermediate object (or a pointer) to which
we apply [3], giving a reference to the desired memory location.

Assume that the process of accessing data on remote processors has been solved. There
are several ways in which we might decide to index an array located on a remote pro-
cessor. The most preferable way would be that we could specify the indices using the
standard C/C++ syntax, and that the local object would calculate the address of the re-
mote data item, fetch that item, and return it to the user. For example, the statement
-

x[2][1] = 5;

Would first create a object that represents the third row of the array, to which application
of the [] operator would return the second element of that row. This allows the library to
use the familiar array indexing syntax, but requires the creation of intermediate objects,
which is potentially wasteful of memory of processing effort. Nonetheless, the library
uses this approach so that the Coarray behaves like a normal array as much as is possible

Another option which is taken by certain libraries which implement multidimensional
array objects, including the Coarray on C++ implementation described in[5], is to sim-
ply abandon any attempt to create an object that behaves like a standard C++ array, and
devise separate syntax for array indexing which is more convenient for the implementer.
One possible way of doing this is to overload the function call operator (i.e. () ) and
use it to pass a series of indices (using either C-style varags, or C++11-style parame-
ter packs, which will be discussed later) calculate the location of the specified item in
memory, and return an index to it. For example -
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(1, 2, 3) = 5;
x(1, 1, 1) = 4;

(One consequence of this approach which is interesting in the context of this project
is that it mimics the array indexing syntax of Fortran, which has the advantage of fa-
miliarity for Fortran programmers, but the disadvantage of unfamiliarity for the C++
programmers who actually have to use it...)

Given the choice of array indexing, we can think of the basic array object semantics
for use in the library as a constructor that takes a list of extents for each dimension
and allocates a contiguous block of memory which can hold all these items, the array
indexing operator, and a destructor which frees the allocated memory block. The type
used to define a three dimensional integer array would be -

Array<int, 3>

While the number of dimensions could be inferred from the number of indices passed
to the constructor, having the the number of dimensions as part of the type means that
this information is available at compile time, and that it is possible to carry out certain
desirable compile time checks, such as ensuring that the programmer does not pass too
many or too few indices when the array is indexed.

4.2 Handling Remote Arrays and Elements

To create an object that behaves like a CAF coarray, we define an object that behaves
like the above array, but differs first by allocating the memory on the SHMEM symmet-
ric heap. It must also provide means of specify which SHMEM processing element’s
address space we wish to index. This is facilitated by overloading the function call op-
erator as a means of specifying the PE index required (this function will be referred to
as the ‘PE selector’ operation). While the programmer is free to specify the index of
the local processor, if they omit the process selector, it is implicitly assumed that they
are referring to the local array.

Coarray<int, 2> x(4, 4); //Declare a 4x4 integer Coarray
x[2][2] = 5; //Update index [2, 2] on the local array
x(4)[2][2] = 4; //Update index [2, 2] on the array of PE 4

In the case where we use option 1, the array behaves as normal when dealing with the
local array. When specifying a remote array, the PE selector returns a RemoteArray
object. This is an object that encapsulates the address of the start of the array, and has a
single method - the overloaded () operator which serves as the array subscript operator.
When the array is indexed, the subscript operator returns a RemoteReference object.
This object encapsulates the address of the remote data that is to be accessed, and is

19



intended to behave like a standard C++ reference, except that it refers to a value on a
remote processing element.

In order to simulate the behaviour of a reference, we need to overload two operators.
The first is the assignment operator, so the reference can be used as a C++11 lvalue.
The assignment operator takes the value to be assigned as an argument, and returns the
same value at the end of the function (in C and C++, assignment statements are treated
as expressions that evaluate to the new value of the assigned variable. This allows,
amongst other things, assignment statements to be chained, e.g. x = y = 5). The remote
reference uses the shmem_put function to write the value to the remote data item.

In order to let the remote reference behave as an rvalue (in other words, so that we can
use it in an expression, and have it evaluate to the value of the remote data) we rely
on the implicit conversion operator of C++. This operator, specified for a certain type,
tells the compiler how the object can be converted to a specified type (or perhaps more
descriptively, how the object behaves when located in an expression that expects the ob-
ject to be of the specified type.) For example, if the programmer defines a class named
Integer that wraps around an int, and provides certain methods, they might want to be
able to use instances of that class in places that expect a regular int. This is possible
in C++ if the Integer class has overloaded the implicit conversion operator for int. The
programmer may implement a method as follows:
int Integer::operator int()
{
//Where value is class attribute that stores the wrapped integer
return value;
}

This allows the following code to work:

Integer x(5);
int y = 4;
//x behaves like an int in this context.
int z = x + y;

Without overloading the int() operator, this code would fail with a type error, as x is an
Integer and not an int.

Using this operator, we can allow the remote reference to fetch the remote data in the
background by overloading the implicit conversion operator for the type of the Coarray
that we are accessing (this type information is passed by templates from the Coarray
to the RemoteArray down to the RemoteReference) to carry out a shmem_get on the
reference’s memory address, and returning the value that it has returned.

For option 2, the array behaves in much the same manner as before, but when refer-
ring to a remote array, there are RemoteArrayIndex objects that are otherwise identical
to the regular ArrayIndex objects, except that they store the PE identifier provided to
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the PE selector operation, and when it reaches the inner-most dimension, it returns a
RemoteReference object as described above.

4.3 Synchronization

Regarding other intrinsics of Coarray Fortran, certain ones map on directly onto func-
tions of the SHMEM API - for example, the collective barrier for all images, finding the
number of images, and finding the image number of the calling image. One important
one that does not sit so well is the CAF sync_images. SHMEM provides an barrier for
a subset of images, but it is a somewhat awkward function, requiring the programmer
to specify the number of processes in the subset, a ‘symmetric work array’, the first
image in the subset of processes to be synchronized, and the stride between the pro-
cesses we want to synchronize. While this works for situations where the programmer
wants to synchronize every second image for example, it doesn’t have the same flexi-
bility as CAF’s sync_images, which allows the programmer to specify an arbitrary list
of processes to be synchronized. The other issue is that it requires the programmer to
declare a symmetric work array for the given subset of processors that are about to be
synchronized, that the array be initialized with a special value, and the array must be
reinitialized if it used to carry out synchronization of different subsets of processors.
Ultimately, finding a layer of abstraction over these details did not appear trivial, and it
would likely involve the programmer instantiating special wrapper objects, would result
in a level of ungainliness that would defeat the point of the abstraction, and so it was
left out.[13]

An attempt to create a point-to-point barrier using SHMEM’s atomic fetch and incre-
ment operations along with the shmem_wait_until operation (which stalls the process-
ing element until a local value at a given address satisifies some condition) to create a
semaphore-based barrier. However, as there were no collective atomic operations, the
performance of this function was far slower than that of the global barrier, and thus it
was removed from the code.

4.4 Emulating Fortran Array Syntax

The Fortran 90 standard treats arrays as first class objects in the language, and provides
a convenient syntax (so-called Array Syntax) to simplify common array operations. If
two arrays have the same type, same number of dimensions, and the same extents, it is
possible to write single statements which operate on all elements of the arrays as if they
were scalar values.[14] For example, given the arrays A, B, C:

A = B + C

Adds the corresponding elements in B and C, and assigns the results to the correspond-
ing elements in A.
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A = B

Simply copies all the elements of B into C.

It is also possible to carry out manipulations on subsets of arrays with ‘slice’ notation.
The following statement, for a single-dimensional array X:

X(3: 7) = 4

Sets elements 3 through 7 to be equal to 4. Given the two dimensional arrays A and B
of same type:

A(1:2, 1:2) = B(1:2, 1:2)

Is equivalent to the following iterative code:

do i=1, 2
do j = 1, 2
A(j, i) = B(j, i)
end do
end do

Neither C nor C++ have any equivalent construct. Cilk Plus, a extension to C++ for
parallel programming developed by Intel has an equivalent syntax which maps onto
SIMD vector operations, but this not part of either the C or C++ standards, and is
only officially supported on Intel’s C++ compiler, and non-standard forks GCC and
Clang.[21]

While a full implementation of Fortran’s Array Syntax is beyond the scope of this
project, a limited subset of this functionality is particularly desirable in the context of
this project as not only does it provide convenient syntax for transferring items to and
from remote Coarray objects, it allows the library to represent whole-array and slice
transfers in terms of one or more SHMEM put/get operations that transfer multiple el-
ements of the array at once. Even without array syntax, the compilers for languages
like CAF and UPC can spot instances where the programmer is transferring elements
one by one to a remote process in a loop, and optimize it into a single RMA operation.
This is important for performance reasons, as any operation across the network has a
minimum setup cost and latency, and thus it is possible to send multiple elements in the
same time taken to send a single one, especially when dealing with small data types.

The library implements an Array Syntax for the case of assigning between local arrays,
local Coarrays, and remote Coarrays, either for whole arrays, or slices of arrays. The
whole-array transfer is relatively straightforward. Given a coarray x, the programmer
can write the following statement:

x = x[1];

Which fetches all elements of the Coarray x on processing element 1, and assigns them
to the equivalent elements on the local Coarray x. This is implemented as a single
SHMEM get operation which copies N * T bytes from the address of the first element
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of the array, where N is the number of array elements in total, and T is the size in bytes of
the datatype stored by the Coarray. The opposite case (i.e. if the order of the assignment
was flipped around) is not defined in the library as it would lead to a set of mutually-
dependent template classes, which are not allowed in C++ (to be more specific, the
definition of the overloaded assignment operator would require the definition of the
other class for both classes). This could potentially be solved by redesigning the API
somewhat, but there was insufficient time for this.

Array slicing is a somewhat more complicated affair. There was no obvious way of
overloading the array subscript operator to take the slice range specifiers, so a ‘slice’
method on the Coarray object is used instead. For an array of N dimensions, the pro-
grammer passes N tuples of two unsigned integers, the first specifies the lower bound
for the given dimension, and the second the upper bound of the given dimension. The
slice method returns an array slice object, and the assignment is implemented by over-
loading the assignment operator for the slice type. Keeping with the convention of C
and C++ arrays, the last tuple in the parameter list represents the slice of the rows, and
the first tuple (if when there are N dimensions for N > 1) represents the slice of the Nth
dimension. As with Fortran, the slice is carried out from lower to upper, inclusive of
both. However, unlike Fortran, it is not possible to specify a stride length. While this
could have been implemented, it would have added further complexity to the code and
was left for future work due to time constraints.

The means by which the slices are mapped on to SHMEM RMA operations depends on
the number of dimensions in the array. The simple case is when the array has a single
dimension. Given the following statement:

x.slice(1, 5) = x[1].slice(2, 6);

The library simply uses SHMEM get to transfer elements 2 through 6 inclusive of the
remote array into the local array, starting at the address of element 1.

The other case that the library covers explicitly is when the array has two dimensions.
Consider a 4x4 coarray x:

x.slice(1,3,1,3) = x[1].slice(1,3,1,3);

An efficient way of representing this operation would be as a strided transfer. Unfortu-
nately, SHMEM’s strided transfers are somewhat limited compared with what is possi-
ble with MPI - the programmer specifies (for both the source and destination arrays) the
number of elements to be copied, and the gap between each consecutive element. It is
not possible to specify that a certain number of contiguous elements should be copied
before the stride, or to specify multiple stride lengths per array. For the two dimensional
case, we can get around the former limitation by treating each row slice as a single data
item. Unfortunately, SHMEM does not allow the programmer to specify the size of the
individual elements in a strided, and must select from predefined sizes. This does not
fit in with the library’s focus on generic operations, and so it is not used.

Instead, the slice operation defines all data transfers in terms of transfers of single rows.
N dimensional arrays are split into a (conceptual) set of one dimensional arrays, and the
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library them one by one. In other words, given the 3x3x3 coarray x:

x.slice(1,2,1,2,1,2) = x[1].slice(1,2,1,2,1,2);

The library treats x as an array of three two-dimensional arrays. It calculates the starting
address of the two-dimensional arrays corresponding to each index i in the inclusive
range of the outermost array slice with the following calculation: start = (address of
first element in the array) + (i) x (number of columns per row) x (number of rows in the
3D array)

It then recursively calls the internal function used by the overloaded assignment op-
erator, passing the address calculated above as the start of a two dimensional array, to
which the same recursive operation is applied to, yielding a set of one dimensional rows,
which are then sent as if the programmer had specified a slice of a single dimensional
array. As consequence, for N dimensional arrays of N > 1, the number of SHMEM
transfers required to send a slice is a product of both the number of dimensions beyond
two, and the length of their array slices.

The slicing operation is subject to certain limitations, which are not dissimilar to those
of the Fortran standard implementation. One that is specific to this library is that is it
only possible to copy from one array slice to another. There is no direct equivalent of
the following Fortran statement (for arrays A that stores four elements):

A = B(3:6)

Other limitations are more obvious ones - the elements specified by the stride must be
within the extent of the given dimension for that array, and the corresponding stride
lengths for the two arrays for a given dimension must be the same (although they are
refer to different upper and lower bound elements). The arrays must also have the same
number of dimensions and have the same extents (certain modifications to the current
code would remove this limit, but it was not implemented in order to avoid introducing
additional complexity into the code.)

24



Chapter 5

Benchmarking

In benchmarking the Coarray library, we set out to profile its performance not only for
certain patterns of data transfer, but also its performance on different types of hardware,
both across shared and distributed memory programming scenarios. The library was
benchmarked on HECToR. Its Gemini interconnect has been specially optimized for
single-sided RMA operations, and as discussed earlier, its implementation of OpenSH-
MEM is built on top of their proprietary DMAPP hardware interface. Previous bench-
marking efforts for Coarray Fortran served as the basis of some of the tests described
here.[2] [3]

To build the library on HECToR, the cray-shmem module must loaded. Version 5.6.5
was used, which was the latest version available at the time of testing. Furthermore, at
the time of writing, the Cray C++ compiler does not support the C++11 standard, cer-
tain features of which are required to build the library. Thus, the GNU C++ compiler,
version 4.7.2 was used to build the library and benchmark code. In order to use the
GNU compiler, the default Cray Programming Environment (PrgEnv, version 4.0.46 at
time of writing) module which uses the Cray compiler suite must be unloaded, and the
corresponding PrgEnv module for the GNU compiler suite is loaded. Once the GNU
PrgEnv is loaded, C++ source can be executed using the CC command (as distinct from
the cc command used to compile ANSI C and C99). The CC command is a wrapper
which wraps the compiler specified by the PrgEnv module, and include the appropriate
include and linker flags for the various Cray libraries, including Cray SHMEM, which
is compatible with OpenSHMEM. All these requirements are completed with the fol-
lowing three commands, which was placed into a shell script run at login to automate
them:

module unload PrgEnv-cray/4.0.46
module load PrgEnv-gnu/4.0.46
module load cray-shmem/5.6.5

Through the benchmarks, we wish to examine the bandwidth and latency associated
with the single sided SHMEM transfers, the cost of synchronization, and the efficiency
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of block transfers compared with single element transfers.

The process of running an OpenSHMEM program on HECToR is largely similar to that
of running an MPI program. A script for the PBS job scheduler is prepared, specifying
the expected run time of the job, the total number of processing cores required, the
number of processing cores to be allocated from each node, as well as the path and
name of the executable, and any command line arguments. The script then executes the
job by passing this information to the aprun utility which submits a job to the job queue.
The script is executed using the qsub command, and progress of the job on the queue
can be monitored with qstat -u $USER, where the -u flag limits jobs listed to those
launched by the specified username, and the $USER being a Unix environment variable
which contains the name of the user logged in on the shell (or more specifically, the
name of the user to whom the current process belongs to). The output of the program is
displayed in a file in the same directory, whose name consists of the name of the PBS,
‘.o’ and followed by the job number. By specifying the number of cores to be allocated
on each node, it is possible to create distributed and shared memory versions of jobs
that use a small number of cores. For example, to create a shared memory ping pong
test, the script requests two cores, and specifies that there are two cores per node. To
create a distributed memory run, the script requests two cores, but only one core per
node, so that the program is run across two separate nodes.

5.1 Array Transfer

In this test, arrays of increasing size are transferred by a single node on HECToR to
another core on another node. Times are in tenths of microseconds, and arrays use
64-bit double precision floating point values.

First shown for the case where elements are transferred one by one in a loop.

Second when the transfer is carried out with the whole array assignment syntax, thus
using a block transfer.

In the iterative transfers, the cost of sending starts low and then increases at a rate pro-
portional to the number of elements sent, this is not entirely unexpected given that each
remote assignment corresponds to a single remote get operation. The block transfers
are far more efficient, but transferring a single element seems to take an unusually long
amount of time, a phenomenom observed across multiple runs, and across some of the
other benchmarks. It is unclear what the cause of this is.
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Figure 5.1: Time (microseconds) against Array Size (in doubles) for one-by-one whole
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Figure 5.2: Time (microseconds) against Array Size (in doubles) for whole array block
transfer

5.2 Group array transfer

In this test, arrays of increasing size are transferred by every core on a single node of
HECToR to the corresponding core on a second node. Times are in microseconds. For
the 4,096 element array, the time taken is much greater for the group of processors
compared with a single pair, suggesting saturation of the network.
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Figure 5.3: Time (microseconds) against Array Size (in doubles) for group array trans-
fer

5.3 Synchronization

Global synchronization is shown for HECToR, expanding across four nodes. Times are
in microseconds. Synchronization time effectively grows proportionately to the number
of processors to be synchronized.
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Figure 5.4: Time (microseconds) against Processing Elements for global barrier
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5.4 Ping Pong

This is similar to the array transfer, except that the arrays are sent back and forth be-
tween the two processors, and a barrier takes place at the end of each transfer. The times
are shown for the array being bounced back and forth one-thousand times. Times are in
seconds, arrays are double precision type as before.
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Figure 5.5: Time (seconds) against Array Size (in doubles) for inter-node Ping-Pong

5.5 Array Slices

This test shows the performance of transfers of array slices, with times in millionths of
a second. The first test tests slicing the first N elements from an array of N x 2 double
precision values.

The results show that the slice size remains relatively constant across the size of the
blocks, but is higher than the equivalent block transfer times for simple whole-array
transfer, this would suggest that the overhead of the slicing operation largely hides the
time taken to transfer data.

The second test is for an (N x 2) x (N x 2) array, taking an N x N slice starting from the
first element of the array.

Despite a levelling at 32 elements, the lenght of time taken per 2D array slice trans-
fer grows relative to the size of the slice. This is unsurprising given that the recursive
method used to transfer multidimensional arrays requires an amount of transfers pro-
protional to the number of rows transferred. An even greater rate of increase would be
seen for arrays with more dimensions
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Figure 5.6: Time (microseconds) against Array Size (in doubles) for 1D slice transfer
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Chapter 6

Conclusions and Future Work

The project has been successful in creating a library written in C++ that provides many
of the features of Coarray Fortran without modifying or extending the language, or alter-
ing the compiler or any associated tools. In addition, the library provides a straightfor-
ward syntax for manipulating data in the Coaray and transferring it between processors
without straying far from established conventions for C++ data structures.

Certain conclusions can be drawn from the experience. First is the importance of block
transfers of data between processors, instead of sending the elements one by one. Since
the purpose and semantics of the library are unknown to the compiler, it is necessary for
the library to provide a means of allowing the programmer to express block transfers
of data with a convenient syntax. Fortran’s array syntax represents an ideal solution,
and thus certain aspects of this were emulated in the library - namely whole array as-
signment, and slices. As can be seen from the benchmark results, use of theses features
would be essential from a performance perspective (as well as saving programmer ef-
fort). Additional features of Fortran array syntax could be emulated through use of
operator overloading. A local non-Coarray version of the library was written for testing
purposes, and while not a high priority for this project, would be useful for having local
arrays that had the same semantics of the Coarray library, and could even interoperate,
for example, allowing data to be moved from a local array to a remote coarray. One
issue with the implementation of the library is that the Array type is not compatible
with standard C++ arrays due to the way that it is stored and indexed. However, this is
not without precedent, there are many other array type classes, for scientific computing,
and otherwise, whose implementation and behaviour diverges from the regular C++ ar-
ray in order to get around limitations of the standard array or to make it more suitable
for certain applications.

Another issue is the choice of the OpenSHMEM library as an underlying network trans-
fer protocol. On the surface, it provided many of the basic operations required for the
basic functionality of the library, such as collective memory allocation, single-sided
transfers of single pieces of data, block transfers and global synchronization. However,
for certain more advanced features, the interface and semantics of these operations were
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quite awkward and others were not pliable for use in a generic programming language
context. The non-global barrier had a rather awkward interface for specifying the pro-
cessors to be blocked, and had requirements for a lock array that would have been hard
to hide behind layers of abstraction. The broadcast operations only dealt with 32-bit and
64-bit values. The strided transfers only allowed a single stride length, only allow the
programmer to send a single element between strides, and only allows the programmer
to send elements of predefined sizes (if this restriction did not exist, it would be possi-
ble to get around the second restriction as well. Some of these restrictions, particularly
ones regarding fixed element sizes for certain operations, and not for others, seem rather
arbitrary, and feel like they are throwbacks to quirks of earlier implementations and the
hardware they supported. These issues may be addressed on future implementations of
OpenSHMEM. However, perhaps a more fool-proof method of solving these problems
would be to use GASNet directly as the network library, and implement the Coarray
code in terms of GASNet operations. This would give the implementer greater flexibil-
ity with the sort of networking semantics that they wished to use, but would come at the
cost of a more complex implementation due to the lower level nature of GASNet calls
versus OpenSHMEM ones. Because GASNet is not restricted to the same symmetric
heap memory model as OpenSHMEM, it would be possible to implement a more flex-
ible memory model for the Coarray library, allowing Coarrays of pointers to remote
data, or allowing Coarrays to have different sizes on different arrays. This would come
at the cost of greater setup costs for Coarrays due to the fact that the addresses of the
remote data would need to be broadcast across all processors (one desirable property of
OpenSHMEM is that the symmetric heap addresses of data items are the same across all
processors as long as the code does not engaged in undefined behaviour). Nonetheless,
given time constraints, the use of SHMEM allowed a library that contained essential
features to be created rapidly and thus was the correct choice in this project.

The flexibility of the C++ language facilitated the creation of a library that behaved sim-
ilarly to a standard array through operator overloading. The object-orientated features
allowed an abstraction over the relatively low level semantics of OpenSHMEM, and
data hiding allowed the various parameters needed for the OpenSHMEM operations to
be hidden from the user.

Due to time constraints, only relatively simple benchmark code was created. Given
more time, benchmarking would test the performance of the library for more realistic
code bases. One goal would be to take pre-existing Coarray Fortran benchmarks and
translate them to use this library. Other testing would focus on the overheads of the
object-orientated operations in realistic codes compared with hand-written OpenSH-
MEM code, and indeed Coarray Fortran code. It would also be desirable to benchmark
its performance with other types of machine running OpenSHMEM, to determine how
suitable the library is for other interconnects. An attempt was made to install the Open-
SHMEM reference implementation on to a conventional Intel cluster, but there were
issues with getting GASNet to run, and thus this was left aside to work on other areas
of the project.

Another issue for consideration is how the library would interact with C++ objects. The
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Cray PGAS Runtime for C++ library supports accessing object members, and calling
remote object methods through the use of a remote procedure call (RPC) system, albeit
with certain limitations (for example, the remote procedure calls are limited to two up
to function arguments). This was considered beyond the scope of this work, and was
not investigated.

While a library like this cannot compete with the potential efficiency and optimization
levels offered by a language extension with a dedicated compiler, runtime and toolchain,
it could be used to assist the parallelization of legacy code using single-sided transfers,
thus lowering the barrier of entry to PGAS programming.

33



Bibliography

[1] S. R. Sachs, K. Yelick et al. Exascale Programming Challenges 2011, Report of
the 2011 Workshop on Exascale Programming Challenges

[2] D. Henty A Parallel Benchmark Suite for Fortran Coarrays 2012, IOS Press.
In Applications, Tools and Techniques on the Road to Exascale Computing, pp.
281-288.

[3] D. Henty Performance of Fortran Coarrays on the Cray XE6 2012, In Proceed-
ings of Cray User Group.

[4] Saraswat et al. The Asynchronous Partitioned Global Address Space Model IBM

[5] M. Eleftheriou, S. Chatterjee et al. A C++ Implementation of the Co-Array Pro-
gramming Model for Blue Gene/L 2002. In proceeding of: 16th International Par-
allel and Distributed Processing Symposium (IPDPS 2002), 15-19 April 2002,
Fort Lauderdale, FL, USA, CD-ROM/Abstracts Proceedings

[6] T. Johnson Coarray C++ ProgrammerâĂŹs Guide Version 1.0 (DRAFT) 2012.
Cray Inc.

[7] Cray Inc. Using the GNI and DMAPP APIs 2011 - docs.cray.com/books/S-2446-
3103/S-2446-3103.pdf (Accessed August 2013)

[8] W. W. Carlson, J. M. Draper et al. Introduction to UPC and Language Specifica-
tion 1999. CCS-TR-99-157

[9] R. W. Numrich, J. Reid Co-Array Fortran for parallel programming 1998. ACM
FORTRAN FORUM, Vol. 17, No. 2, Pg. 1 - 31

[10] B. W. Kernighan and D. M. Ritchie The C Programming Language, Second Edi-
tion 1988. Prentice Hall

[11] International Standards Organization ISO/IEC 9899, Programming Languages
C, Second Edition Adopted May 2000

[12] W. Gropp MPI at Exascale: Challenges for Data Structures and
Algorithms http://www.cs.illinois.edu/w̃gropp/bib/talks/tdata/2009/invited-mpi-
exascale.pdf (Accessed August 2013)

[13] The OpenSHMEM Project OpenSHMEM Specification 1.0 2012

34



[14] M. Metcalf and J. Reid Fortran 90/95 Explained, Second Edition 1999. Oxford
University Press.

[15] S. Meyers Effective C++, Third Edition 2005. Pearson Education.

[16] D. Abrahams and A. Gurtovoy C++ Template Metaprogramming, First Edition
2005. Pearson Education

[17] Ashby et al. The Opportunities and Challenges of Exascale Computing Fall 2010,
US Department of Energy.

[18] D. Bonachea GASNet Specification 1.1 2002, University of California, Berkeley,
Report No. UCB/CSD-02-1207

[19] Kogge et al. ExaScale Computing Study: Technology Challenges in Achieving
Exascale Systems September 2010. DARPA IPTO

[20] S. W. Poole et al. OpenSHMEM: Towards a Unified RMA Model 2011, Encyclo-
pedia of Parallel Computing - Vol. 4, Pg. 1380

[21] Intel Corporation Tutorial - Array Notation http://www.cilkplus.org/tutorial-
array-notation (Accessed August 2013)

35



Appendix A

The ISC Student Cluster Challenge

I was one of the members of the four man team that represented EPCC at the Internation
Supercomputing Conference Student Cluster Challenge at Leipzig in 2013. We had
to run Linpack, four sets of benchmarks, and two ‘secret applications’, which were
benchmarks that were announced on the days of the competition where we had to run
them. In addition, the cluster hardware could not consume more than three kilowatts of
power at any point during the benchmark runs. The four primary benchmarks were -

• The HPC Challenge (HPCC) benchmark suite which features a number of HPC
benchmarks, including the STREAM memory benchmark, and Linpack (which
had to be run as part of HPCC in addition to the main Linpack run).

• Gromacs (GROningen MAchine for Chemical Simulations), a molecular dynam-
ics package.

• WRF (Weather Research and Forecasting), an meteorological simulation pack-
age.

• MILC (MIMD Lattice Computation) A quantum chromodynamics package. This
proved to be the most difficult benchmark code to get working due to a seemingly
endless list of issues with the code that required us to contact the developers and
acquire an alpha of the next version of the code.

The two secret benchmarks were -

• AMG - A benchmark from the US National Energy Research Scientific Comput-
ing Center described as “a parallel algebraic multigrid solver for linear systems
arising from problems on unstructured grids".

• CP2K - Another molecular dynamics package.

Our cluster consisted of a set of four Boston Venom 1U rackmount servers, each featur-
ing two eight-core Xeon E5-2670 CPUs, two Nvidia Tesla K20 GPUs, 64GB of main
memory and 120GB of solid-storage. In addition, each node had an FDR Inifiniband
interface, and were connected to an 18-port switch[unfortunately the smallest switch
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the vendor had available]. The infiniband interconnect was used exclusively for MPI
traffic. In order to prevent any interference with the performance of MPI, we set up
an ethernet network between all four nodes to allow us to ssh into them either from
the head node, or our laptops. Since the power consumption of the network switches
counted towards the power limit, we used a consumer-grade 4-port 100Mbps Ethernet
switch for this network.

We successfully competed in the competition, achieving the second highest Linpack
score (with a score of 8.321 Tflops vs the high score of 8.455 Tflops), the best perfor-
mance for one of the MILC data sets, the second best for one of the others, as well as
successfully running the other two main programs and one of the secret applications.
(Unfortunately, it took a long time to get CP2K working due to a bug in the latest ver-
sion, and by the time we got an older version running, there was not enough time to run
the whole data set).

My original official role in the team was that of a hardware specialist, in practise, I
ended up working with Gromacs and WRF.

My project preparation report, submitted in April, details the work I carried out up to
that point, and so I will continue from where that report left off. Not long after that re-
port was submitted, we changed our hardware from ARM-based Boston Viridis servers
to the Boston Venom servers described in the introduction. There were two reasons
for this - one was that while a single Viridis node consumed about half the power and
featured twelve times the number of processing cores as one of the Venom nodes, the
Nvidia accelerators in the Venom meant that a single Venom node offered 10 times the
performance of a single Viridis node when running Linpack. If the GPUs were removed
from the machine and Linpack was run on the CPUs alone, the power consumption of
the Venom would be slightly less than that of the Viridis, but the Venom’s Linpack score
would be twice that of the Viridis. Similar results were found from the other packages.

In the latter CPU-only case, some of the difference could be accounted for by the avail-
ability of highly optimized binaries, libraries and compilers for x86 processors, but
nonetheless, the fact was that the Venom ‘platform’ was anywhere between 2-10x more
power efficient (in terms of flops per watt) than the ARM system when running Lin-
pack, and similar results were found for other application, inclding at least Gromacs
and WRF. The other performance issue with the ARM system was that we never man-
aged to get access to more than one half of a single server unit (and for most of the time
we benchmarked it, we only had access to four quad-cores, in other words, one twelfth
of a full system). Given that the Viridis used 10Gbps as an interconnect between each
quad core processor in the system (of which there were a total of forty-eight) there
were concerns as to how well the network would scale if we used several fully popu-
lated Viridis servers. Ultimately, these machines were designed for situations where the
number of cores available is more important than raw computing performance - such
as web serving/hosting and cloud computing applications. They were not intended as
HPC systems.
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The other issue was slightly more pressing - a fully populated Viridis server had a list
price of $50,000, most of which (or so we were told) was accounted for by the price of
the so-called Calxeda ‘EnergyCards’ which were the self contained units from which
the Viridis was built from. Each consisted of four quad-core ARM processors each with
two integrated 10GBE controllers and a management core, as well as memory slots and
storage ports. We would have needed 8-10 fully populated Viridis to fill up our 3kW
power budget, and Boston simply did not have this many available for us.

Our original plan when we switched to using Intel systems was to have a mix of four
GPU and four CPU-only systems. The plan was that for GPU-dependent benchmarks,
we would only use the GPU machines, but for CPU-only ones, we would use the CPUs
across all eight nodes. This would mean that we would have an ideal irrespective of
whether a given application used GPUs or not. However, this was based on assumptions
that the idle power consumption of a CPU only node was much lower than it actually
was (we estimated 50W, it was more like 150W). This effectively forced us to choose
between aiming to get a high Linpack score (by having a small number of nodes with
as many GPUs as we could accommodate) or aiming for overall performance (by using
lots of nodes to have as many CPUs as possible) in the power budget.

The timing of the switch over to the new hardware was quite late, and relatively close
to the second examination period, which took away 2-3 weeks of time to work on the
cluster. The main work around this time involved rebuilding all the applications on the
new system, and getting familiar with the compilers and libraries on the Intel system,
which were different to those on the ARM system (for example, the Intel system had
the Intel Compiler Suite and the Intel optimized maths libraries). Unfortunately, this
process had to be repeated as we moved from Boston’s CPU only cluster to Boston’s
GPU cluster, and once again when the GPU cluster was taken aside and given a fresh
install in preparation for our use during the competition. I then spent time repeating
the process for different compiler flags, and different combinations of libraries, many
of which had little to no effect on the overall performance of the benchmarks I worked
with.

We travelled to our vendor, Boston, where we were shown the system, how it was wired
up, and how to remove one of the nodes, dismantle it, and replace faulty hardware
(which came in useful on the night that the hardware arrived on the night before the
competition with one of the nodes unable to boot the operating system due to a damage
SATA cable) .

The trip unfortunately coincided with one of the GPUs in one of the nodes failing, lead-
ing it to give erratic results. Through a stroke of further misfortune, we took that par-
ticular node, wiped it clean, and installed a different Linux distribution (Ubuntu server)
to compare the performance and background memory and CPU usage compared with
the original Red Hat which also had a cluster management tool installed. We managed
to get the server running the benchmarks on top of Ubuntu within a few hours starting
from scratch, but the faulty GPU gave us the impression that something was wrong
with our configuration. Fortunately the guys at Boston used the cluster management
software to restore the node to a run fully configured Red Hat installation, however,
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there was a mismatch between the drivers on the freshly wiped node, and the ones on
the other nodes. While these were inconsequential, we concluded that they explained
the erratic performance that was actually caused by the faulty GPU. Thus, a lot of time
and effort was spent chasing after faulty hardware that failed in ways that suggested a
configuration or software failure.

At one point I ran Intel’s PowerTop utility, which, amongst other things, suggests certain
configuration details that can be used to decrease the power consumption of the machine
in Linux. Applying these suggestions given for the server had no meaningful impact
on power consumption. Ultimately, these tools are designed for mobile devices where
a difference in power consumption of a fraction of a watt can have a noticable impact
on battery life. On a machine whose idle power consumption is about the same as ten
laptops under load, such differences fade into the realms of statistical insignificance.
There’s probably scope for an interesting project to design a tool like this for HPC
systems, but I somehow doubt it would fit into the time that we had available to us.

The most useful part of the trip (with respect to the competition) was receiving advice
from a consultant from Nvidia regarding running Linpack on our cluster. He gave us an
optimized Linpack binary, explained the significance of the Linpack input parameters,
and how we should tweak them to suit our system. As result of this help, we were able
to achieve parallel efficiency of about 98% across the eight GPUs and sixty-four CPU
cores in our system, whereas beforehand our scaling was quite poor.

One thing that occured to me around the time of the switch from the Viridis to the
Venom was that while the four of us understood the hardware, the operating system, the
build process, and the potential tweaks we could try such as the use optimized libraries
and custom compiler flags, we didn’t really know a lot about the software we were
using, what it did, and whether or not we were using it in a sensible manner. It seems
to me that the programs we did well on were ones that we spent time learning about,
the other ones were sort of like black boxes to us that read in some benchmark data and
returned a performance figure.

Officially I was meant to focus on hardware. In practise, this didn’t mean a lot since the
hardware we used was dictated by what Boston was able to provide us. This is not to
say that this was a problem, on the contrary, what we got was probably the configuration
what we would have picked if we had experimented with a variety of configurations and
found them. However, it narrowed the scope for hardware related work. Setting up the
hardware was a straightforward task, and aside from some of the hiccups mentioned
above, worked largely as expected. Any hardware decisions (like whether we used a
large number of CPU-only nodes or a small number of GPU nodes) were decisions that
affected everyone on the team, and thus were taken as a team. In this context, it didn’t
really make much sense to have a ‘hardware guy’, and it started to feel like unnecessary
compartmentalization.

A similar fate befell the ‘OS guy’. The operating system we used was the one that
was installed onto the hardware. Aside from our brief experimentation while we had
physical access to the hardware, we had a simple realization - the vast majority of HPC
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hardware runs Linux. The vast majority of HPC software runs on Linux. We were never
going to run anything other than Linux. Nor did it matter which distribution of Linux
we ran, the odds that switching to a different distribution would offer an appreciable
speed difference were vastly outweighed by the odds that there would be no difference
or that problems would occur, and thus we would be forced to revert. Similarly, no
optimizations were made to the OS, largely because it never seemed like there was
anything about it that needed to be touched. The role would have perhaps made more
sense in a context where other team members were not familiar with configuring a Linux
system and building software for it, but this was not the case for our team.

The application guys fared somewhat better (after all, we all ended up as application
guys, irrespective of what we signed up for), but again, the applications roles focused
on figuring out how to build the software, and figuring out how to use it and run it
across the cluster. As stated before, any significant optimization of performance came
from figuring out how to configure the program run for the given data set input. Playing
with compiler flags or changing libraries had little to no difference, not least because
some of the applications’ installation procedures (WRF in particular comes to mind)
had a mechanism for determining which compiler was installed on the system, and
using the correct flags for all combinations of CPU architectures and compilers it was
aware of.

As far as I know, no one went anywhere near the source code of the applications (neither
within our team, or in any of the other teams that we talked to), and indeed this never
seemed like a good idea. The applications had substantial code bases (Gromacs, for
example, consists of 1.67 million lines of C, WRF is about half a million lines of code,
primarily Fortran with some C) that have been developed over a long period of time,
ported to many varieties of machine. It would seem unlikely in this context that the
four of us would find some performance issue with the code on our relatively standard
hardware (assuming that there even were any), dig into the code, figure out what it does,
profile it, and make changes to the code that would speed up the code to an extent that
would justify the time invested (while juggling all the other things that we had to do to
prepare for the competition, as well as other requirements of the MSc).

It’s hard to imagine how any sort of coding could have been fitted into the procedure
without altering the nature of the competition. Personally I would have liked (and I
wasn’t the only person on the team who was of this opinion) if the organizers of the
competition scrapped some (or all) of the pre-existing benchmark codes, and had a
cluster programming competition instead, where some problem is presented to which
the teams are required to write code to solve the problem in an efficient manner on the
cluster. This could encourage designing clusters that are easy to use as opposed to being
optimized around achieving a high Linpack score, for example.

While I was in Germany, I mentioned this idea while talking to a coach of one of the
other teams who was involved in the organizing the American version of the competi-
tion. He said that the idea of having a programming element in the competition had been
considered before, but was ruled out as most of the participants in the competition are
undergraduates and don’t have any experience with HPC programming. Given that the
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four of us have spent a year in a postgraduate degree to pick up these skills, this seems
like a fair point, but nonetheless, it seems like such a competition would have repre-
sented a better outlet for the our new-found HPC skills than the ‘configure-make-sudo
make install’ shuffle that occupied a considerable portion of our time.

The other application-related issue was the division of labour. We ended up dividing
the application between us so that they could be readied in parallel (I ended up with two
of them due to one of the team members being unable to take part for quite some time
due to personal problems). In hindsight, we all seem to be of the opinion that we should
have worked on each application together. This would have achieved two benefits -
one was that in case someone fell ill, we would have all understood the applications.
The second was that there was a good chance that the specific problems we ran into
with certain applications could have been resolved if we had multiple people looking
at them at once. There could be some degree of specialization in preparing for this, for
example, one person could figure out how to build the code, one person could figure out
how to run it across the cluster and ensure compatibility with accelerators (if relevant).
Another could research what the code does, and how to efficiently run different types
of input data. It would be important that everyone then shares what they find out so that
no tasks can only be carried out by one person.

In conclusion, I guess one would be forgiven for reading the above and concluding that
I had no fun and that I regret doing it. This however is not the case. I had a lot of
fun was had playing with exotic cluster hardware that I never would have had access to
anyway and coaxing some hideous software to well on it. There were definitely some
monotonous aspects to what I did, but given that I sometimes do stuff like this my spare
time, that wasn’t a particular issue. I made great friends with the other guys on the team,
and we had a lot of fun together experimenting with things, discussing performance and
power figures, strategies and hardware. The guys from Boston and Viglen were great
to work with, and we learned from their experience. The trip to Germany was similarly
great fun and we met some great people from the other teams and got to talk to vendors
and see their new hardware.

Nonetheless, I think the problem for me with the whole experience was that by attempt-
ing to make it the basis of our dissertations, it created certain expectations. If it was
something that we had did in our spare time, I would focus more on the positives, but
given the pressure to turn it into a ‘learning experience’ it ended up detracting from
the enjoyability of the experience, particularly while searching for a dissertation op-
portunity related to the competition that never arose. This is not to say that it wasn’t
a learning experience, but it wasn’t one that translated into a dissertation given what
I was interested in, and given what I signed up for initially. I think that if I was told
that I would have to do competition in the spare time while doing a regular dissertation,
and that it would be organized as such from the start, I would probably would have still
signed up. After all, it’s what I ended up doing, and I may have had a lot more fun
doing it if I knew what I was getting into from the outset.
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