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1 Introduction

“Mathematicians have tried in vain to this day to discover some order in the sequence
of prime numbers, and we have reason to believe that it is a mystery into which the
human mind will never penetrate.” - Leonhard Euler [1]

Mathematicians have attempted to understand the manner in which the primes are dis-
tributed throughout the integers, but have, as yet, been unable to do so. It has been
known since Euclid that the primes are infinite in number but the exact sequence of
primes is not predictable. The advent of computers, however, brought with it a way
to investigate primes vastly larger than previous generations were able to calculate, re-
sulting in a search for ever-larger primes, so that we might gain some insight into these
strange mathematical beasts. This project aims to accelerate primality testing in a code
known as LLRP using GPUs.

1.1 Motivation

Prime numbers underpin the security of the Internet. When a shopper buys an item
on Amazon, their credit card details are protected by prime numbers. When someone
logs in to digital banking, thier details are kept secret because of the sheer difficulty of
factoring large integers quickly. However, it is not just for security purposes that volun-
teers across the world search for prime numbers. It is also for the sake of the knowledge
itself, for the chance to participate in a global search that pushes the boundaries of our
computing technology and in some cases advances our mathematical understanding. In
January 2013, the largest prime yet discovered was found as a part of the Great Internet
Mersenne Prime Search[3]. It is truly huge by everyday standards - it has 17,425,170
digits! Where previously research departments in Universities performed the major-
ity of the computationally expensive primality tests, nowadays the software is mostly
run by volunteers as part of distributed computing projects. Additionally the hardware
which can run such tests has diversified to include Graphics Processing Units as well
as Central Processing Units. In the last few years GPUs have increasingly been used
to accelerate numerical computation in games, consumer software and even the largest
supercomputers in the world [2]. It is through Application Programming Interfaces
(APIs) like (CUDA and OpenCL) developed in the last few years that the power offered
by these cards has been made available for non-graphical applications. Both leading
GPU manufacturers, NVIDIA and AMD, provide high-performance drivers for their
cards as well as specialised HPC editions of their consumer-level cards. They also
provide software libraries for accelerating common mathematical codes, including lin-
ear algebra and fast Fourier transforms (FFTs). The floating-point capability of GPU
hardware can vastly exceed that of CPUs, provided that the software is able to fit the
massively-threaded pattern required by the architecture. While GPUs are not as versa-
tile as CPUs, they offer a huge amount of computation if the algorithm can be structured
to take advantage of it.
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This project’s aim is to port the numerical routines of LLRP (a freely available pro-
gram for primality testing) to the Compute Unified Device Architecture (CUDA[4]), a
platform for programming GPUs owned and developed by NVIDIA. The main compu-
tational task in the LLRP software is the execution of repeated forward and backward
FFTs. Therefore it makes sense to attempt to accelerate certain numerical routines in
LLRP by porting them to this platform in order to speed up their execution. It would
be possible to attempt to write a new program from scratch, but that is likely infeasible.
LLRP has been developed over many years and to throw that accumulated knowledge
and effort away would be wasteful. Porting brings the advantages of a known-good
code and the speed of a graphics accelerator without requiring a total rewrite and the
effort that implies.

The decision to use CUDA, and particularly to use the cuFFT library, ties this project to
running on NVIDIA hardware, and so is contentious given that AMD also has its own
FFT library available[5]. An alternative platform called OpenCL (Open Computing
Language [6]) has been standardised by the Khronos Group, a consortium of companies
with a common interest in promulgating open standards. AMD is a part of this consor-
tium and support the OpenCL standard on their GPUs. OpenCL allows programmatic
access to GPU hardware but is not locked to one particular vendor, unlike NVIDIA’s
CUDA. One reason that CUDA was chosen is that CUDA has been in production use
for longer than OpenCL, which is relatively new. Both NVIDIA and AMD have written
mathematical libraries optimised for their hardware so this project would have had to
target one library to the exclusion of the other. It would have been possible to target
OpenCL and write an FFT implementation for this project specifically, to reduce frag-
mentation by introducing a single version of the code, but since one aim is to achieve
the highest performance, using vendor-tuned libraries seems the most sensible option.
For these reasons, a CUDA port with cuFFT providing the fast Fourier transforms was
chosen.

Another project aim is to enable LLRP to make better use of the diverse hardware
available in modern desktop computers. This software is run largely by volunteers
interested in helping in the search for ever-larger primes, on many different hardware
configurations. Making use of all the hardware that these volunteers have is desirable,
particularly since using the GPU frees up CPU resources that might otherwise interrupt
the volunteers’ use of their computing systems. These volunteers run the software as
part of large distributed computing projects. There is an infinite number of primes and
for that reason projects seek to have highly efficient codes running on single cores,
rather than some difficult parallelisation of Fourier transforms across multiple cores.

1.2 Project Proposal

Prime numbers are of central importance to encryption systems worldwide, yet the num-
bers themselves are interesting for a great many more reasons. Determining the factors
of a large integer is known to be computationally very difficult, however there are meth-
ods which can check the primality of large integers of certain forms efficiently. There
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are a few such classes of number - Generalized Fermat Primes (b2
n
+ 1), Proth and

Riesel numbers (k × 2n ± 1) and Mersenne Primes (2n − 1). Just this year the 48th
Mersenne prime was found (taking 39 days on a CPU), with a verification run being
performed in only 4 days using a GPU. It has over 17 million digits and is currently
the largest known prime. However, it is not known whether there are finitely many
Mersenne primes or not.

Codes exist to test all these types of number and the tests are suited to optimisation
by parallelisation on a GPU. Highly-optimised CPU code exists but is sometimes not
portable, which is key as these projects are used in distributed computing projects like
GIMPS and PrimeGrid. Therefore, efficient use of desktop machines is desirable.

The aim of this project is to port the plain-C LLRP code to the CUDA platform, with the
aim of maximising the amount of work performed on the GPU and minimising the CPU
usage. This will not only increase the efficiency of the code by minimising time spent
transferring data between the CPU and GPU - often the slowest step - but will also allow
the code to be run on desktop machines that have capable GPUs with minimal impact
on the CPU. Performance comparisons between LLR, the new code and the existing
LLRCUDA port will be made.

1.3 Background

Software that can test the primality of numbers is used in a number of online distributed
computing projects, including the Great Internet Mersenne Prime Search[7] (GIMPS)
and PrimeGrid[8]. These projects attempt to discover prime numbers not only for the
sake of curiosity but also to satisfy certain hypotheses that, while lacking a mathemati-
cal proof, make some claim that can be searched exhaustively. The “Seventeen or bust”
project[9] is an example of a group attempting to prove a hypothesis by exhaustive
search. This project is attempting to solve the Sierpinski problem - to find the smallest
Sierpinski number. A number k is a Sierpinski number if k2N+1 is not prime for all N ;
in 1967 Sierpiński and Selfridge conjectured that 78,557 was the smallest such number.
Seventeen or Bust is searching for primes of the form k2N + 1; there are very few ks
left that are smaller than 78,557.

The software LLR was developed to test the primality of large integers. It utilises vari-
ous algorithms to determine the primality of many different types of number. Numbers
of the form N = k × 2n − 1 can be tested by the Lucas-Lehmer-Riesel algorithm[10]
which is the code path this project aims to accelerate.

The algorithm is an extension of the Lucas-Lehmer test used for Mersenne numbers
and as such has similar structure. In short, given some starting value u0 (which is
determined by the constants that comprise N ), the sequence {ui} is defined as ui =
u2
i−1 − 2. If N divides un−2, then N is a prime number; otherwise, it is not. It is

worth noting that in the case that N is a composite number none of its prime factors are
revealed. Factorisation is more computationally demanding and as such these efficient
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Figure 1: A flowchart showing the core of the Lucas-Lehmer-Riesel algorithm. The
process loops n− 2 times, at which point the program checks if un−2/N = 0; if it does,
the number is prime.

prime tests do not provide a ‘short cut’ to obtain prime factors more quickly than integer
factorisation is able to provide.

It can therefore be seen that the core of the algorithm is calculation of the sequence
{ui}. Normally integer multiplication is extremely fast on modern CPUs and is not a
performance issue; however, the numbers being tested by this algorithm go far beyond
the limits of even 64-bit floats. Naïve, or ‘long’ multiplication, has a time complexity
of O(n2) (for multiplying two numbers of length n) which would take far too long to
execute. Therefore, a faster multiplication method is required.

The method implemented in this code is due to Schonhage and Strassen[11] (see also
[12]). The numbers are represented by floating-point arrays where each array element
represents one ‘digit’ of the number (not necessarily in base ten, but this is an imple-
mentation detail and does not affect the description of the ideas of the algorithm). To
obtain the product of the two numbers, they are first Fourier transformed, then each
matching ‘digit’ is multiplied together. When the reverse transform is performed, the
result will be the product of the two numbers. An additional normalisation step must
be performed in order to ensure that each ‘digit’ is less than the base (analogous to the
carry generated when multiplying in base ten, using long multiplication).

The complexity of the fast Fourier transform is O(n log(n)) for a transform of length
n; the piecewise multiplication has only n complex multiplications and so is essentially
negligible. for sufficiently large n. The size of transforms performed in LLR is typically
in the tens of thousands but can be much larger. It can be seen that this is an algorithmic
speedup over naïve multiplication and is well worth the effort of implementing. This
means that the most expensive operations in the main loop are now the forward and
reverse transforms.
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1.4 Related Software

The distributed computing projects, the GIMPS and PrimeGrid, make use of many dif-
ferent numerical codes to test their primes, depending on the class of number to be
tested. These include Prime95[13] and Genefer [14] as two of the more common codes;
however the ones of particular interest to this project are LLR, an implementation of the
Lucas- Lehmer-Riesel algorithm using the gwnum library; LLRP, a plain-C version of
the previous code and llrCUDA, a CUDA port of LLRP written by Shoichito Yamada.

1.5 Hardware

This project’s test machine consists of an Intel Sandy Bridge 2500k with an NVIDIA
GTX 570 running Arch Linux. It was developed targeting CUDA version 5. Since
the majority of the computers running this software have consumer hardware rather
than the High Performance Computing editions of this card, developing it on consumer
hardware more accurately reflects the settings in which the software will be used.
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2 Investigation of LLRP

2.1 LLRP Overview

LLR is a code developed by Jean Penné, utilising the gwnum library written by George
Woltman, that implements the Lucas-Lehmer-Riesel algorithm. It is capable of testing
the primality of many more types of number than Riesel primes using a variety of tech-
niques, though these are of secondary importance to this project. The original gwnum
library uses hand-coded assembly to perform its FFTs allowing it to do so very quickly
- for example, the most recent versions are capable of taking advantage of AVX [15]
instructions present in modern processors from AMD and Intel. However, when no
assembly has been written for an architecture, the code simply will not run.

Penné has also written a version of the gwnum library which does not use the assembler
present in the original but is instead designed to be portable to any system with a C
compiler. This rewrite is called gwpnum and is embedded in the LLRP application.
While it is slower, is a suitable starting point for a port to CUDA for two main reasons.
Firstly, its portability; secondly, the interfaces to the cuFFT library are very similar to
the API of the library known as “The Fastest Fourier Transform in the West” (FFTW
[16]) which is used for the transforms in LLRP. It will run virtually anywhere but is
considerably slower for this specific program.

The main interface to the program is through the command line, where users are able to
describe a number to the program using mathematical operators like *, ˆ and so on. An
example invokation of the program might look like ./llrp -d -q"11*2^74726-1".
This method of specifying the task allows it to be a part of distributed online comput-
ing projects like PrimeGrid such that the controlling software can distribute tasks to a
number of volunteer machines, run these tasks and collect the output without user in-
tervention. The program’s output is in a standard format allowing it to be interpreted by
automated scripts.

The program is split into several different object code files. The functions that gwnum
provides are concatenated into a statically-linked archive allowing the main executable
access to all the functionality of gwnum. This design is followed in LLRP since Penne
re-uses the LLR-specific code and links gwpnum instead of Woltman’s gwnum code.
Therefore, the only difference between LLR and LLRP is in the numerical library, re-
named gwpnum in LLRP. This modularity ensures that the two versions of the library
are completely interchangeable removing the need to maintain two separate implemen-
tations of the Lucas-Lehmer-Riesel algorithm, and so on. One object contains the im-
plementation of the Lucas-Lehmer-Riesel algorithm and organises the code to execute
based on the number that it is to test (for example, the Lucas-Lehmer test for Mersenne
primes, the Proth test and so on). The other objects contain the main startup code as
well as utility functions for file handling, memory management and other important but,
for this project, inconsequential functionality.
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2.2 Data Flow

main()
  LinuxContinue()
    PrimeContinue()
      process_num()
        IsLLRP()/IsProthP()
          gwpsquare()
            Lucas_square()
              fftw_square_g()
                fftw_execute(forward)
                _square_complex()
                fftw_execute(reverse)

LLR code
CUDA code

Figure 2: A graphical representation of the important functions called when running the
Lucas-Lehmer-Riesel algorithm in LLRP

Tracking data through the Lucas-Lehmer-Riesel execution path provided a great deal
of insight into the operation of the program. Figure 2 shows the branch of the call tree
which leads to the actual squaring of the large potential prime. There are other functions
executed along other branches of the program but they are less relevant to this analysis
of the data flow, as they will not be affected by the CUDA porting efforts. The main
entry point to the program processes any command-line arguments which might have
been passed to the program and then continues execution based on those arguments. The
program ensures that no other copy is running (LinuxContinue()) then classifies
the number according to the form it takes (say, k×bn±c) in PrimeContinue(). This
chains into process_num() which will then call the appropriate is*() function,
e.g. isLLRP(), depending on which algorithm is to be executed as decided by the
form of the number. For this project in particular, the function of interest is isLLRP(),
which implements the Lucas-Lehmer-Riesel algorithm.

Any code deeper in the tree than this is now executed in the gwpnum library. isLLRP(),
after initialising several key variables in the gwpnum library, initiates the main loop of
the program. It calls the function gwpsquare() whose main function is to call the
lower-level lucas_square. The purpose of lucas_square is to perform many of
the lower-level operations necessary before the actual Fourier transforms can be exe-
cuted and then to normalise the output received from fftwsquare_g(). Optionally,
some error checking is performed.

In fftwsquare_g()x, the main computation occurs. As can be seen in figure 2, the
three most important functions are fftw_execute (called twice) and _square_complex().
This is where the actual squaring of the number happens, bounded by the forward and
backward Fourier transforms.
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Analysis of this program revealed that for the Lucas-Lehmer-Riesel algorithm, none of
the boolean values zp, generic or compl are true. Therefore the sections of code
executed when those variables are true have been excluded from this analysis. The
lower-level functions of gwpnum are more generic than required for just the LLR algo-
rithm and as such have alternative functionality controlled by these flags; for example,
zp controls whether the FFTs are zero-padded, generic is used when the expression
has an added component that is not ±1 and compl controls transforming a real FFT of
length N into a complext FFT of length N/2.

2.3 Results of Profiling

It is possible to compile programs on GNU/Linux with extra instrumentation code (us-
ing the compile-time flag -pg) that will profile the program at runtime, allowing the
programmer to obtain useful information about how the code performs. The gprof tool
can create a flat profile showing how often functions were called and for how long they
were running, a useful tool to see where the code spends the most time. This can help
the programmer’s optimisation efforts ensuring that they do not waste time optimising
slow code that is only executed a handful of times, for example. Additionally the instru-
mentation is capable of generating a call graph similar to the hand-produced graph in
figure 2, albeit one that is much more complex and comprehensive. Significant portions
of a flat profile for LLRP, testing the primality of the prime number 11 × 274726 − 1,
are reproduced in figure 2.3. However, it is worth noting that this profiler output is not
exactly accurate for this code because it has not instrumented large parts of the FFTW
code which are compiled in a separate listing. This is most apparent in that the run-
ning time is quoted as a little over five and a half seconds in the profiler but the actual
time elapsed was a little over eleven seconds. The missing time is the time spent in the
FFTW library.

It can be seen that the functions inormalize, lucas_square and _square_complex
take the most time to execute (not including the missing Fourier transform time). This
is a consequence of the core of the algorithm: the squaring happens n− 2 times; in this
case, 74724 times. Some other constants must be determined before the algorithm can
be executed and these are determined using a similar process to the algorithm’s core.
This explains the slightly higher execution count for the three functions.

The call tree, together with the profiler output, demonstrates what the key numerical
routines at the heart of the Lucas-Lehmer-Riesel test section of the LLRP code are and
therefore what the focus of this project should be.

2.4 Deciding Project Scope

The call tree shows a strong divide between the high-level algorithmic code and the
lower-level mathematical code in LLRP. Similarly, most of the time spent in execu-
tion is in these lower-level mathematical functions. This indicates that the main efforts
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Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls s/call s/call name
43.02 2.31 2.31 74730 0.00 0.00 inormalize
30.54 3.95 1.64 74727 0.00 0.00 lucas_square
22.91 5.18 1.23 74727 0.00 0.00 _square_complex
0.56 5.21 0.03 35 0.00 0.00 fftinv_hermitian_to_real
0.37 5.23 0.02 1123531 0.00 0.00 dd_real::dd_real
0.37 5.25 0.02 157743 0.00 0.00 operator/
0.37 5.27 0.02 689 0.00 0.00 check_balanced
0.19 5.28 0.01 1620394 0.00 0.00 quick_two_sum
0.19 5.30 0.01 358493 0.00 0.00 two_diff
0.19 5.31 0.01 329821 0.00 0.00 operator*
0.19 5.32 0.01 14337 0.00 0.00 exp
0.19 5.33 0.01 14335 0.00 0.00 nint
0.19 5.34 0.01 53 0.00 0.00 fft_real_to_hermitian
0.19 5.35 0.01 35 0.00 0.00 addsignal
0.19 5.36 0.01 3 0.00 0.00 lucas_mul
0.19 5.37 0.01 1 0.01 5.37 isLLRP

Figure 3: Truncated output of the gprof profiling tool after instrumenting the program
LLRP.

should be in the gwpnum library, accelerating the transforms and associated code, but
maintaining encapsulation of the CUDA implementation below the point that the code
in the algorithmic section might see.

It would be possible to alter more of the lower-level code such that other code paths
(like, for example, the Proth primality test) might be accelerated too; however, it is felt
that accelerating the code in the Lucas-Lehmer-Riesel test is sufficient for a project of
this length.
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3 Porting to CUDA

3.1 GPU Architecture and Theory

Throughout this discussion, “host” will refer to the CPU and main system memory and
“device” will refer to the GPU, its memory and associated hardware.

GPU development has largely been driven by the need for stronger hardware to drive
performance in games, with the architecture reflecting the strenuous requirements of
generating three dimensional scenes at ever-higher resolutions, with higher triangle
counts and larger textures, while still maintaining a sufficient number of frames per sec-
ond. In contrast to CPUs, which traditionally only have a few hardware threads (though
recently CPU design is heading for multi-core chips) GPUs are massively parallel, with
core counts running easily into the hundreds. Games frequently require operations to
be performed for every pixel on the screen, for every triangle and similar operations,
and the “multiple threads working on multiple data” design reflects this. Originally
there were two main APIs which exposed this functionality (abstracting the hardware,
so that one piece of software could run on multiple devices): Direct3D and OpenGL.
Although powerful, these APIs were designed to assist with two and three dimensional
operations, and their use beyond this area was limited. However, recent years have
seen the rise of GPGPU - General Purpose computing on GPUs. Through APIs like
OpenCL and CUDA, programmers are now able to issue commands to the hundereds
of cores in GPUs and have them accelerate processes, potentially leading to huge exe-
cution speedups. This project implemented a code in CUDA, so this discussion of GPU
architectures will focus on NVIDIA products. The concept of multiple cores operat-
ing on multiple data streams is broadly applicable, however there are some differences
between the two vendors’ hardware.

Figure 4 shows the structure of a Stream Multiprocessor in an NVIDIA GF100 chip.
The GF100 is not the SM used in the GTX 570, but its design is useful for describing
the operation of SMs in general. Each SM consists of thirty-two CUDA cores, however,
it can be seen that there are far fewer scheduling units than cores. This design means
that every core within an SM must execute the same sequence of commands since there
are not enough schedulers to have multiple instruction streams. This is the main way in
which GPUs parallelise in order to speed up execution - by applying the same operations
to different data, which does put some limits on the algorithms that can be ported to
GPU platforms. Figure 5 shows the composition of each core; each is much more
simple than modern CPU cores. GPU cores typically have a much lower clock rate than
CPUs as well, but is through the number of cores available that GPUs achieve their
performance.

NVIDIA describes GPU computing as a “grid of thread blocks”, where blocks map to
streaming multiprocessors and threads map to cores. A group of thirty-two threads is
called a “warp”. Due to the low number of scheduling units, each thread in a warp must
execute the same instruction, which places a heavy penalty on branching code. The
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Figure 4: A Streaming Multiprocessor found in the GF100 chip made by NVIDIA,
adapted from[17]
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Figure 5: Close-up diagram of a CUDA core found in the GF100 SM, adapted from[17]

grid of thread blocks abstraction is useful as it allows the programmer to write code
in a device-independent manner while maintaining high performance. When executing
code on the GPU, the programmer indicates the number of threads to run in total by
specifying the number of blocks per grid (corresponding to the number of SMs) and the
number of threads per block (corresponding to the number of cores in an SM). While
it would be possible to hard-code these numbers for different models, this would be in-
efficient and would require constant maintenance as new hardware is released. Instead,
NVIDIA recommend oversubscribing both the blocks per grid and the threads per block
to allow the thread scheduling engine to distribute the work across the available hard-
ware. This allows the programmer to avoid situations that might arise from changes in
more recent hardware, like an increase in core count in SMs. For example, each SM
in the GF100 chip has thirty-two cores, but previous SMs had only eight. It took those
units four times as many cycles to complete a warp since they only had one quarter of
the number of cores. If programmers had hardcoded only eight threads per block, one
quarter of the cores in GF100 chips would be unused, a clear inefficiency.

Oversubscribing the work to be performed per block and per core has other advantages,
largely to do with memory access. GPU memory has been optimised for bandwidth (for
example, to move large textures in games) but suffers from high latency. If there are
sufficiently large number of threads, the scheduler can ‘hide’ the latency by swapping
threads in and out of blocks when they make a request for global memory accesses. It is
also advantageous for the programmer to ensure that the memory locations they access
are adjacent, as the device can then coalesce these memory accesses for a peformance
increase.

As well as global memory, there are other smaller sections of faster memory available.
The programmer might choose to put constant but often-used data in the ‘constant’
memory section, or if there is mutable data to be shared among cores in an SM, it might
be stored in the ‘shared’ address space.

Code declared as being a ‘kernel’ is executed on the GPU. Each thread will execute a
copy of the function. It is common to have some large array and a task that must be
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performed for each element in the array. When writing the kernel, the programmer can
ensure that each thread performs the correct unit of work by, for example, calculating
the thread ID then operating on the array element indexed by that ID (this is the method
primarily used in this project’s CUDA code). Code that has multiple branching state-
ments is likely to perform poorly on the GPU unless all cores within a warp take the
same path of execution; if they do not, every core will still perform the same actions but
will discard the data at the end, rather than saving the results. If all cores within a warp
branch in exactly the same way this is not a problem.

Kernel launches are asynchronous (and are executed synchronously on the GPU unless
the programmer specifies), allowing the programmer to perform other work while the
GPU executes the kernels. This is similar to the overlapping communications and com-
putation design pattern from, for example, MPI (Message Passing Interface[18]). The
programmer is able to launch a kernel and simultaneously begin a memory transfer to
or from the device, provided that the working area of the kernel and the transfers do not
overlap. This is hugely important, because memory transfers between host and device
are incredibly slow in either direction. Although a large amount of bandwidth is avail-
able (less than memory bandwidth, however), the latency is quite high, and memory
transfers can easily ruin the performance of a CUDA code. It is best to avoid transfer-
ring data if at all possible; performing additional computations on the host and device
while transferring is more efficient too.

In the last decade, there has been a large change in the design trends of CPUs. Previ-
ously, each new CPU generation brought a speed increase largely through an increase
in clock rate (as well as a host of other important changes which are tangential to this
discussion). The key difference between GPUs and CPUs was the massively parallel
approach of GPUs, with a focus on simultaneous computation compared the CPU’s se-
quential operation. However, the last decade has seen a halt in the increase of CPU
clock speeds and a trend towards multiple cores in CPUs as well. While there are still
many fewer cores in a CPU than a GPU, to obtain the best performance code must be
prepared to take advantage of multiple cores. CPUs are also capable of other simul-
taneous operations like performing integer and floating point maths simultaneously as
well as using Single Instruction, Multiple Data (SIMD) extentions like SSE and AVX
to operate on multiple data elements at once.

In the future, designs might move towards increasing similarity between GPU and CPU
devices. Intel’s Larrabee project aimed to create a sort of middle ground between CPUs
and GPUs. It was to support the x86 instruction sets like most CPUs but was to have
simpler cores (e.g. no support for out-of-order execution) like GPU cores. In the end,
the project was cancelled, but using it as a research project Intel recently released the
Xeon Phi. Each card has over sixty cores; many more than any CPU but still far fewer
than GPUs. It is capable of hosting a simple operating system based on Linux. The
Chinese supercomputer Tianhe-2 has many of these devices installed as co-processors
to its CPUs and as of June 2013 is the fastest supercomputer in the world.
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3.2 The cuFFT Library

To encourage programmers to attempt to harness the power of GPU computing both
hardware vendors provide highly-optimised mathematical libraries. Part of NVIDIA’s
CUDA platform is the cuFFT library, a code designed to perform fast Fourier transforms
in both single and double precision in up to three dimensions[19]. The interface was
designed to be very similar to FFTW’s interface which is helpful in this project since
LLRP uses FFTW for its transforms, but is also useful for other developers, helping
reduce the amount that they have to learn when moving to a new platform.

cuFFT implements both the Cooley-Tukey and Bluestein algorithms for FFTs, falling
back to the latter when the FFT size is not decomposable into sufficiently small prime
factors. For this project, the FFT lengths are set such that they have small prime fac-
tors. The code to set this length is due to Shoichiro Yamada and is present in his code
llrCUDA [20]. This means that cuFFT is always able to use the more accurate Cooley-
Tukey algorithm, which has many optimised and hand-coded kernels in cuFFT.

3.3 Porting in Stages

It was decided that the porting attempt should consist of several stages: a naïve straight
replacement attempt with no concern for memory transfers, potential bottlenecks and
so on; a version which attempted to keep the data on the device between the two trans-
forms, but copied it on and off either side of those; and finally a version which only
transferred data to the device at the beginning of execution and transferred it off when
execution was finished.This was decided because each version provided a clear path to
the next iteration of the code, while still being relatively easy to implement. It also pro-
vided a chance to catch regressions as they happened without having to roll back every
version of the code.

Immediately it was seen that it would be extrememly easy to implement a “drop-in”
replacement, given the similarity of the APIs of cuFFT and FFTW. Therefore, code was
written to create plans to execute the same transforms as the FFTW version. However,
the data required was not on the device, so a synchronous data transfer was inserted
before and after every transform. This comes with a severe performance penalty: exe-
cution of the code could not continue while the data was transferred, and such transfers
are very slow. They are often a bottleneck in CUDA codes. Four such transfers were
needed per iteration of the code; since the size of the data to be transferred as well as
the number of times the loop executes increases with the size of the prime, the perfor-
mance penalty was severe for larger primes. Figure 3.3 shows the pattern of transfers
and transforms.
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// Copy onto the device, do the forward FFT, then copy off
cudaMemcpy(deviceArray, hostArray, size, cudaMemcpyHostToDevice);
cufftExecD2Z();
cudaMemcpy(hostArray, deviceArray, size, cudaMemcpyDeviceToHost);

// Executed on the host, not the device
_square_complex()

// Copy onto the device, do the backward FFT, then copy off
cudaMemcpy(deviceArray, hostArray, size, cudaMemcpyHostToDevice);
cufftExecZ2D();
cudaMemcpy(hostArray, deviceArray, size, cudaMemcpyDeviceToHost);

Figure 6: Pseudocode representing the order of memory transfers and Fourier trans-
forms as in the first version of the code. Later versions removed the transfers either side
of the squaring by implementing a CUDA kernel to perform the squaring.

3.3.1 Eliminating the interior memory transfers

To reduce the number of memory transfers, code to implement the element-by-element
squaring present between the two Fourier transforms was chosen as the next target of the
porting effort. This was the only operation present between the forward and backward
transforms so it was quite wasteful to shuffle the data around so much for such a simple
function. The code to square the numbers was straightforward, however squaring on the
device instead of the host brought about a large improvement in performance simply by
avoiding two time-consuming memory transfers per iteration.

Figures 7 and 8 show the similarity between the C code and the CUDA code for squaring
large complex numbers. The numbers are represented as arrays of interleaved real and
imaginary parts. The difference is that the CUDA code is designed to run on a single
element only. The manner in which all elements of the array are transformed is to
launch a kernel with as many threads as there are array elements (due to the division of
the threads into blocks, the number of threads launched is actually equal to the smallest
multiple of the number of threads per block greater than or equal to the number of array
elements; this is why there is code to ensure that the thread index is not greater than
the array length). This pattern of parallelising loops with independent iterations into
CUDA kernels is a common idiom.

3.3.2 Porting the remaining functions

After the pairwise squaring was ported, only a small subset of the code remained on the
host. Two such sections were simply a weighting of the array elements, necessary for
the discrete weighted transform that this code implements.
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void
_square_complex(
fftw_complex *b,
int n
)
{

register int k;
register double Reb;

for (k=0; k<n; k++) {
Reb = b[k][0]*b[k][0]-b[k][1]*b[k][1];
b[k][1] = 2*b[k][1]*b[k][0];
b[k][0] = Reb;

}
}

Figure 7: Original C code to square an array of complex doubles element-by-element

__global__ void square_elem(cufftDoubleComplex *x, int length)
{

int i = blockDim.x * blockIdx.x + threadIdx.x;
if(i >= length)
return;
double re = x[i].x * x[i].x - x[i].y * x[i].y;
x[i].y = 2 * x[i].x * x[i].y;
x[i].x = re;

}

Figure 8: CUDA code to square a single complex number out of an array; does nothing
if its index is off the end of the array
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The last remaining host function was inormalize. In the process of ‘long’ multiplica-
tion (the sort that is taught in schools) if a digit in a particular position should become
too large then a ‘carry’ is created; the carry is equal to the overflow from the lower
digit divided by ten. It is added on to the next digit in the sequence and the process
repeats until every digit in the number is less than the base the number is represented
in (most often ten). A similar operation must occur for the method of multiplication
implemented in this code. While the multiplication happens in Fourier space, the nor-
malisation, or carry-generating step is performed in real space, and is analogous to the
same step found in long multiplication.

There are other operations which must happen in this normalisation code. The Fourier
transforms are performed using double-precision numbers; however, the numbers that
are being tested are obviously integers. There is some amount of rounding error asso-
ciated with the transform in and out of Fourier space, and as such the digits must all be
rounded to the nearest integer to ensure that the answer obtained is correct. In addition,
LLRP adds the constant value (+2) to the number at this stage of the computation. This
does not have to be done at this stage but it is convenient to do so. Figure 9 shows the
first part of the normalisation procedure.

The digits are rounded by adding a sufficiently large value to the digit then taking it
away again. In arbitrary-precision arithmetic, this is a null operation. However, floating-
point mathematics is not associative, and when the large value is added to the digit some
trailing bits of data are ‘lost’. With careful selection of the large value, the fractional
part of the digit can be removed, leaving an integral value (all integral values below
253 can be represented exactly in a double-precision float). This happens because the
processor shifts the numbers to be operated on such that they have the same exponent.
Values over a certain threshold only have enough precision to store units, not tenths or
smaller, and so the fractional part is removed. The reason that the rounding is done this
way is because it only takes two double- precision additions; using a cast operation can
take upwards of eighty cycles in comparison! The technique of adding a large constant
to the digits is reused to create the carry value, since a larger number will ‘wipe out’
even more of the lower bits of the digit. Again, a careful choice of number will ensure
that the digit will remain less than the base the number is represented in.

One last pass must be made over the array in the case that the highest-position digit has
a carry associated with it. The way it is dealt with is that the carry is rotated back to the
lowest position of the array and, depending on the exact way in which the number is to
be treated, is added back in the lower digits. One final normalisation pass is performed,
since adding in any value might unnormalise a digit of the number.

This code works well on a sequential device like a CPU, since each carry value can
potentially affect the digit above it. However, loops are most easily parallelised in the
CUDA paradigm when their iterations are independent - this code is almost exactly
the opposite. The only synchronisation available to CUDA threads is between threads
in the same warp. Across the entire grid, there is none, save for atomic operations
(which can be very slow if there is high contention). As a consequence the CUDA
normalisation code became very complicated and difficult to implement. Several de-
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int j;
double * num;
double rounded, highBits, carry = 0.0;

for (j = 0; j < N; ++j)
{

// Nearest-integer rounding
rounded = (num[j] + bigVal) - bigVal;
// Add the carry from previous iteration
rounded += carry;
// Removing the lower bits from the digit
highBits = (rounded + limitbv[j]) - limitbv[j];
// Compute the carry on next word
carry = highBits * invlimit[j];
// jth digit is now rounded and normalised
num[j] = rounded - highBits;

}

Figure 9: Simplified code showing the sequence of operations in the inormalize func-
tion. It is not trivial to transform this loop into a CUDA kernel.

signs were attempted, which often contained subtle data hazards where potentially two
threads would be attempting to access the same element at the same time, which CUDA
provides no protection against. Naturally, these erroneous versions did not work.

The end design settled upon having multiple separate kernels, since it is guaranteed
that all operations will have finished when the next kernel has been launched (by using
a synchronisation function). This comes with an associated performance penalty as
kernel launches are quite expensive. By using a global variable which is updated using
an atomic operation, the device is able to indicate to the host how many carries remain,
i.e. whether another pass needs to be performed on the array to ensure that all digits are
less than the base of the number. There is a while loop which will, in order, add in the
carries, set all of them save the highest position to zero, renormalise then check whether
any carries remain. When no carries remain, the code leaves the loop and executes the
‘propagate_carry’ kernel, which is the code that deals with the high-position carry.

This code does not produce the right answer for primes of greater than a certain size
which is disappointing, and the reason for its lack of correctness has not been discov-
ered. It is felt that the difficulty of implementing a loop with such dependent iterations
has led to a subtle error that prevents it from working as intended.
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int j;
double rounded, high_bits, carry2, carry = carries[len];
if (carry)
{

j = 0;
if(wrapindex)

carry2 = carry * wrapfactor;
carry *= -1;
while (carry || carry2)
{

if (wrapindex && !carry)
j = wrapindex;

rounded = *(x + j) + carry;
if (wrapindex && j == wrapindex)
{

rounded += carry2;
carry2 = 0.0;

}

high_bits = (rounded + limitbv[j]) - limitbv[j];
carry = high_bits * invlimit[j];

*(x + j) = rounded - high_bits;

if (++j == len)
{

j = 0;
if (wrapindex)

carry2 = carry * wrapfactor;
carry *= -1;

}
}

}

Figure 10: Code that reconciles the carry values from the end of the array by adding the
carry back onto the lower digits of the number. The translation from C to CUDA left it
virtually unchanged.
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Figure 11: The percent time spent in each section of code in the original LLRP code

4 Performance Analysis

4.1 Comparison of Times for Various Primes

The code has many timing functions available for both debug and informational pur-
poses. To have a more fine-grained profile of how long the program spent executing
certain sections of the code, timing functions were inserted at key points in the pro-
gram’s squaring code. These were used to track how long the data transfers ran for,
or how quickly the transforms were executed. These times are stored cumulatively for
the entire running time of the program. Figures 11 to 14 shows the percentage time
spent in key areas of the program for select primes. The timers cover the time spent
executing the transforms, the time spent normalising, the time spent transferring data,
the complex squaring, the weighting of the number before and after the transforms and
the time taken to initialise the system. Any discrepancy between the total time recorded
by these timers and a timer that covers the execution of the program is represented as
‘other’.

The primes were chosen to cover a range of sizes while staying small enough to be
tested in a matter of seconds to ensure rapid testing when developing the code. Finally
a very large prime was chosen to investigate the behaviour of the program at large N.
The trend is that proportionally less time is spent executing the FFTs compared to the
normalisation, which still runs on the CPU, and time spent waiting for memory transfers
to complete, which are necessary for the normalisation to run. For example, in figure
12 the FFTs take approximately 20% of the running time, dropping to a little over 10%
of the running time in figure 14.

Figure 11 shows the time spent inside the plain LLRP code. The next three show the
same code sections but in the final version of the llrgpu code, with FFTs and so on
performed on the GPU. It can be seen that the FFTs take proportionally less time in the

20



9.7%

19.3%8.6%

7.8%

7.7%

18%

11.9%

16%

0.9%

gwpinit
Pairwise multiplication
Forward FFT
Backward FFT
Forward weighting
Backward weighting
Normalisation
Memory transfers
Other

Figure 12: llrgpu timings for 11 ∗ 274726 − 1
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Figure 13: llrgpu timings for 13 ∗ 2166303 − 1
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Figure 14: llrgpu timings for 13 ∗ 2233207 − 1

3.6%

9.8%

1%0.7%10.9%10.4%

36.8%

26.6%

0.2%

gwpinit
Pairwise multiplication
Forward FFT
Backward FFT
Forward weighting
Backward weighting
Normalisation
Memory transfers
Other

Figure 15: llrgpu timings for 3 ∗ 23136255 − 1

GPU accelerated code, indicating that the GPU code is faster. This aspect of the code
could be considered highly successful.

The size of the prime being tested increases across the three charts. The charts indicate
that the proportion of time spent transferring data and normalising the number is now
the bottleneck. If a suitably fast GPU normalisation routine were written, it would solve
both problems at once; however, implementing such a function correctly and quickly
remains very difficult.

To test how the code could deal with very large primes, the prime number 3×23136255−1
was tested. The total running time was 6670 seconds, including time taken for the
library to initialise; figure 15 shows the breakdown of times. Overwhelmingly the most
time was taken in normalising the number. The transforms took less than 2% of the
running time of the program. It is a testament to the power available in GPUs that
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Primes 11× 274726 − 1 13× 2166303 − 1 13× 2233207 − 1 17× 22946584 − 1
llr 1.260 s 6.795 s 11.762 s 2514.362 s

llrCUDA 35.336 s 81.192 s 112.283 s *
llrGPU 9.552 s 33.686 s 50.896 s 6857.843s

Table 1: A table of primality test timings. Each code was tested with several primes in
order to compare their relative performance. llrCUDA crashed during the testing of the
largest prime.

Primes 11× 274726 − 1 13× 2166303 − 1 13× 2233207 − 1
llrgpu 13.948 s 44.388 s 74.007 s

Table 2: A table showing results for an in-development version of the code; the code
is significantly slower due to the additional memory transfers that are required each
iteration.

the worse-scaling section of the code should execute so much more quickly than the
essentially linear normalisation. Of course, the memory transfers also take up a large
amount of time and it would be a strong optimisation to be able to remove them from
the code.

In addition to timing different sections of the same code, comparisons were made be-
tween the new GPU code and the original LLR code which is highly optimised to run
on CPUs. It was also compared against the existing CUDA port known as llrCUDA;
the results are in table 1.

The table indicates that LLR (using the hand-optimised functions of gwnum) is still
the fastest implementation of the Lucas-Lehmer-Riesel algorithm. Nevertheless, an
improvement over the current CUDA port has been obtained, which is very promising.
If the GPU’s power could be leveraged for the normalisation routines, not only would
the memory transfers be eliminated, reducing the run time considerably, it might even
prove faster than current CPU code, making it exceedingly competitive with LLR.

During development the code transitioned through many different versions, as features
were developed and refined, but it is interesting to investigate the effects of memory
transfers on performance. Table 4.1 shows how the first in-development version of the
code performed. In the first, the data was only moved onto the device when a transform
was required and was taken off the device immediately after. This resulted in a heavy
load of four memory transfers per iteration and performance suffered as a result.

The version of the code featuring a CUDA normalisation function enters an infinite loop
making it impossible to time.
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==4457== Profiling application: ./llrgpu -d -q11*2^74726-1
==4457== Profiling result:
Time(%) Time Calls Avg Min Max Name
32.79% 1.50685s 74690 20.174us 19.780us 20.924us void dpVector2048D::

kernelTex<fftDirection_t=-1>
32.59% 1.49766s 74690 20.051us 19.787us 20.795us void dpVector2048D::

kernelTex<fftDirection_t=1>
9.67% 444.31ms 74725 5.9450us 5.8870us 17.151us [CUDA memcpy DtoH]
7.59% 348.65ms 74729 4.6650us 4.4150us 11.936us [CUDA memcpy HtoD]
6.35% 292.04ms 74724 3.9080us 3.5150us 4.8020us void dpRealComplex::

preprocessC2C_kernelMem
5.35% 245.67ms 74724 3.2870us 2.7340us 6.5590us void dpRealComplex::

postprocessC2C_kernelMem
3.80% 174.75ms 149448 1.1690us 893ns 2.0120us convolution_elem
1.87% 85.802ms 74724 1.1480us 925ns 1.6960us square_elem

Figure 16: Sample output from the command-line profiler. It shows that on the device,
the transforms take the most computation. The average, minimum and maximum times
are useful for showing that sometimes memory transfers can take much longer than the
average (in this example, 17 microseconds, over three times as long as the average.

4.2 NVIDIA Profiling Tools

The CUDA toolkit comes with many additional tools as well as libraries. One such tool
is the NVIDIA profiling tool, a program that is the GPU equivalent of gprof. The pro-
filer tool will measure how long the graphics card device spends executing each function
and can even suggest areas for performance improvement, by indicating whether a ker-
nel is slowed down by memory latency, memory bandwidth and so on. In this project
it was useful in proving that one of the major sources of bad performance was the time
spent in device driver code waiting for memory transfers to complete, even though they
took less time to execute on the device. It also showed that for the very simplest of
the kernels being executed by the device, the main barrier to better performance was
memory latency, since often kernels only required a few bytes of data from main mem-
ory. As a result, kernels were often waiting on memory accesses to complete before
continuing execution.

It is worth noting that the profiler tools do have some associated overhead, though the
tools try to account for time spent acquiring profile data in the output. However, the
slowdown can make running tests on large data sets infeasible as the program takes
longer and longer to run with the profiling enabled.

Figure 4.2 shows the output of the profiler (function arguments have been removed for
greater clarity). It is useful to see where the device spends its time as it is difficult for
the programmer to interact directly with the GPU device.

There is a GUI version of the profiler called the NVIDIA visual profiler. It attempts
to show similar information in a more intuitive way with bars of colour representing
what computation is taking place at any given interval. The amount of data that can be
collected by the tools is huge and can help the programmer completely understand the
reasons behind the performance of his or her code.
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5 Further Work

5.1 More CUDA Code

In the most recent version of this project’s code only the path corresponding to Lucas-
Lehmer-Riesel numbers has been ported to CUDA. It was felt that porting this subset of
functionality was an appropriate amount of work for this project but by no means does it
have to be the end point. The changes required to be able to test other types of number
range from trivial, in the case of fftwmultiply_g, to considerably more complex; for
example, functional and fast code for the normalisation procedure. Moving more of
the LLRP code to the CUDA platform would be an interesting avenue of research and
would allow for even more types of potential primes to be tested quickly.

5.2 AMD/OpenCL Port

The CUDA programming language is owned and developed by NVIDIA and will only
run on their hardware. However, approximately 33%[21] of the consumer desktop mar-
ket has AMD graphics hardware installed, whose cards have shown very strong perfor-
mance in a variety of software. AMD actively support the OpenCL platform on their
graphics devices, a standard which is also supported by NVIDIA. AMD also have de-
veloped an accelerated mathematics library which will perform fast Fourier transforms
using the resources of the GPU. While this project focussed on NVIDIA and CUDA,
a port which targeted OpenCL instead is equally feasible. The choice then would be
either to support the AMD APPML (Accelerated Parallel Processing Maths Libraries)
or to write an OpenCL-based FFT library which could then run on any hardware that
supported OpenCL. This hand-written version might perform more slowly than the
vendor-supplied code, but would have the advantage of reducing code fragmentation
by introducing one single code that could run anywhere.

5.3 Other Hardware

AMD are introducing new technologies which might prove useful for codes such as this.
One of these is known as AMD Accelerated Processing Unit (formerly AMD Fusion),
a model which presents the programmer with a unified memory space between the
GPU and the CPU. It has been confirmed that Sony’s soon-to-be-released PlayStation
4 console will use this hardware, allowing completely shared access to the console’s 8
GB GDDR 5 (Graphics Double Data Rate, version 5) memory. This hardware would
eliminate many of the difficulties faced in this project - there would be no need for
costly data transfers or inefficient GPU code as the programmer could simply choose
to execute on whichever hardware was more suited to the task. However, although the
exact specifications are not yet known, the PS4’s CPU is likely to be considerably slower
than many desktop processors, instead opting to provide computational power through
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multiple cores. Nevertheless the concept is interesting and could prove a powerful
alternative to the current model of separate host and device memory spaces.
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6 Evaluation of project

Overall the project was quite successful. The core aim was to port the FFTs to CUDA
and this was completely achieved. The performance available from the GPU device
is exceptionally large; however, some aspects were less successful. A stated aim was
to minimise memory transfers (from CPU to GPU) as they often seriously impact the
performance of GPU codes. A complicated numerical routine which was highly linear
in nature proved very difficult to port in not just an efficient manner but even just a basic,
working code. It might have been possible to predict that the normalisation routines
were the most difficult parts of the project and allocate more time to them earlier, but
due to the code’s structure the normalisation was seen as the last step.

Risks were largely averted in this project. The HECToR GPU machine was briefly
unavailable during the project but since all development work was done on a local
machine this was of no impact. There was no data loss during the project either and
multiple backup copies existed but were not required. However, as mentioned, the code
was not fully ported to CUDA. There was a risk that the project was infeasible and
this was not the case; however, a subset of the work allocated did prove too difficult to
complete, and the result is a much less performant code.

7 Conclusions

This aim of this project was to port the FFT routines of LLRP to CUDA, which was
done successfully. This success is quantified as the FFT portions of the program exe-
cuting in a much shorter time than the FFTW transforms. The project shows that GPUs
are certainly viable for use in numerical codes such as this which hopefully will en-
courage further research in this area. However, due to the difficulty of porting some
of the code to CUDA, the performance was severely limited by memory transfers. If
better normalisation code were to be written, even stronger performance gains could be
realised.
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