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Abstract

Mobile and hand-held devices are on the rise in the consumer market. The future of 

innovation in the semiconductor industry will be in ubiquitous computing. HPC is 

undergoing a paradigm shift towards low power architectures in order to meet the 

power  requirements  to  build  an  Exascale  system.  GPGPUs  and  specialized 

architectures such as IBM BG/Q have already started making a mark in achieving 

high  performance  while  consuming  lesser  energy. The  HPC community  is  also 

looking at using mobile and embedded devices since the hardware architecture for 

these devices have been designed for low power consumption. ARM architecture 

processors dominate the mobile and embedded market and is a viable candidate to 

build a HPC system.

In this project we built a low power cluster consisting of 6 Pandaboard ES boards. 

We also configured  2 Raspberry Pi  boards  running different  versions  of  Debian 

Linux.  The  goal  was  to  run  several  benchmarks  on  the  Pandaboard  and  the 

Raspberry Pi boards and analyse the raw performance obtained as well as the power 

consumed.
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1 Introduction

The large systems used today in HPC are dominated by processors that use the x86 

and Power instruction sets supplied by three vendors, Intel, AMD and IBM. These 

processors have been designed to mainly cater to the server, desktop PC and laptop 

market. The processors provide very good single thread performance but suffer from 

high cost and power usage. One of the main goals in building an exascale HPC 

system is to stay within a power budget of around 20 MW. In order to achieve this  

ambitious goal, other low power processor architectures such as ARM are currently 

being explored since these processors have been primarily designed for the mobile 

and embedded devices market [1].

There is a growing trend towards using accelerators such as GPGPUs in order to 

build  energy  efficient  HPC  machines.  GPUs  offer  greater  FLOPS/watt  than 

conventional CPUs [2]. However it can be a challenge to program these devices as 

developers are required to learn new programming models in order to utilise them 

effectively. This is further complicated by the need for vendor specific compilers 

such as Nvidia's CUDA compiler to program Nvidia GPUs in order to extract the 

last drop of performance. 

Today we see a surge in special custom built machines like the IBM BlueGene/Q 

which  have  been  designed  for  low  power  consumption  while  giving  high 

performance.  Top 20 machines  in  the Green500 as well  as  the Top500 lists  are 

currently dominated by the IBM BlueGene/Q systems [3] [4].  

Post-PC devices such as tablets, PDAs, smartphones and other mobile devices are 

gaining  in  popularity  in  the  consumer space.  This  trend is  predicted  to  grow as 

companies such as Apple, Google and Microsoft begin investing heavily in future 

products aimed at the mobile devices market. ARM processors currently dominate 

this space and the increase in demand for these devices will bring down the cost of 

manufacture of ARM processors even further. 



ARM processors have also started to make an entry into the PC and server market. 

Future  ARM  processors  are  expected  to  be  much  more  powerful  in  terms  of 

performance while  still  maintaining  low power usage.  For the HPC market,  this 

scenario presents a great opportunity to utilize ARM processors to build large HPC 

machines.  We  already  see  projects  such  as  Mont-Blanc  at  the  Barcelona 

supercomputing centre which plan to use ARM CPUs combined with Nvidia GPUs 

to achieve petascale compute performance.

A variety of single board computers such as the Beagleboard, Raspberry Pi and the 

Pandaboard have become popular among developers and programming enthusiasts 

as they are cheaper than desktop PCs and laptops. These boards use a variety of 

system on chips (SoCs) with various ARM architecture CPUs. This has led to the 

formation of various ARM development communities who spend time and effort 

porting a wide range of operating systems, applications, libraries and tools to the 

various ARM architecture currently popular in the market. 

In this project we will explore the challenges of building a cluster using these single 

board ARM computers. We will also measure the performance of the cluster using 

various benchmarks while capturing the power usage. We are already aware of the 

performance and power usage of clusters built using commodity processors such as 

x86.  This  project  will  give  us  further  insight  into  the  progress  made  by  ARM 

processors in addressing the issue of performance and power usage which is vital to 

HPC. 

1.1 Report Organization

Chapter 2 in this report provides a background for the project. In this chapter we 

look at some of the factors causing a growth in interest in low power HPC. We look 

at  some of the main trends in hardware in the recent past and how this  trend is 

progressing as we move towards the Exascale era. We also look at the road map for 

ARM processors in the next few years and how ARM could be a major player in the 

high performance computing market.



Chapter  3  provides  details  about  the  ARM  hardware  used  in  this  project.  We 

examine the components present in the Pandaboard ES and Raspberry Pi boards. 

Aspects such as CPU features, memory hierarchy and inter-connect are discussed. 

Both these boards use different generations of the ARM architecture hence we can 

compare and contrast their capabilities.

In Chapter 4 we look at some of the existing energy-efficient HPC systems and also 

low power clusters built using ARM processors. Interest in low power ARM clusters 

is a very recent trend and is growing rapidly especially with advances being made in 

ARM processor designs.

Chapter  5 provides details  regarding the steps taken to build the Pandaboard ES 

cluster. Here we will explore the hardware and software challenges encountered and 

their respective solutions.

In Chapter 6 and 7 we look at the various benchmarks that were identified to be run 

on  the  Pandaboard  ES  and  the  Raspberry  Pi  boards.  We  also  analyse  the 

performance  and  power  consumption  of  these  boards.  There  are  6  dual-core 

Pandaboards available and hence we look to scale some of the benchmarks over 12 

cores and provide a detailed analysis of the results.

In Chapter 8 and 9 we provide possible improvements in future projects involving 

ARM  processors  and  also  provide  conclusions  obtained  from  undertaking  this 

project.



2 Background

HPC has seen an exponential growth in computational power over the last couple of 

decades. This has been mainly due to the evolution of microprocessor technology. 

Until  around 2003,  chip manufacturers  improved the  serial  performance  of  their 

processors  by  adding  more  and  more  performance  optimization  technology  in 

hardware such as branch prediction, speculative execution, increase of on chip cache 

sizes etc. The clock frequency of the chips also kept getting faster while the down 

side was an increase in power consumption. However due the power wall problem, 

manufactures began adding multiple cores on a single chip in order to prevent the 

CPU from melting due to overheating [7]. Today, multi-core machines are the norm 

and we expect the number of cores within a node to increase in future.

In this chapter we will look at the issue of power consumption of HPC machines and 

also explore some of the emerging technologies in hardware to address the problem 

of power consumption.

2.1 Exascale Challenge

In 2007, DARPA conducted a study in order to identify the challenges involved in 

building an exascale HPC machine. The study identified several challenges such as 

power consumption, hardware & software resilience, memory bandwidth, storage of 

peta-bytes of data and application scalability [6]. The main challenge among these is 

the  power  consumption  of  an  exascale  machine.  The  energy  budget  fixed  by 

DARPA is around $20 million USD per year.  The power budget of an exascale 

system can be estimated to be around 20 MW since a mega watt of power costs 

approximately $1 million USD.

HPC is currently in the petascale era and the fastest supercomputer today performs 

at  approximately  16  petaflops  [3].  If  we  are  to  follow  the  growth  trend  of 

supercomputing  power,  it  is  estimated  that  we  will  reach  exascale  computing 

capabilities by 2018. This is shown in Figure 2.1.



Figure 2.1: Timeframe to reach exascale (Source: Top500.org) 

From a chip manufacturers perspective, HPC is only 1% of the total market for their 

products. The research and innovations done by these companies are targeted at the 

remaining 99% of the market which is dominated by products catering to the PC and 

laptop consumer market. With mobile and embedded devices gaining popularity, the 

major  chip manufacturers  such as  Intel  and AMD have started  investing  in  low 

power chip designs.  An increase in quantity  of low power processors will  bring 

down the per unit cost. 

Today we see a variety of low power technologies being used to build large HPC 

machines. The trend is towards using low power CPUs, accelerators, coprocessors or 

a combination of these technologies within each compute node. In the section below 

we will focus on some of these emerging technologies and their impact on current 

and future HPC systems. 



2.2 Low power hardware trends

2.2.1 GPU

Graphics processing units were originally developed for the gaming industry. GPUs 

are made of a large number of very simple cores focussed purely on performing 

computations. Due to the high level of inherent parallelism present in the processor, 

the HPC community became interested in utilizing the GPU to achieve parallelism. 

However, many of the initial GPU designs did not have a double precision floating 

point unit and those that did have one did not perform up to the expectation of the 

HPC  development  community  [8].  Over  the  last  3  years,  GPU  designs  have 

undergone major changes and have become a much more acceptable part of the HPC 

landscape.

The two big players in GPU technology currently are Nvidia and AMD with Nvidia 

being  the  more  popular  choice  in  HPC.  The  selling  point  of  GPUs  is  the 

performance/watt  that  they  promise.  The  Nvidia  Fermi  GPU  performs  at 

approximately 3 gigaflops/watt  [9]. Future Nvidia GPUs are expected to provide 

even better performance/watt. Similarly AMD has invested in an integrated CPU-

GPU  design  called  AMD  Fusion  [10].  One  of  the  bottleneck  in  extracting 

performance from GPUs today is  the PCIe bus through which the CPU offloads 

computation intensive work to the GPU. Future designs from both AMD and Nvidia 

are looking to address this problem by integrating both the CPU and GPU into a 

single die.

2.2.2 Many Integrated Cores (MIC) 

In  2010,  Intel  announced  its  new multiprocessor  architecture  targeting  the  HPC 

market based on the Larrabee many core architecture [11]. This family of processors 

was later named as the Xeon Phi at the ISC 2012 in Hamburg. The Xeon Phi has 

been marketed as a coprocessor rather than as an accelerator. Figure 2.1 is an image 

of the Xeon Phi.



The main goal of the Xeon Phi family of coprocessors is to achieve one teraflop or 

more of double precision floating point performance for under 100 W of power [12]. 

This  is  achieved by using many simple 64 bit  x86 architecture  cores  with wide 

SIMD sharing memory. Since the architecture of the processor is x86 based, the 

programming  model  used  can  be  the  same as  that  used  in  programming  shared 

memory CPUs. Hence programming models like OpenMP and MPI which are most 

prevalent  in  HPC application  codes can be ported to  the MIC without  rewriting 

them. This is a major advantage for the Xeon Phi family of coprocessors over an 

accelerator such as Nvidia GPUs.

Figure 2.1: Image of Intel Xeon Phi coprocessor (Source: www.anandtech.com)

The MIC coprocessor can be used both in offload and native modes unlike current 

GPU designs which can only be used in offload mode. With the native mode we can 

obtain higher performance, however the bottleneck could be memory access on the 

MIC card. The MIC coprocessors come with at least 8 GB GDDR5 memory and the 

width of the memory bus could be 256-bits or 512-bits [13].



2.2.3 ARM processors 

The ARM instruction set, developed by ARM Holdings is an implementation of the 

reduced instruction set computer (RISC) ISA. The ARM architecture is licensable 

and there are a number of companies such as Texas Instruments, Nvidia, Samsung, 

Broadcom etc., that are licensees. The primary consumers of the ARM processors 

have been manufacturers of mobile and embedded devices. ARM processors have 

captured over 95% of the smart phone market and 10% of the mobile  computer 

market. It is predicted that ARM processors will capture approximately 23% of the 

PC market share by 2015 [14].

ARM processors have not yet made an impact in the high performance server market 

mainly  because  the  processors  use  a  32-bit  instruction  set  architecture.  This  is 

changing quickly with the new ARMv8 specification which will have support for 

64-bit operations along side the conventional 32-bit execution [15]. Companies like 

Calexeda have also recently launched a low power SoC called Calxeda EnergyCore 

which  uses  4  quad-core  ARM  Cortex-A9  processors,  an  integrated  80-gigabit 

crossbar switch and an integrated management engine all on a single piece of silicon 

[16]. The ARM Cotex-A9 processor is based on the 32-bit ARMv7 architecture and 

hence  may  not  be  suitable  for  large  HPC  application  that  use  a  lot  of  double 

precision floating point calculations. However it can be used for BigData analytic 

applications,  web-servers,  cloud  computing  etc.  We  can  see  future  EnergyCore 

products using ARMv8 architecture and that can be used to build a 64-bit energy 

efficient HPC system.



Figure 2.3: The ARM RISC processor roadmap for applications  (Source: Richard Grisenthwaite, 
2011 ARM TechCon)

The  support  for  64-bit  operations  in  the  hardware  is  crucial  for  ARM  to  be 

considered  seriously  in  the  HPC  market.  As  shown  in  Figure  2.3  the  ARMv8 

architecture offers this  capability  along with efficient  energy usage. The ARMv8 

also  offers  double  precision  NEON SIMD capability  in  addition  to  the  existing 

single precision NEON SIMD available in ARMv7 processors.

Nvidia  has  already  started  working  on  a  64-bit  ARM  architecture  CPU  called 

“Project Denver” specifically targeting the HPC and server industry [17]. One of the 

main design feature with this initiative is the integration of an 8-core custom Nvidia 

64-bit ARM CPU and an Nvidia GeForce 600-class GPU on the same chip. GPU 

computing has gained a lot of interest among the HPC community due to its superior 

FLOPS/watt performance. However the bottleneck of copying data from the CPU to 

the GPU and back through the PCIe bus has always been a detriment to gaining 

good performance. By combining the CPU and GPU on a single chip we can obtain 

very high bandwidth while keeping the latency extremely low.



2.2.4 DSP

A new paradigm in HPC is  beginning to  emerge  with the  use of Digital  Signal 

Processors (DSPs) to perform compute intensive operations. The multi-core DSPs 

offered  by  Texas  Instruments  deliver  greater  than  500  GFLOPS  of  compute 

performance  while  using  only  50 W of  power  [18].  These  DSPs  deliver  a  very 

impressive FLOPS/watt ratio and can be used as add on cards through the PCIe. The 

newer model full length cards are expected to give over a teraflop of performance. 

The  multi-core  DSPs  support  programming  languages  such  as  C  and  OpenMP. 

Texas Instruments also offers a multi-core SDK along with optimizing libraries for 

scientific  computing  so  that  developers  can  quickly  program the  DSPs  and  get 

maximum performance out of them.



3 Project Hardware

In this  chapter  we look at  the high level  specifications  for 2 single board ARM 

processor computers, the Pandaboard ES and the Raspberry Pi used in this project. 

Both systems use ARM processors from different generations and have differing 

processing power and capabilities.

3.1 Pandaboard ES

The Pandaboard ES is a low power, low cost single board computer that uses the 

OMAP4460 SoC. The OMAP4460 SoC contains a dual-core 1.2 Ghz ARM-Cortex 

A9 MPCore CPU, a PowerVR SGX 540 GPU and a C64x DSP subsystem [19]. In 

this project we will focus on the performance benchmarking of the ARM CPU.

Figure 3.1: Pandaboard ES block diagram (Source: www.pandaboard.org)



The 2 ARM cores share a 1 MB L2 cache and the RAM available on the board is 1 

GB dual channel LPDDR2 (Low Power DDR2). The Pandaboard also has an 10/100 

Mbps Ethernet port.  This gives us the capability to cluster multiple boards on a 

network  and  run  parallel  applications  and  benchmarks.  The  OMAP4460  was 

originally  designed for  mobile  devices  and hence  we see  support  for  audio  and 

video.  There  board  also  provides  general  purpose  expansion  headers,  camera 

expansion headers and LCD signal expansion capabilities.

There are 2 USB 2.0 high-speed ports on the board through which we can connect a 

keyboard, mice, SSD or any external device having USB support. The Operating 

System can be loaded on an external SSD drive connected via USB or through the 

on-board slot for high speed SD card.

The Pandaboard ES is an improved version of its predecessor the Pandaboard which 

uses an older OMAP4430 SoC. The OMAP4430 ARM CPU has a lower clock speed 

(1 Ghz) when compared to the OMAP4460 ARM CPU.

3.1.1 ARM Cortex-A9 

The ARM Cortex-A9 is a 32-bit multi-core processor which implements the ARMv7 

instruction set architecture. The cortex-A9 can have a maximum of 4 cache-coherent 

cores and clock frequency ranging from 800 to 2000 Mhz [20]. Each core in the 

cortex-A9 CPU has a 32 KB instruction and a 32 KB data cache.

One of the key features of the ARM Cortex-A series processors is the option of 

having Advanced SIMD (NEON) extensions. NEON is a 128-bit SIMD instruction 

set  that  accelerates  applications  such  as  multimedia,  signal  processing,  video 

encode/decode,  gaming,  image  processing  etc.  The  features  of  NEON  include 

separate  register  files,  independent  execution  hardware  and  a  comprehensive 

instruction set. It supports 8, 16, 32 and 64 bit integer as well as single precision 32-

bit floating point SIMD operations [21]. Support for 64-bit double precision floating 

point SIMD operations is part of the ARMv8 NEON extension.



The  cortex-A9  also  has  hardware  support  for  half,  single  and  double  precision 

floating  point  arithmetic.  The  floating  point  unit  on  the  ARM  is  called  Vector 

Floating Point (VFP). The cortex-A9 uses the VFPv3 version for its floating point 

calculation.  It should be noted that although the VFP unit  is intended to support 

vector mode, the VFP instructions work on vector elements sequentially and hence 

does not offer true (SIMD) vector parallelism [22].

3.2 Raspberry Pi

The Raspberry Pi is a cheap, low power, credit card size single board computer that 

was designed in order to create interest in programming among school children. The 

Raspberry Pi Foundation is responsible for developing this device.

The Raspberry Pi has a Broadcom BCM2835 SoC which in turn comprises of a 700 

Mhz ARM11 CPU and a VideoCode IV GPU [23]. The Raspberry Pi comes in 2 

models A and B. The difference in functionality between the two models is that 

model B has an ethernet port and 2 USB ports while model A has no ethernet port 

and only 1 USB port.

Figure 3.2: Raspberry Pi Board layout (Source: www.raspberrypi.org)



The Raspberry Pi has a 256 MB POP SDRAM shared between the CPU and GPU in 

any of 128/128, 192/64, 224/32 MB CPU/GPU ratio. The L1 cache is 32KB for the 

instruction and data.  The 128KB L2 cache by default  is  reserved for use by the 

GPU. However it can be explicitly enabled for use by the CPU. This is done by the 

Raspbian OS which is based on Debian armhf and is optimized for the Raspberry Pi.

The board provides HDMI video and audio outputs. It also provides a SD card slot 

on which the operating system is loaded. There is a FAT32 partition on the SD card. 

The SD card also contains a kernel image along with GPU firmware. It also has a 

EXT2 partition with the rootfs. The system boots via the GPU using a sequence of 

steps and starts the ARM CPU.

3.2.1 ARM11

ARM11 is a 32-bit RISC microprocessor that implements the ARMv6 instruction set 

architecture. The ARM11 processor family is used to power smart phones, home and 

embedded applications. The clock speeds of these processors can range from 350 

Mhz to 1Ghz and are extremely energy efficient. 

The ARM11 CPU has a VFP unit  which implements  the VFPv2 vector  floating 

point  architecture  [24].  The  VFP  unit  provides  low-cost,  IEEE  754  compliant 

floating point computation support which is essential for multimedia, graphics and 

other  floating-point  intensive  applications.  Using  the  right  compiler  flags  and 

support  from the operating  systems we can get  maximum performance from the 

floating point unit.



4 Literature Review

In this chapter we will look at the design details of the most energy efficient HPC 

machine in the world today, the IBM Blue Gene/Q. We will also explore some low 

power  clusters  built  using  ARM processors.  Understanding  the  design  strategies 

used  and problems  encountered  in  building  clusters  using  ARM hardware  is  of 

particular interest for this project.

4.1 Energy efficient HPC systems

We see a variety of strategies being adopted in HPC to address the problem of power 

consumption as we transition through the petascale era and approach exascale age. 

Some of these strategies involve special  designs in hardware, new heterogeneous 

approaches to computing and innovative ways to design cooling systems for large 

HPC machines.

4.1.1 IBM Blue Gene/Q

The  Blue  Gene/Q  (BGQ)  is  the  latest  design  in  the  Blue  Gene  series  of  HPC 

machines. The BGQ design focusses on building massively parallel supercomputers 

which provide the highest FLOPS/watt ratio [26]. The BGQ is designed to handle 

computation intensive as well as data intensive HPC applications. This is evident 

from the rankings of the BGQ machines in the Top500, Green500 and the Grap500 

lists released recently. There are 4 BGQ machines among the top ten machines in the 

Top500 list released in June 2012 [3]. The top 20 machines in the Green500 lists 

released in June 2012 are all BGQ machines [4]. The Graph500 benchmarks solves a 

large graph problem and is a good indicator of the performance for data intensive 

HPC applications. There are 5 machines in the top ten machines of the Graph500 list 

[25].



4.1.1.1 BGQ Desgin

The BGQ compute  chip  is  a  SoC that  integrates  processing cores,  memory  and 

neworking  login  onto  a  single  chip.  The  core  on  the  SoC  use  a  four-way 

hyperthreaded, 64-bit PowerPC A2 chip technology [26]. The chip resembles a large 

shared memory processor (SMP) machine.

 Figure 4.1: Blue Gene/Q Computer Chip (Source:  Rudd Haring / IBM Blue Gene Team)

The BGQ compute chip consists of 16 user cores used to perform computations  plus 

one  service  core  to  handle  OS  tasks  such  as  asynchronous  I/O,  interrupts  and 

scheduling, messaging assists and RAS [26]. A dedicated core for the OS services 

reduces the OS noise and jitter on the 16 compute cores. There is also an 18th core 

which  is  a  redundant  spare  in  case  one  of  the  cores  becomes  damaged  during 

manufacturing. 

Each core in the BGQ chip has a clock frequency of 1.6 Ghz and the total power 

consumed  by  the  chip  is  approximately  55  W  at  peak  load  giving  a  peak 

performance  of  200  GFLOPS.  This  yields  a  performance/watt  value  of  3.6 

GFLOPS/Watt  per  chip.  To  further  reduce  power  consumption,  the  chip  makes 

extensive use of clock gating. 



Each processor core has a SIMD Quad-Vector double precision floating point unit. 

Each processor core also has a L1 cache with 16KB for instruction and 16 KB for 

the data. The L2 cache is 32 MB and 16-way set associative and the main memory is 

16GB in size [26]. The BGQ chip also implements transactional memory and gives 

IBM the distinction of becoming the first company to deliver commercial chips with 

this technology [27].

In a BGQ compute rack there can be up to 16,384 cores and 16 TB of memory. Each 

of these racks is water cooled and connect to a 5D network torus [28].

These specialized node design, cooling techniques and interconnect make the BGQ a 

very high performing energy efficient machine. However the cost of building such a 

machine is huge. Also the power usage of current BGQ systems is still not within 

the  20  MW limit  when  scaled  to  an  exascale  HPC machine.  In  order  to  reach 

exascale with a reasonable power budget, there needs to be changes in all layers of 

the hardware and software stack.

4.2 ARM clusters

A couple of decades ago commodity PC microprocessors began entering the HPC 

market as people looked for cheaper options to build massively parallel computers 

with  thousands  of  cores.  This  was  dubbed  the  age  of  the  micro-killers  where 

commodity processors were cheaper as there was a huge demand for PC processors. 

This made the cost of manufacturing of microprocessors cheap. We eventually saw 

the decline of vector processors. We see this trend today with processors for the 

mobile market. As the demand for mobile devices increases, the cost of manufacture 

of mobile processors will come down. Also processors used in mobile devices take 

much lesser power compared to processors used in PCs and servers. We may be 

entering the age of the mobile-killers. We are already beginning to see an interest in 

using  mobile  processors  such  as  ARM  processors  to  build  clusters.  In  the 

subsections below we will look at a few of these projects.



4.2.1 Mont-Blanc BSC

The Mont-blanc project  is  an European exascale  approach to build a low power 

exascale machine using embedded and mobile processors. This project has a budget 

of over 14 million Euros and is managed by the Barcelona Supercomputing Center 

(BSC) [29].

The objectives of the Mont-Blanc project is to build a 50 petaflop machine that uses 

approximately 7 MW by 2014 and then to design and build a 200 petaflop machine 

using 10 MW of power using the latest mobile processor designs at that time. 

Figure 4.2: Energy-efficient prototypes roadmap (Source: BSC)

There are 2 hardware design approaches that have been put forward. One is to use a 

homogeneous  multi-core  ARM  processors.  The  other  is  to  use  ARM  CPUs 

combined  with  a  discrete  or  integrated  GPU.  In  the  homogeneous  approach, 

although ARM processors are extremely energy-efficient,  it  is  important  to  have 

high multi-core density to ensure that the CPU becomes the main power sink. The 

rest  of  the  power  is  “glue  power”  and  goes  to  components  such  as  memory, 

interconnect and storage. Currently ARM processor designs available in the market 



have a maximum of 4 cores. However future designs will support more cores on the 

same chip as mobile application demands increase and ARM starts making inroads 

into other markets such as servers and desktops [30].

The other approach is to use an ARM CPU and a GPU accelerator. The offloading 

of work to the GPU could be through the PCIe or with newer designs the GPU can 

share memory with the CPU. This design will ensure that there is no power wasted 

on the PCIe bus and GDDR5 memory [30].

The interconnect used between nodes for communication is either an SoC integrated 

Ethernet or an External NIC through PCIe, LLI or USB 3.0 [30]. In order to hide 

communication latency, the programming model must ensure that computations and 

communications are overlapped. The BSC has developed the OmpSs programming 

model  along with an intelligent  runtime system that  can deal  with heterogeneity 

[31]. The OmpSs runtime automatically overlaps MPI message communication with 

computation [30].

4.2.2 Phoronix Pandaboard cluster

In June 2012, Phoronix an internet media company built  a 12 core ARM cluster 

using 6 Pandaboard ES development boards [32]. The operating system and GCC 

compiler used were Ubuntu 12.04 and GCC 4.6 respectively. The main objective of 

was to run various benchmarks on the cluster and measure the performance/watt of 

the system. The results were then compared against the Intel Atom, Ivy Bridge and 

AMD Fusion processors.

Three programs, discrete 3D Fast Fourier Transform, Embarrassingly Parallel and 

Lower-Upper Gauss-Seidel Solver from the NAS parallel benchmark suite were run 

on the cluster. Under peak load, the ARM cluster consumed approximately 30 W of 

power  and  when  idle  the  power  consumption  was  below  20  W  [32].  The 

performance/watt measurements of the Pandaboard cluster was far superior to that of 

the Intel Atom while the Ivy Bridge outperformed the Pandaboard cluster both in 

terms  of  raw performance  and performance/watt.  The cost  of  purchasing an Ivy 

Bridge Intel Core i7 3770 is less than the cost of 6 Pandaboards. The AMD Fusion 



E-350  APU  was  better  in  terms  of  raw  performance  however  the  Pandaboard 

delivered a better performance/watt score [32].

By end of June 2012 a team from MIT with the help of Phoronix assembled a 96 

core ARM cluster  using 48 Pandaboards  [34].  The cluster  used a  solar  panel  to 

supply power to the nodes. Unlike the 12-core Pandaboard ES cluster, this cluster 

from MIT used the  older  OMAP4430 SoC which  is  part  of  the first  version  of 

Pandaboard. The SoC has a 1 Ghz ARM Cortex-A9 CPU along with a PowerVR 

GPU. The boards were stacked vertically in order to save space and increase density. 

The idle power consumption of the cluster was approximately 170 Watts and during 

peak load the power consumption was just over 200 Watts. The Ubunutu 12.04 port 

for OMAP4 was installed on all the boards. The MIT team is yet to publish the 

benchmark results for this cluster.

Figure 4.3: Solar powered 96 core ARM cluster (Source: www.phoronix.com)

http://www.phoronix.com/


4.2.3 ARM cluster for HPC in the cloud

A 40 node Pandaboard cluster was built by a team comprising of people various 

universities in the US. The goal of the project was to compare the performance of 

the dual-core Pandaboard cluster against a cluster of Intel Core 2 Duo machines. The 

Pandaboard has a 1 Ghz dual core ARM Cortex-A9 CPU. The dual-core Intel node 

had a clock frequency of 3 Ghz and was run in 32-bit mode since the ARM Cortex-

A9 is a 32-bit processor [35].

The performance comparison was intended to compare 2 domains in HPC. The first 

comparison was when used as a standard dedicated cluster. The second comparison 

was for a cluster of Qemu virtual machines running on the cloud. The study also 

involved scaling from 1 node up to 40 nodes.

The dedicated cluster was benchmarked using the NAS parallel  benchmark suite 

which had around 6 problems commonly used in CFD applications within HPC. The 

cluster was also benchmarked and compared for the time taken to checkpoint the 

NAS/LU.A and the Qemu VM.

During peak load, the Intel Core 2 Duo consumed up to 70 Watts of power while the 

ARM Cortex-A9 used 5 Watts.  The performance  per  watt  measurements  on the 

ARM Cortex-A9 was 1.3 to 6.2 times greater than that of the Intel Core 2 Duo. The 

Intel processor was however 5 times greater in raw performance. This is mainly due 

to the higher clock speed of the Intel processor. The results also showed that for the 

largest problem size running on a cluster size of 1-4 nodes, the energy efficiency 

ratio was as low as 0.9 since the Intel  Core 2 Duo has a 6 MB L2 cache when 

compared to a 1 MB cache on the ARM Cortex-A9. However for large problem 

sizes  on  a  large  cluster  size,  the  ARM  outperformed  the  Intel  processor  in 

performance per watt measurements.

The  study  concluded  that  as  future  SoCs  begin  using  the  ARM  Cortex-A15 

processor  and  we  start  seeing  processor  implementations  of  the  64-bit  ARMv8 

architecture, ARM will definitely make an impact in HPC and cloud computing.



5 Cluster Design 

In this chapter we will look at the various steps undertaken and issues encountered 

while building the 6 node Pandaboard cluster. Two Raspberry Pi boards were also 

configured to run different Linux OS versions and compared for performance.

5.1 Hardware Setup

The hardware setup for the Pandaboard cluster consisted of a dual-core x68 master 

node, 6 Pandaboard ES boards, 2 Raspberry Pi boards, a power meter and a gigabit 

switch. Chapter 3 provides the details regarding the Pandaboard ES and Raspberry 

Pi boards.

An Intel dual-core machine with a clock frequency of 1.86 Ghz for each core was 

selected as the head node. The memory and disk space on the head node is 4GB and 

235 GB respectively. The head node in the cluster was responsible for submitting 

and scheduling jobs on the slave nodes in the cluster.  The head node acted as a 

central point from where commands meant to be run on the slave nodes in the cluster 

could  be  submitted.  The  head  node  also  collected  the  power  measurement 

information from the power meter via the USB port using a program that monitors 

the USB port for incoming data.

The power measurement was done by placing the power meter between the power 

source and the cluster nodes. The power meter was configured to output the power 

consumed by the cluster in watts every second. This information was then fed to the 

head node using a USB interface. A more detailed explanation of the procedure to 

measure power is given in chapter 6.

The switch used to network the nodes in the cluster was a 8 port  Netgear GS608 

gigabit Ethernet switch. The power consumed by the switch was not captured and 

measured as we were mainly interested in the power consumption of the Pandaboard 

and Raspberry Pi nodes.



The summary of the hardware specification for the cluster is as given in Table 5.1.

Processor Clock Memory Storage NIC Hostname

Intel Core 2 Duo 1.86 Ghz 4 GB HDD 235 GB  1 Gbps master

ARM Cortex-A9 1.2 Ghz 1 GB SDC 16 GB  10/100 Mbps panda1

ARM Cortex-A9 1.2 Ghz 1 GB SDC 16 GB  10/100 Mbps panda2

ARM Cortex-A9 1.2 Ghz 1 GB SDC 16 GB  10/100 Mbps panda3

ARM Cortex-A9 1.2 Ghz 1 GB SDC 16 GB  10/100 Mbps panda4

ARM Cortex-A9 1.2 Ghz 1 GB SDC 16 GB  10/100 Mbps panda5

ARM Cortex-A9 1.2 Ghz 1 GB SDC 16 GB  10/100 Mbps panda6

ARM1176JZF-S 700 Mhz 256 MB SDC 8GB 10/100 Mbps rpi1

ARM1176JZF-S 700 Mhz 256 MB SDC 16GB 10/100 Mbps rpi2
Table 5.1: Hardware specification for the cluster

Figure 5.1: Project cluster setup



5.2 Operating System Setup

5.2.1 Panandboard ES

The  ARM architecture  is  supported  by  a  wide  range  of  operating  systems.  The 

Pandaboard  ES  has  a  ARM  Cortex-A9  CPU  which  implements  the  ARMv7 

architecture. The Pandboard community offers support for Linux distributions such 

as  Ubuntu  and  Linaro.  The  community  also  provides  an  Android  port  for  the 

OMAP4 platform [33].

For this project,  we decided to install  the latest Ubuntu 12.10 “Quantal Quetzal” 

server edition on the Pandaboards.  The Ubuntu 12.10 has a newer Linux kernel 

(3.4) and also supports the latest GCC 4.7 version. The other option was to use the 

older  Ubuntu 12.04 “Precise  Pangolin”  release.  The 12.04 release  uses  an older 

Linux 3.2 along with GCC 4.6. The newer kernel and GCC compiler on the 12.10 

could offer improved performance over the 12.04.

The pre-installed compressed Ubuntu 12.10 image for OMAP4 can be downloaded 

from the web and copied to the SD card using the following command,

sudo dd if=/path/to/image/linux_image.img of=/dev/mmcblk0 ; sync

This Pandaboard ES has an HDMI and a DVI port for display. In order to boot the 

image and setup the initial configuration on the Pandaboard, a serial ouput cable was 

connected to the serial port on the Pandaboard. This was then connected to a host 

machine that supported serial input or a serial to USB converter could be used to 

plug the cable  into the USB port  on the host machine.   On the host  machine a 

program such as Minicom or Screen was  used to read from /dev/ttyUSB0.

One of the issues we faced during this step was that although the output from the 

serial port was being displayed on the host machines terminal, there was no input 

command being sent back from the host machine to the Pandaboard's serial port. 

This caused the initial  setup to stall  on the language selection screen waiting for 

input.  After  trying  out  various  options,  a  decision  was  taken  to  disable  the 

Pandaboard's  initial  configuration  program  called  oem-config  by  manually 



modifying the  oem-config setup program.  By doing this we were skipping all the 

initial configuration steps such as choice of language, date & location configuration 

and user account setup. In order to login and configure the system manually, we 

needed root access. Hence a dummy password was manually setup for the root user 

by modifying the  /etc/password file on the SD card. These modifications ensured 

that the initial oem-config steps were bypassed and a login prompt was obtained on 

the monitor connected to the Pandaboard through the HDMI port.

5.2.2 Raspberry Pi

On the Raspberry Pi, 2 different versions of Debian Linux were installed. The first 

version is the Debian armel which uses the “EABI baseline” C ABI. This version of 

Debian uses software in order to perform single and double precision floating point 

arithmetic. The Debian armel version does not make full use of the VFP (Vector 

Floating point) unit on the Raspberry Pi. We can build code compatible with Debian 

armel which use hardware floating point instructions by passing the flags -mfpu=vfp 

and -mfloat-abi=softfp to the GCC compiler. However since the system libraries and 

binaries still use software floating point and not the VFP to carry out its floating 

point calculations, there is very little performance gain.

The newer Debian armhf port for the Raspberry Pi is called Raspbian. This port for 

the Raspberry Pi has a Linux kernel that has been completely recompiled with the 

“EABI vfp  hardfloat”  C ABI.  It  is  expected  that  for  floating  point  computation 

intensive applications, this Linux port will provide a huge increase in performance. 

Also the ARM CPU running the Raspbian Linux OS utilizes the 128 KB L2 cache 

which  by default  is  used  by the  GPU in  the  armel  version.  Hence  for  memory 

intensive  operations,  the  Raspberry  Pi  running  Raspbian  could  potentially  give 

better performance.

The 2 Debian Linux ports were copied and installed on separate SD cards and the 

initial setup on the Raspberry Pi was without any issues.



5.3 Networking

The  head node  in  the  cluster  had  2  network  interfaces  eth0 and  eth1.  The  first 

interface eth0 was used for communication within the private network (cluster) and 

had a private IP address. The second interface eth1 had a public IP address and was 

used to access the external network and the internet. Each of the slave nodes in the 

cluster also had an IP address and could communicate with the head node and each 

other through a switch. The switch used in this setup was an 8 port gigabit switch. In 

order to install software packages easily on the slave nodes, it was important for the 

slave nodes to have access to the internet. To achieve this, the gateway for all the 

slave nodes in the cluster was configured as the master/head node. The master node 

was setup to forward the internet requests from the other nodes in the cluster. Hence 

all  network  traffic  to  the  public  network  were  routed  through  the  master.  The 

network configuration for the entire cluster is as shown in Table 5.2.

Hostname IP Address Status

GX745MSCP1 129.215.62.197 Gateway

master 192.168.1.6 Head node

rpi1 192.168.1.7 Compute node

rpi2 192.168.1.8 Compute node

panda1 192.168.1.11 Compute node

panda2 192.168.1.12 Compute node

panda3 192.168.1.13 Compute node

panda4 192.168.1.14 Compute node

panda5 192.168.1.15 Compute node

panda6 192.168.1.16 Compute node
Table 5.2: Summary of network configuration

The network connectivity between the master node and the slave nodes in the cluster is 

illustrated in Figure 5.2 below.



Figure 5.2: Network connectivity

5.4 Software setup

Ubuntu comes packaged with the apt-get tool which is an advanced packaging tool 

that is used to install and remove libraries and packages on Debian based systems. 

We made use of the apt-get utility in order to find and install various software tool 

chains if available on the Pandboards. This is one of the advantages of choosing 

Ubuntu  as  the  OS  because  there  is  a  big  community  of  developers  constantly 

updating various Ubuntu package repositories with tools and utilities.

5.4.1 C/C++

There are a wide variety of C/C++ compilers both commercial and open source that 

are available for the ARM architecture. However for this project we decided to use 

the GCC/G++ compilers because they are freely downloadable and also provides a 

wide  variety  of  optimization  options  for  the  ARMv7  architecture.  The  4.7.1 

GCC/G++ version were installed on the Pandaboards and supports shared memory 

APIs for Posix threads and OpenMP.



5.4.2 Fortran

Libraries like BLAS, LAPACK and benchmarking codes like FFT and EB which are 

part of the NAS parallel benchmark suite require a Fortran compiler. If there is no 

available  Fortran  compiler,  it  would  have  been necessary  to  port  the  code from 

Fortran to C using a utility such as Netlib's f2c [36]. This was indeed the case in one 

of the MSc. dissertations from 2011 where scripts were created in order to port a lot 

of  the  Fortran  code  to  C  [37].  Linux  distributions  such  as  Debian  and  Ubuntu 

provide GNU Fortran 95 compiler  for  armel  and armhf architectures.  The GNU 

Fortran version 4.7.1 was installed on the Pandaboards. 

5.4.3 Message Passing Library

The library used for inter-node communication is MPICH2 release 1.4.1. MPICH2 

was developed by Argonne National Laboraty and is an implementation of the MPI-

2.2  standard.  The  library  is  portably  across  a  wide  variety  of  platforms  and 

architectures [38]. The MPICH 1.4.1 supports multi-threaded code that uses hybrid 

MPI-OpenMP programming model. Inter-process communication within the node is 

achieved using shared memory rather than using TCP/IP or other such protocols. 

The  default  protocol  used  for  communication  on  an  Ethernet  based  system  is 

TCP/IP. However this can be changed during the compilation of MPICH2 to use a 

protocol such as OpenMX. OpenMX is a high performance implementation of the 

Myrinet Express stack over Ethernet [39]. The advantage of using OpenMX instead 

of TCP/IP is  the reduction in  latency during inter-node message passing.  In this 

project  we compiled  the MPICH2 library with the default  TCP/IP over Ethernet 

option. We could not explore the possibility of using OpenMX due to lack of time.

5.4.4 Queue Management and Job Scheduling

A queue management utility was necessary in order to submit and manage jobs on 

the cluster. The queue management utility identifies the resources on the cluster and 

enables the client nodes on the cluster to communicate with the master node. The 

TORQUE resource manager version 2.4.16 was installed on the cluster. TORQUE 



stands for Terascale Open-source Resource and Queue Manager. TORQUE is based 

on the original PBS project and is highly scalable, reliable and fault tolerant [40].

TORQUE has an inbuilt scheduler program that is a very rudimentary scheduling 

tool. It follows a round robin schedule to assign jobs to nodes and also does not have 

advanced features like assigning queues to a subset of resources. For this project, we 

setup separate  queues for the Raspberry Pi  nodes and the Pandaboard resources. 

Hence there was a need for a more advanced job scheduler. We used the open source 

Maui cluster scheduler version 3.3.1 to enable more advanced scheduling. Maui was 

initially  developed  by  Cluster  Resources,  Inc.  and  was  designed  to  be  used  on 

clusters and supercomputers [41].

5.4.5 Network File System

In a homogeneous HPC cluster, the application code to be executed on the cluster is 

compiled on the front-end or head node as the architecture of the head node is the 

same as that of the slave nodes in the cluster. In this project we use an Intel x86 

machine  as  the  head  node  and  the  slave  nodes  are  either  ARMv7  or  ARMv6 

architecture. Hence compiling the application code on the head node is not an option 

due to binary incompatibility. The solution to this is to compile the code on one of 

the back-end nodes depending on the architecture and generate the correct binary. 

However in order for the MPICH2 Hydra process manager to run parallel jobs on 

the  cluster,  the  generated  binary  should  be  available  on  all  the  resources  in  the 

cluster.  This  requires  manually  copying  the  binary  to  all  the  nodes.  This  is  a 

laborious and time consuming process.

To ease this process, we installed an NFS server on the front-end node. An entry 

was added to the /etc/fstab on all the slave nodes on the cluster to mount a directory 

present on the front-end node over the network. Now any program that is compiled 

on this  NFS mounted path is  visible  to all  nodes on the cluster.  Hence the MPI 

runtime  can  execute  the  binary  using  the  NFS  mount  path  on  the  requested 

resources. Since the code is compiled on the correct architecture there is no binary 

incompatibility.



6 Benchmarking & Power Measurement

In this chapter we will discuss about the various benchmarks that were run on the 

Pandaboard ES boards and the Raspberry Pi boards. The benchmarks were chosen 

based on various performance metrics of the system and cluster that is of interest to 

HPC applications.

6.1 CoreMark

CoreMark  is  a  system  independent  benchmark  developed  by  the  Embedded 

Microprocessor Benchmark Consortium (EEMBC) [42]. It is seen as a replacement 

for the Dhrystone benchmark developed in the 80s which is no longer applicable to 

current  systems.  The  benchmark  can  be  run  in  single  thread  as  well  as  multi-

threaded mode.

The  CoreMark  benchmark  implements  algorithms  and  data  structures  used 

commonly in most applications [43]. Some of the tests performed are as follows,

1. List processing such as sorting, searching and reversing a list. This tests the 

non-serial  access  of  memory  with  the  use  of  pointers.  It  also  tests  the 

memory hierarchy and cache efficiency of a system for lists that do not fit 

into the systems cache [43].

2. A 16-bit  Cyclic Redundancy Check (CRC) is  also performed on the data 

elements  contained  in  the  list.  CRC is  one  of  the  most  commonly  used 

algorithms in embedded applications and hence this test is included in the 

timing of the benchmark [43].

3. Matrix operations such as multiplication with another matrix, a vector and a 

constant. CoreMark extracts bits from a part of the data in the matrix and 

performs operations [43].  A CRC is performed in the end to validate  the 

operations on the matrix.



4. State machine processing where branch operations such as if, else and switch 

are used to test how the CPU handles control statements [43].

The final output of the CoreMark benchmark is the number of iterations executed 

per second. The number of iterations can be changed during compilation depending 

on the attributes of the machine such as clock speed, memory capacity, number of 

levels of cache etc.

6.2 STREAM

The STREAM benchmark was developed by John McCalpin and is  the industry 

standard  for  measuring  the  memory  bandwidth  of  a  system  and  the  rate  of 

computation for simple vector kernels [44]. STREAM counts the number of bytes to 

be read plus the number of bytes to be written. There are 4 operations performed by 

STREAM implemented  as  4  separate  kernels  and  the  output  gives  the  memory 

bandwidth obtained for each operations in MB/s. The table below shows the flops 

and bytes counted per iteration of the STREAM loop.

Name Kernel Bytes/Iter FLOPS/Iter

COPY a(i) = b(i) 16 0

SCALE a(i) = q * b(i) 16 1

SUM a(i) = b(i) + c(i) 24 1

TRIAD a(i) = b(i) + q * c(i) 24 2

Table 6.1: Shows number of bytes and FLOPS counted in each iteration  (Source: 
www.cs.virginia.edu/stream)

6.3 Linpack

Linpack  is  a  program implemented  either  in  Fortran  or  C to perform numerical 

linear algebra computations on computers. It was initially developed as a benchmark 

to measure the number of FLOPS on supercomputers. Linpack solves a dense NxN 

system of  linear  equations  Ax=b as  it  is  a  common problem in engineering  and 

scientific  computing.  Linpack  makes  use  of  the  Basic  Linear  Algebra  Library 

http://www.cs.virginia.edu/stream


(BLAS) to perform matrix and vector operations. Linpack has now been superseded 

by LAPACK which is a more suitable for modern architectures [45]. The Linpack 

benchmark  used  in  this  project  measures  the  double  precision  floating  point 

performance  on  a  200x200  array.  The  performance  output  is  calculated  as  the 

average rolled and unrolled performance. 

6.4 HPL

High  Performance  Linpack  (HPL)  is  a  parallel  implementation  of  the  Linpack 

benchmark  and  is  portable  on  a  wide  number  of  machines.  HPL  uses  double 

precision 64-bit arithmetic to solve a linear system of equations of order N [46]. It is 

usually  run  on distributed  memory  computers  to  determine  the  double  precision 

floating  point  performance  of  the  system.  The  HPL  benchmark  uses  LU 

decomposition with partial row pivoting. It uses MPI for inter-node communication 

and relies on various routines from BLAS and LAPACK libraries.

The algorithm can be  described as  having the  characteristics,  “Two-dimensional  

block-cyclic data distribution - Right-looking variant of the LU factorization with  

row  partial  pivoting  featuring  multiple  look-ahead  depths  -  Recursive  panel  

factorization with pivot search and column broadcast combined - Various virtual  

panel  broadcast  topologies  -  bandwidth  reducing  swap-broadcast  algorithm  -  

backward substitution with look-ahead of depth 1” [46].

The input file, HPL.dat for the HPL benchmark provides information regarding the 

problem size, the block size, the grid dimension etc. This input file can be tweaked 

for performance according to the system on which the HPL benchmark is being run 

on and the network topology used  for interconnecting the nodes.

6.5 Ping Pong

The  ping  pong  benchmark  measures  the  latency  and  bandwidth  of  network 

communication between 2 nodes on the cluster.  Latency is defined as the hardware 

and software overhead involved in transmitting a zero byte message between 2 MPI 



processes.  The  bandwidth  is  the  rate  of  transmission  of  data  between  2  MPI 

processes. The ping pong benchmark allocates a message of specified size and sends 

it  from  one  process  to  another  and  the  same  message  is  received  back.  This 

communication pattern is performed over multiple iterations and the time taken to 

execute  these  iterations  is  calculated.  The  latency  and  bandwidth  of  the 

communication is given by the formulae,

Latency = 0.5 * (T2 – T1) / Total Number of Iterations

Bandwidth = Total Message Size / (T2 – T1)

Where (T2 – T1) gives the total time to execute all iterations in seconds. Latency is 

given in milliseconds or seconds and Bandwidth is in MB/s.

6.6 NAS Parallel Benchmarks

The NAS parallel benchmarks developed by NASA consist of a set of programs that 

implement various algorithms used in Computational Fluid Dymamics (CFD) [47]. 

There are 5 kernels and 3 pseudo applications that are part of this benchmark suite. 

For this project we are interested in 2 kernels namely, Embarrassingly Parallel (EP) 

and 3D Fast Fourier Transform (FFT). We use the MPI version of these benchmarks 

and scale the problem size as the number of processes grows.

6.6.1 Embarrassingly Parallel

This  benchmark  measures  the  upper  limit  of  floating  point  performance  of  the 

cluster  without  having  significant  inter-process  communication.  Embarrassingly 

parallel problems scale well on clusters where the inter-node communication could 

be a  bottleneck since there is very little  communication taking place.  Since the 

Pandaboard uses a 10/100 Mbps network card and uses TCP/IP over Ethernet for 

inter-node message passing,  there is  a significant  performance loss when scaling 

benchmarks  that  use  inter-node  communication  frequently.  An  embarrassingly 

parallel benchmark should scale almost linearly on this cluster and give us a good 



measure of raw floating point performance. This type of benchmark is typically used 

in simulation applications that use the Monte Carlo method.

6.6.2 3D Fast Fourier Transform

3D Fast Fourier Transforms kernel is used widely in spectral codes. This kernel uses 

forward and inverse FFTs to numerically solve a partial differential equation. This 

benchmark  tests  the  network  performance  of  the  cluster  rigorously  as  the  array 

transpose operations being performed require the use the all to all communications 

[48]. The MPICH2 library version used in this project uses shared memory for on 

node communication. For inter-node communication it uses TCP/IP over Ethernet. 

We should see a performance degradation when inter-node communications happen 

and should be a good test to measure the network performance and power usage of 

the cluster when there is significant network activity.

6.7 Power Measurement

Measuring power accurately is an important aspect of this project. There are many 

techniques  for  measuring  the  power  consumption  of  the  cluster.  A  software 

approach would involve using a tool such as Intel  Power Gadget to measure the 

processor power in watts using energy counters [49]. The other approach is to use a 

power meter between the power supply and the cluster nodes. Due to lack of free 

power  measurement  tools  available  for  ARM  architectures  we  used  the  second 

approach.

The device used to measure the power consumption of the cluster is a  Watts Up? 

PRO power meter. The meter captured the power consumption of the components 

connected  via  its  output  socket.  The  power  meter  comes  equipped  with  a  USB 

interface which can be plugged into the front-end node to log the power utilization 

of the node(s) being monitored. In order to read the power measurements from the 

USB device on the front-end node a software was needed to interpret and output the 

incoming data. This was achieved by using a free user developed C program that 

reads the input from /dev/ttyUSB0 and outputs the power in watts to the screen every 

second.



The power measurement is typically started just before a benchmark is submitted to 

run on the cluster. Once the benchmark completes, the power capture program on 

the  front-end  is  terminated.  The  power  consumption  of  the  cluster  can  have 

variations  during  the  run  time  of  the  benchmarks  depending  on  the  type  of 

computation or communication happening on the nodes in the cluster.  Hence we 

take  the  average  power  consumed by the  cluster  over  the  total  run  time  of  the 

benchmark. A Perl script was used to parse the power information and calculate the 

average power consumption of the cluster.

6.7.1 Metrics

The  Top500  list  ranks  supercomputers  according  to  the  raw  floating  point 

performance. Power consumption although captured is not a criteria in ranking these 

big machines. The Green500 list on the other hand ranks the most energy efficient 

supercomputers  in  the  world.  The  HPL  benchmark  is  used  to  calculate  the 

performance of the cluster in GFLOPS. The power consumed by the cluster during 

the running of HPL is also captured. Then the performance per watt is determined 

using the following formulae [50],

Performance Per Watt (PPW) = Performance / Power

For the Green500 list  this  is  given as MFLOPS/watt.  The most  energy efficient 

supercomputer today is the IBM Blue Gene/Q which has a PPW of  2100.88 [4].

The performance value given in the formulae above can be any other performance 

measure of the system using other benchmarks. Some of the PPW values for the 

other benchmarks in this project are given in Table 6.2,



Benchmark PPW

CoreMark Iterations / Watt

STREAM MB / Watt

HPL MFLOPS / Watt

NAS EB Mops / Watt

NAS FT Mops / Watt

Table 6.2: Performance Per Watt calculation for various benchmarks 



7 Results and Analysis

In this chapter we analyse the results for  the various serial and parallel benchmarks 

that were run on the Pandaboard and Raspberry Pi boards. We focus on the raw 

performance  figures  for  these  benchmarks  and also  take  into  account  the  power 

consumption  during  the  running  of  the  benchmarks.  The  performance  per  watt 

(PPW) data is also presented and discussed.

7.1 CPU Frequency Scaling

CPU Frequency scaling refers to  the technique  by which the CPU can scale  the 

clock frequency of its cores up or down depending on the load of the system [51]. 

This feature is useful in scenarios where power saving becomes critical. For example 

when mobile  devices  run on battery power,  running the CPU cores at  full  clock 

frequency  is  a  waste  of  energy.  Instead  if  the  CPU  is  able  to  scale  down  the 

frequency when there is little  or no load,  there could be a significant  amount of 

savings made in terms of energy consumed.

This functionality is achieved with the help of CPU frequency governors which are 

part of some Linux kernels. There are 5 types of governors in the Linux kernel,

Performance: In  this  mode  the  CPU  frequency  is  set  statically  to  the  highest 

frequency value as  specified  in  scaling_max_freq.  This  governor  is  desirable  on 

machines that are used to run applications that expect the maximum performance 

from the CPU.

Ondemand: This governor is set by default after the installation of Ubuntu. With this 

governor the CPU frequency is scaled up or down depending on the current usage of 

the system. The CPU must perform this change is frequency very quickly, usually in 

nano seconds in order to ensure that applications running on the machine are able to 

get extract good performance from the CPU.

Conservative:  The  conservative  governor  performs the  same functionality  as  the 

ondemand governor where the CPU clock frequency is scaled up or down depending 



on the current usage. However unlike the  ondemand governor the scaling is done 

more gracefully wherein the increase in clock speed is gradual.

Userspace: This governor allows any program or user with root privilege to set the 

frequency of the CPU manually. This could be useful in cases where we need to 

over clock the CPU.

Powersave: With this governor, the CPU frequency is set statically to the lowest 

frequency value as given in  scaling_min_frequency.  This mode would be suitable 

for systems where performance is  not a criteria  and saving power is  the highest 

priority.

 A user can set a specific governor by modifying the following file,

/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

This scaling governor can also be changed using the cpufreq-set tool which can be 

downloaded  and  installed  on  the  Ubuntu.  Once  installed,  the  governor  can  be 

changed using the following command,

cpufreq-set -g <governor name>

We use the performance governor for all the machines in the project since we want 

to obtain maximum performance from the system.

7.1.1 Idle Power Reading

Machine Governor Average Power (Watts)

Pandaboard ES Ondemand 2.124

Pandaboard ES Performance 2.607

Raspberry Pi NA 1.993

Table 7.1: Average idle power usage

We measured  the  average  idle  power  consumption  of  the  Pandaboard  ES board 

using both the  ondemand as well as the  performance governors. The average idle 



power consumption was also measured for the Raspberry Pi running the Raspbian 

Linux OS with a clock frequency of 700 Mhz. These readings are presented in Table 

7.1 and the graph in Figure 7.1 shows the variation in power consumption for a 

period of 1 hour.

Figure 7.1: Idle power usage over 1 hour

7.2 CoreMark

As  discussed  in  Chapter  6,  the  CoreMark  benchmark  measures  the  number  of 

iterations  per  second  by  executing  a  variety  of  algorithms.  The  CoreMark 

benchmark was run on the Pandaboard ES board both in single threaded and multi-

threaded mode. The single threaded version was run on the Raspberry Pi board using 

both the Debian armel and Raspbian versions of Linux.

The CoreMark source code was compiled  with various  levels  of  optimization  in 

order  to compare the improvement  in  performance as well  as  power usage.  The 

number of iterations was chosen as 1 million to ensure that the benchmark runs for 

at  least  for  10 minutes.  The CoreMark benchmark has  2 phases.  Phase 1 is  the 

performance run and phase 2 is the validation run. Both these phases are timed and 



the  number  of  iterations  chosen  is  the  same  for  both  phases.  The  readings  are 

presented only for the first phase as the results in both phases are similar.

Table  7.2  shows  the  iterations  and  iterations  per  watt  along  with  the  various 

compiler optimization levels for both the Pandaboard ES and Raspberry Pi boards. 

Machine Threads Iterations/sec Avg. Power 
(Watts)

Optimization PPW

Pandaboard 1 3237.199 4.080 -O2 793.431

Pandaboard 1 3364.262 4.200 -O3 801.014

Pandaboard 1 3398.332 4.200 -O3 unroll 809.126

Raspberrry 
Pi (armel)

1 1309.066 2.410 -O2 543.180

Raspberrry 
Pi (armel)

1 1364.904 2.404 -O3 567.763

Raspberrry 
Pi (armel)

1 1405.797 2.405 -O3 unroll 584.530

Raspberrry 
Pi (armhf)

1 1282.0036 2.240 -O2 572.323

Raspberrry 
Pi (armhf)

1 1321.0039 2.253 -O3 568.331

Raspberrry 
Pi (armhf)

1 1381.1963 2.240 -O3 unroll 616.605

Pandaboard 2 6456.882 5.320 -O3 unroll 1213.699

Table 7.2: CoreMark performance

On the  Pandaboard  ES  board  we  see  that  in  the  single  thread  mode  there  is  a 

marginal  increase  in  the performance per watt  as  we compile  the code with the 

optimization level 3 and also explicitly unroll loops. The average power usage of the 

Pandaboard ES also goes up marginally. The level 3 optimization with gcc involves 

all  the  flags  of  level  2  plus  additional  flags  such as  inlining  functions  and tree 

vectorizing [52].



Figure 7.2: Single and multi-threaded performance on Pandaboard ES

From  Figure  7.2  we  see  that  when  CoreMark  is  run  using  2  threads  on  the 

Pandaboard, we get almost linear speedup. This is the expected behaviour as the 

code  runs  the  same  number  of  iterations  on  both  the  threads  and  there  is  no 

communication overhead.  However we see in Figure 7.3 that the iterations per watt 

does not remain the same when both the cores are used on the Pandaboard.  When 

CoreMark is run on a single core using one thread, the other free core still uses some 

amount of power (idle power) and that power is part of the average power calculated 

while determining the iterations per watt value. Ideally we should only consider the 

power consumed by the core on which the benchmark runs in order to get the true 

performance per watt measure (PPW). In this case both the cores are running with 

the scaling governor set to performance. Also the idle power used by the Pandaboard 

(2.6 W) is constant for both the single and multi threaded power measurements. If 

the PPW is to remain constant, the idle power used should also double. For multi-

core machines, the PPW is best measured by loading all the cores with work. We 



must also consider the jitter caused by certain OS services such as interrupt handler 

and scheduler.

Figure 7.3: PPW for single and multiple threads

From Table 7.2 we see that the Raspberry Pi boards running both the Debian armel 

and Raspbian versions of Linux running the single thread version of CoreMark have 

approximately 40% of the raw performance of the Pandaboard. The Raspberry Pi 

clock frequency is 700 Mhz and has 25% of the memory capacity of the Pandaboard 

ES. The L2 cache size on the Raspberry Pi is also much smaller than that of the 

Pandaboard  ES.  This  explains  the  lower performance  of  the  Raspberry Pi  when 

compared  to  the  Pandaboard  ES.  However  the  Raspberry  Pi  (running Raspbian) 

consumes  only  2.25W  which  is  just  over  50% of  the  power  consumed  by  the 

Pandaboard ES to run the single thread benchmark.

 



Figure 7.4: CoreMark performance on Raspberry Pi

The Raspberry Pi has an idle  power usage of 2W. When we run CoreMark, the 

average power used only increases by 0.25W. The Pandaboard ES on the other hand 

uses 1.6W more power than its idle power of 2.6W. This makes the iterations per 

watt measurement of the Raspberry Pi much closer to that of the Pandaboard ES. As 

discussed  earlier,  the  PPW  measurement  on  the  Pandaboard  ES  should  be 

considered with both cores being used to run the benchmark to eliminate the idle 

power  used  by one  of  the  cores  when  its  not  being  used.  If  the  multi-threaded 

performance  of  the  Pandaboard  is  considered,  we  get  approximately  twice  the 

performance per watt compared to the Raspberry Pi.

From Figure 7.5 we see that the the Raspberry Pi running Raspbian has a marginally 

better iterations per watt measure when compared to that of Debian armel. This is 

because the power consumption of the Raspberry Pi running Raspbian is less than 

that of the Raspberry Pi running the Debian armel version.



Figure 7.5: CoreMark PPW on the Raspberry Pi

7.2.1 PPW comparison to Intel Atom and Intel Xeon

From a previous MSc. project on low power HPC [37], we find that the CoreMark 

PPW result obtained on the Intel Atom was 65.9 iterations per watt and the Intel 

Xeon at  55.76 iterations  per  watt.  This  was the  single  threaded  result  for  for  1 

million iterations using CoreMark. As shown in Table 7.2, the single threaded PPW 

ratio of the ARM Cortex-A9 processor on the Pandaboard ES is 12 times greater 

than that of the Intel Atom and 14.5 times greater than that of the Intel Xeon. The 

ARM11 processor on the Raspberry Pi (running Raspbian) has a iterations per watt 

ratio approximately 9 times greater than that of the Intel Atom and 11 times greater 

than that of the Intel Xeon.

The  Intel  Atom  processor  benchmarked  has  2  processors,  each  2-way  hyper-

threaded giving a total of 4 virtual processors. The Intel Xeon has 8 cores. When the 

multi-threaded version of CoreMark was run on these machines with 4 threads on 

the Atom and 8 threads on the Xeon, the iterations per watt obtained was 201.7 and 

432.90 respectively. The multi-threaded (2 threads) version on the ARM Cortex-A9 



processor delivers a iterations per watt ratio approximately 3 times greater than that 

of the Intel Xeon and 6 times greater than that of the Intel Atom. 

7.3 STREAM

Table 7.3 show the STREAM benchmark results for a memory size of 750 MB. The 

benchmark  was  run both  in  single  and multi  threaded modes.  The code for  the 

STREAM  benchmark  was  also  compiled  with  various  GCC optimization  levels 

along with flags that can assist the compiler to extract good performance from the 

Pandaboard.

Machine Num. 
Threads

Function Rate 
(MB/s)

Avg. 
Time 
(secs)

Avg. 
Power 
(Watts)

PPW Compiler Flags

Pandaboard ES 1 Copy

Scale
Add

Triad

741.566

689.926
812.799

782.349

0.7086

0.7613
0.9693

1.0063

3.77

196.680

182.984
215.573

207.497

O2

Pandaboard ES 1 Copy

Scale
Add

Triad

743.427

691.064
813.235

784.277

0.7086

0.7603
0.9681

1.0044

3.76

197.719

183.793
216.285

208.584

O3

Pandaboard ES 1 Copy

Scale
Add

Triad

998.482

1008.503
808.591

934.027

0.5254

0.5209
0.9733

0.8423

3.81

262.068

264.698
212.228

245.151

-O3 -fprefetch-
loop-arrays 

-march=armv7-a 
-mtune=cortex-a9

Pandaboard ES 2 Copy

Scale
Add

Triad

1209.681

1227.748
949.268

1251.933

0.4346

0.4284
0.8305

0.6300

4.33

279.372

283.544
219.230

289.130

-O3 -fprefetch-
loop-arrays 

-march=armv7-a 
-mtune=cortex-a9

Table 7.3: Results for STREAM on the Pandaboard ES

As explained in Chapter 3, the RAM on the Pandaboard ES board is a 1 GB dual 

channel  LPDDR2  memory.  The  peak  transfer  rate  possible  with  the  LPDDR2 



technology  is  given  as  32Gbps  or  4  GB/s  [53].  However  we can  lose  memory 

bandwidth due to various reasons and therefore do not expect to attain full  peak 

bandwidth while running the benchmark.

We  see  that  between  the  O2  and  O3  optimization  levels  there  is  almost  no 

improvement in memory bandwidth obtained for the 4 kernels. When the option to 

prefetch memory is added, a drastic increase in memory bandwidth is obtained. The 

-fprefetch-loop-arrays flag  tells  the  compiler  to  generate  instructions  to  prefetch 

memory on platforms that support this feature. With the multi-threaded version of 

STREAM we get further improvement for all 4 kernels. 

Figures 7.6 shows the memory bandwidth per second results obtained for both the 

single and multi threaded versions of STREAM.

Figure 7.6: STREAM performance results on Pandaboard using O3 and prefetch flags



Figure 7.7: STREAM PPW results on Pandaboard using O3 and prefetch flags

When the STREAM benchmark was run with 2 threads on the Pandaboard, we did 

not see linear increase in performance. However the second core on the Pandaboard 

used more than half a Watt of power. Hence from Figure 7.7 we see that the 

MB/Watt metrics when running 2 threads is only marginally better than the single 

threaded version.

Machine Num. 
Threads

Function Rate 
(MB/s)

Avg. 
Time 
(secs)

Avg. 
Power 
(Watts)

PPW Compiler 
Flags

Raspberry Pi 
(Debian armel)

1 Copy

Scale

Add

Triad

193.976

109.252

119.608

78.073

0.5440

0.9784

1.3554

2.0425

2.511

77.250

43.509

47.633

31.092

O3

Raspberry Pi 
(Debian armel)

1 Copy

Scale

Add

Triad

194.126

166.799

158.872

98.915

0.5436

0.6486

1.0367

1.6502

2.593

74.865

64.326

61.269

38.146

-O3 
-fprefetch-
loop-arrays



Raspberry Pi 
(Raspbian)

1 Copy

Scale

Add

Triad

190.442

181.604

175.529

173.916

0.5516

0.5787

0.8974

0.9077

2.35

81.039

77.278

74.693

74.006

O3

Raspberry Pi 
(Raspbian)

1 Copy

Scale

Add

Triad

375.559

229.766

193.428

239.299

0.2801

0.4598

0.8147

0.6587

2.369

158.530

96.988

81.649

101.012

-O3 
-fprefetch-
loop-arrays

Table 7.3: Results for STREAM on the Raspberry Pi

The STREAM benchmark with the various compiler  optimization  levels  and the 

prefetch option was run on the Raspberry Pi running both the Debian armel and the 

Raspbian versions of Linux. The Raspberry Pi has a 256 MB RAM however we 

have configured the CPU/GPU split as 224/32 MB. The size of the data used was 

150 MB. We see that adding the prefetch flag on the Debian armel version, we get a 

slight improvement in memory bandwidth for the scale, add and triad functions. 

The Raspberry Pi running Raspbian on the other hand has the L2 cache available for 

use by the CPU and hence we expect to see better improvement in performance. As 

shown in Table 7.3 the Raspbian version is able to attain better memory bandwidth 

for the scale, add and triad operations than the Debian armel when just the O3 flags 

is used. When the  -fprefetch-loop-arrays flag is used in conjunction with the O3 

flag, we see that the Raspbian version is able to achieve much higher bandwidth for 

all 4 operations. This is mainly due to the availability of the 128 KB L2 cache on the 

Raspbian.



Figure 7.8: STREAM performance results on the Raspberry Pi using O3 & prefetch flags

Figure 7.9: STREAM PPW results on the Raspberry Pi using O3 & prefetch flags

The performance per watt (MB/watt) measurement on the Raspberry Pi running both 

Debian armel and Raspbian is shown in Figure 7.9. Here we see that the Raspbian 

version is able to achieve better memory bandwidth using lesser power than the 



Debian armel version. Thereby the performance per watt on the Raspbian is superior 

to that of the Debian armel version.

7.3.1 PPW comparison with Intel Atom and Intel Xeon

In Table  7.8 we see  the bandwidth  per  watt  comparison of  the  Pandaboard and 

Raspberry Pi versus that of the Intel Xeon and Intel Atom. The results for the Xeon 

and Atom were taken from a previous MSc. project on low power HPC.

Number of Threads PPW ratio type Function PPW ratio

1 Pandaboard / Intel Xeon Copy
Scale
Add
Triad

8.495
8.575
6.322
7.214

1 Pandaboard / Intel Atom Copy
Scale
Add
Triad

4.013
4.574
3.077
4.820

2 Pandaboard / Intel Xeon Copy
Scale
Add
Triad

9.125
9.185
6.531
8.509

2 Pandaboard / Intel Atom Copy
Scale
Add
Triad

4.311
4.900
6.531
5.684

1 Raspberry Pi / Intel Xeon Copy
Scale
Add
Triad

5.178
3.168
2.432
2.972

1 Raspberry Pi / Intel Atom Copy
Scale
Add
Triad

2.44
1.67
1.18
1.98

Table 7.8: STREAM PPW comparison with Intel Xeon and Intel Atom

For 4 functions in the STREAM benchmark, the Pandaboard ES outperforms the 

Intel  Xeon by approximately  6 to  9 times in  bandwidth per  watt  measurements. 

When  compared  to  the  the  PPW  of  the  Intel  Atom,  the  Pandaboard  ES  has 

approximately 3 to 5 times the bandwidth per watt metrics for the 4 kernels used in 

the STREAM benchmark.



The Raspberry Pi running Raspbian has approximately 2.5 to 5 times the bandwidth 

per watt metrics when compared to that of the Intel Xeon. The bandwidth per watt of 

the Raspberry Pi is only 1.2 to 2.4 times greater than that of the Intel Atom.

7.4 HPL

The HPL benchmark was only run on the Pandaboard ES cluster. HPL depends on 

the  BLAS library  for  its  basic  vector  and matrix  operations.  HPL also  uses  the 

LAPACK library which is a linear algebra package. We initially downloaded the 

source  code  for  these  libraries  and  compiled  them  manually.  Then  HPL  was 

compiled  using  these  libraries.  However  the  performance  obtained  was  a  small 

fraction of the expected performance on the Pandaboard. The reason for the lack of 

performance was because the BLAS and LAPACK routines  were not  tuned and 

optimized for the Pandaboard ES. Machine specific  BLAS libraries  compiled  by 

vendors such as IBM, Intel,  Sun etc.,  are available  for their  respective hardware 

platforms. For the ARM architecture, we can use an automatic code generator such 

as ATLAS (Automatically Tuned Linear Algebra Software). In order to get the best 

performance for our HPL benchmark, we used the ATLAS 3.10 release. The 3.10 

release has code to detect and optimize for ARM hardware. Specifically the code has 

GEMM routines  implemented  in assembly code using NEON SIMD instructions 

contributed by Vesperix Corporation. The code also has the option of using GEMM 

routines implemented in assembly code that uses VFP instructions. The library also 

has ARM Cortex-A9 specific defaults and supports Linux distributions that use the 

hard-float ABI [54]. 

The HPL benchmark was run on 2, 4, 6, 8, 10 and 12 cores on the Pandaboard 

cluster with the problem size scaled to 80% of the amount of memory available. 

Various  block  sizes  were  experimented  with  and  the  optimal  block  size  was 

determined as 128.



Number of 
cores

Problem size / 
Block size

Performance 
(GFLOPS)

Avg. Power 
(Watts)

PPW 
(GFLOP/Watt)

2 9984 / 128 1.601 5.496 0.2913

4 14592 / 128 2.618 11.06 0.2367

6 17920 / 128 3.641 17.304 0.2104

8 20608 / 128 4.748 23.18 0.2048

10 23168 / 128 5.833 29.256 0.1993

12 25344 / 128 6.484 34.535 0.1877

Table 7.3: HPL results on Pandaboard cluster

HPL Number of 
cores

Problem size / 
Block size

Performance 
(GFLOPS)

Unoptimized 2 9984 / 128 1.590e-01

Optimized 2 9984 / 128 1.601e+00

Unoptimized 12 25344 / 128 8.770e-01

Optimized 12 25344 / 128 6.484e+00

Table 7.4: Comparison of HPL performance using unoptimized and optimized BLAS and LAPACK

We  see  from  Table  7.4  that  there  is  approximately  a  10  times  increase  in 

performance between the unoptimized and optimized BLAS and LAPACK versions 

of the library for the HPL benchmark using 2 cores on a single node. Within a node 

the MPICH2 1.4.1 library uses shared memory for inter process communication and 

therefore there is very little overhead. Even when scaled to 12 cores (6 nodes), we 

see  that  there  is  approximately  a  700%  increase  in  performance  between  the 

optimized and unoptimized versions.



Figure 7.10: Scaling HPL on the Pandaboard cluster

As shown in Figure 7.10 we see that  HPL scales  quite  well  as  we increase  the 

number of cores running the benchmark. We should also note here that the problem 

size is scaled along with the number of cores so that at least 80% of the available 

memory is utilized. The problem size can be input using the HPL.dat file which is 

read by the program during start up. The HPL.dat file also contains information such 

as block size, grid size and process grid ratio. The block size is used for granularity 

and data distribution. Hence a small block size would imply that for data distribution 

there is good load balance. However from a computation perspective, by choosing a 

smaller  block size there is  a risk of data not being reused by the systems cache 

hierarchy. Also there will be an increase in the number of messages communicated 

and for a cluster such as the Pandaboard cluster which uses 10/100 Mbps ethernet, 

this can be expensive. Hence by trial and error we can arrive at an optimal value for 

the block size and this is dependent on the computation/communication ratio of the 

system. The process grid ratio PxQ is chosen such that both P and Q values are as 

close as possible with Q always being the larger of the two.



Figure 7.11: HPL Performance per watt

The performance per watt measurement taken on the Pandaboard cluster shows that 

as the number of nodes running HPL increases, the raw HPL performance obtained 

drops  and  the  power  consumption  of  the  cluster  increases.  Thereby  causing  a 

decrease in the performance per watt metrics. We should note that when there is 

inter-node communication, the network controller is also drawing extra current in 

order to communicate the data though the Ethernet port. This is not the case when 

there  is  interprocess  communication  happening  within  the  node  as  the  MPICH2 

library uses shared memory thereby bypassing the network controller. Hence future 

ARM CPUs should have higher core density to decrease the glue power of each 

node. 

We tried running HPL with only one process per node so that only 1 core in a node 

is  utilized.  This  is  not  a  good option  to  get  a  reasonable  performance  per  watt 

measurement since the other idle core (possibly running OS services) utilizes some 

of the total power and hence we get a decreased performance per watt ratio.



Figure 7.12: Power utilization of the 12 core Pandaboard cluster while running HPL

From the power consumption graph shown in Figure 7.12, we see that there is a 

surge is utilization of power at the beginning of the HPL benchmark. During the 

start up of HPL, there is initialization and setup activity taking place. Also there are 

communication patterns using broadcast messages to all processes within the cluster. 

Eventually  the power consumption  settles  at  around 34 Watts.  The peaks in  the 

power consumption graph could represent phases in the benchmark where there is 

communication activity going on between the processes.

7.5 Linpack

The Linpack benchmark was run on the Raspberry Pi boards running the Debian 

armel  and  Raspbian  Linux  versions.  The  array  size  used  was  200x200.  The 

benchmark calculates the average rolled and unrolled double precision floating point 

performance. This benchmark is of interest to us mainly to compare the performance 

of the Raspberry Pi when it uses the soft-float abi (Debian armel) versus the hard-

float abi (Raspbian).



Operating 
System

KFLOPS Avg. Power 
(Watts)

KFLOP/Watt Compiler Flags

Debian armel 8199.005 2.165 3787.069 -O3

Debian armel 8719.577 2.17 4018.238 -O3 -fprefetch-
loop-arrays

Raspbian 42256.41 2.18 19383.674 -O3

Raspbian 43084.967 2.18 19763.746 -O3 -mfloat-
abi=hard 

-mfpu=vfp

Raspbian 53593.496 2.16 24811.803 -O3 -fprefetch-
loop-arrays 

-mfloat-abi=hard 
-mfpu=vfp

Table 7.5: Linpack results on the Raspberry Pi

We see from Table 7.5 that the Raspberry Pi running Debian armel is only able to 

achieve a mere 8.7 MFLOPS when compiled with the optimization level 3 and the 

prefecth flag. In our analysis of the STREAM benchmark we observed that since the 

Debian armel does not use the L2 cache, there is very little performance gain when 

data  is  prefetched from memory.  Also the Debian armel  uses  the soft-float  ABI 

where the compiler emulates floating point arithmetic by means of library calls in 

software. This way of performing floating-point arithmetic can be slow and hence 

there is a loss of performance especially since the ARM11 CPU does have a VFP 

unit.

In the Raspbian version, the compiler is able to generate VFP hardware floating-

point instructions using the VFP ABI. With this ABI, the VFP registers are used to 

pass function arguments and return values, thereby resulting in faster floating-point 

code. The Raspbian OS also utilizes the 128 KB L2 cache and hence adding the 

prefetch flag during compilation, the compiler is able to prefetch data from memory 

and store it in the cache for future access. From Figure 7.13 we see that the Raspbian 

version delivers approximately  6 times better floating-point performance than the 

Debian armel version.



Figure 7.13: Linpack performance on Raspberry Pi

It is also interesting to find that the Raspberry Pi running Raspbian uses the same 

amount of power as the Raspberry Pi running Debian armel while giving 6 times the 

performance. Hence the performance per watt obtained on the Raspbian is 6 times 

the  performance  per  watt  obtained on the  Debian  armel.  This  clearly  shows the 

importance of the hardware floating-point unit and the L2 cache.

Figure 7.13: Linpack performance per watt on Raspberry Pi



7.6 Ping Pong

The ping pong benchmark was implemented in C using MPI to exchange a message 

between 2 processes for a certain number of iterations. The benchmark measures the 

latency and bandwidth of MPI communication. We executed the benchmark for both 

inter-node as well and intra-node MPI communication. The MPICH2 1.4.1 library 

uses  the  Nemesis  channel  which  supports  multiple  network  protocols  and  uses 

shared memory communication within the node.

From Figure  7.14  we  see  that  the  benchmark  begins  by  exchanging  an  8  byte 

message and with each step the message size doubles. There is a gradual increase in 

the latency until the message size is 64 KB. After this point, there is a steep increase 

in the communication latency. Similarly the bandwidth keeps increasing till the 64 

KB mark. However when the message size reaches 128 KB, there is a drop in the 

bandwidth before resuming increasing again. The reason for this behaviour is due to 

the switch in messaging protocol at 128KB message size. 

Figure 7.14: Ping Pong inter-node latency and bandwidth



MPICH2 uses 2 protocols Eager and Rendezvous which are internal to MPI in order 

to accomplish message delivery. The Eager protocol is used for small messages up 

to a certain size. It assumes that a message sent from one process can be stored on 

the  receiving  process  and  hence  does  not  wait  for  an  acknowledgement  from a 

matching receive. The receiving process buffers the message upon arrival even if a 

receive has not been posted. The Rendezvous protocol requires an acknowledgement 

from the receiving process in order for the send operation to complete. This protocol 

is generally used for large messages since there cannot be any assumptions made 

regarding the buffer space available on the receiving process [55].

The advantage of the Eager protocol is that there is no acknowledgement required 

from  the  receiving  process  and  therefore  there  is  no  synchronization.  The 

disadvantage is that it is not scalable if there are many senders as there is significant 

buffering required. Also buffering can take up CPU cycles on the receivers side. 

Thee Rendezvous protocol on the other hand is scalable as there is no buffer space 

needed  for  the  data  payload  on  the  receivers  side.  However,  since  there  is 

handshaking taking place between the sender and receiver we get higher latency. 

The Eager limit message size in the MPICH2 1.4.1 has been set to 128 KB [56]. 

When  the  message  size  is  greater  than  or  equal  to  128  KB,  the  MPI  runtime 

automatically switches to using the Rendezvous protocol.

In  Figure  7.15  we  see  the  ping  pong  results  for  the  intra-node  latency  and 

bandwidth.  Since  the  MPI  library  uses  shared  memory  for  intra-node 

communication, the latency is extremely low. Also we are able to reach a maximum 

bandwidth of almost 1.2 GB/s. If future versions of the Pandaboard support gigabit 

Ethernet,  this  difference  in  bandwidth  between  the  inter  and  intra  node 

communication will  be greatly reduced. MPICH2 uses the TCP/IP for inter-node 

communication and can add to the communication latency. Using a protocol such as 

Open-MX could reduce this latency for inter-node communication further [39].



Figure 7.15: Ping Pong intra-node latency and bandwidth



7.7 NAS Parallel Benchmarks

Two  benchmarks  from  the  NAS  parallel  benchmark  suite  were  run  on  the 

Pandaboard cluster. In the sections below, we will look at the results produced by 

these benchmarks.

7.7.1 Embarrassingly Parallel (EP)

Number of 
Processes

Problem Size Mop/s Avg. Power 
(Watts)

PPW 
(Mop/Watt)

2 536870912 10.24 4.99 2.052

4 2147483648 20.38 11.13 1.831

6 2147483648 30.42 16.378 1.857

8 2147483648 40.49 21.304 1.900

10 8589934592 50.77 28.893 1.757

12 8589934592 60.61 35.422 1.711

Table 7.6: Embarrassingly Parallel benchmark results on the Pandaboard cluster

The EP benchmark was run on the Pandaboard cluster to measure the performance 

per watt for problems where there is very little communication between the MPI 

processes in the cluster. As shown in Table 7.6 the problem was scaled up to 12 

cores with an increase in problem size at a certain stage. This was done to ensure 

that the benchmark ran for at least 1 minute. 

From Figure 7.16 we see that  the problem scales  quite  well  on the  Pandaboard 

cluster. For 2 cores, we get are able to perform approximately 10 million operations 

per second and when scaled up to 12 cores we get just over 60 million operations per 

second . Hence the performance obtained is directly proportional to the number of 

cores used. This is mainly because there is good load balance across the various 

cores  in  the  cluster  and  also  very  little  communication  between  them.  Hence 



increasing the number of cores while increasing the problem size gives us almost 

linear scaling.

Figure 7.16: Embarrassingly Parallel benchmark

Figure 7.17: Embarrassingly Parallel performance per watt



We see from Figure 7.17 that scaling the EP benchmark to more cores leads to a 

decrease in the performance per watt measured. This is mainly because even though 

the performance scales linearly, the power used does not. For each node (2 cores) 

being  added  to  the  benchmark  measurement,  the  average  power  used  does  not 

increase by 4.99 watts (average power used for 2 cores). Instead there is some extra 

usage of power. If the power used also scaled linearly,  we could have a linearly 

scaling PPW reading which is the ideal scenario.

7.7.2 3D Fast Fourier Transform (FT)

The FFT benchmark was run on the cluster to mainly test the raw performance and 

performance per watt when there is a high amount of network activity. The FFT 

benchmark uses MPI all to all communication pattern.

Number of 
processes

Problem Size Mop/s Avg. Power 
(Watts)

PPW 
(Mop/Watt)

1 256x256x128 140.47 3.654 38.442

2 256x256x128 209.46 4.730 44.283

4 512x256x256 102.35 10.84 9.441

8 512x256x256 243.11 23.89 10.172

Table 7.7: 3D FFT benchmark results on the Pandaboard cluster

The number of processes used to run the 3D FFT benchmark should be a power of 2. 

Hence as shown in Table 7.7, we see that this benchmark was executed on up to 8 

cores in the cluster. The problem size was also scaled along with the number of 

cores in order to ensure that benchmark runs for a reasonably long period of time.

We see from Figure 7.18 that at 4 cores, there is a drop in performance of the FFT 

benchmark. The number of operations per second obtained is less than that obtained 

when the benchmark is run on 1 and 2 cores. This is mainly because for the 1 and 2 

core runs, the interprocess communication uses shared memory for all MPI all to all 

messages. Communication has much higher bandwidth and very low latency when 



compared to inter-node TCP/IP based communication.  The performance per watt 

measurement shown in Figure 7.19 illustrates the point that network communication 

on the Pandaboard cluster is expensive. For a cluster that does not have a high speed 

inter-connect, a problem involving little or no communication would be suitable.

Figure 7.18: 3D Fast Fourier Transform performance

Figure 7.19: 3D Fast Fourier Transform performance per watt



8 Future Work

There is a lot of scope for further research and experimentation in the area of low 

power HPC. The ARM processors  used in  this  project  were 32-bit,  had a  much 

lower clock speed and memory capacity when compared to some of the commonly 

used processors in HPC such as Intel and AMD. Future ARM processors such as the 

Cortex-A15 and the newly released ARMv8 architecture are definite candidates to 

compete against the big players in HPC.

Future projects could use an ARM SoC that is based on the ARMv8 architecture. 

One possible candidate is Nvidia's Project Denver processors which are on track to 

hit the mobile market in 2013 [58]. Nvidia is also planning to release its Tegra 4 

SoCs  in  2013  which  has  a  quad-core  ARM  Cortex-A15  processor.  Future 

Pandaboard designs could use the OMAP5 SoCs from Texas Instruments which also 

use the ARM Cortex-A15 CPU.

ARM processor designs in the future will have higher core densities. As we move to 

4, 8 and 16 cores on the chip, the glue power used by memory, network controller 

and disk/SD card become a small fraction of the total power used by the node. This 

scenario is ideally suited for projects like this one where the CPUs performance per 

watt metrics is of importance.

There is also scope for exploring the possibility of using the hybrid MPI-OpenMP 

programming model and compare its performance per watt metrics against a pure 

MPI implementation when the core count goes up.

The Ubuntu 12.10 release installed on the cluster was a development branch image. 

As a result there were no kernel headers available for this specific kernel version 

(3.4.0-201-omap4). Hence we were unable to compile and configure OpenMX on 

the Pandaboard ES. Once Ubuntu 12.10 is officially released, we could recompile 

MPICH2 with OpenMX support and benchmark the cluster. We should see some 

improvement in inter-node communication latency.



In this project we have mainly used industry standard benchmarks to test various 

performance aspects of the cluster. We can run real scientific applications such as 

Molecular Dynamics,  simulations used in biology and chemistry on the Pandaboard 

cluster. This will give us a realistic scenario of using ARM processors in HPC.



9 Conclusions

ARM processors have created a lot of interest among HPC community due to its low 

power usage. This project attempts to use ARM based single board computers to 

build a cluster. The focus of the project is to measure the performance per watt of 

the ARM boards by running a variety of benchmarks. We were able to successfully 

build  the  cluster  using  open-source  software  tools  and  run  benchmarks  on  the 

system.

The Pandaboard ES which uses the ARM Cortex-A9 processor turns out to be very 

energy-efficient for the performance it is able to deliver. This is evident from the 

performance  per  watt  results  obtained  on  the  Pandaboard.  The  Pandaboard 

consistently  outperforms machines  like the Intel  Atom and Intel  Xeon when the 

metrics used is performance per watt.  From a previous comparison study on low 

power HPC [37], we saw that for most benchmarks the ARM (Marvell 88F6281) 

processor gave better  performance per watt  results  that  the Intel  Atom and Intel 

Xeon processors.  The results  obtained  in  this  project  show that  processors  with 

modern  ARM  architecture  such  as  ARMv7  not  only  provide  very  good  raw 

performance,  they  also  use lesser  energy than  older  ARM architectures,  thereby 

widening the performance per watt gap.

We  executed  the  benchmarks  CoreMark,  STREAM  and  HPL by  compiling  the 

source code using various  flags and optimization levels.  There was a  significant 

improvement in performance when flags to unroll loops, vectorize code and prefetch 

data  from  memory  were  added,  depending  on  the  operations  performed  in  the 

benchmarks.  The ARM Cortex-A9 processor provides NEON SIMD instructions. 

Although  the  NEON  instructions  supports  only  32-bit  floating  point  SIMD 

operations, we saw a significant improvement in performance between the ATLAS 

implementation that used NEON SIMD to implement GEMM routines versus the 

unoptimized ATLAS version. This reinforces the point that tuning the code for the 

architecture  and  usage  of  compiler  optimization  flags  is  crucial  to  obtain  high 

performance.



The Raspberry Pi boards were benchmarked using the Debian armel and Raspbian 

versions of Linux. The Raspbian uses the hard-float ABI and delivers much higher 

floating point performance when compared to the Debian armel which uses the soft-

float ABI. The Raspbian also outperformed the Debian armel when the STREAM 

benchmark was executed on the Raspberry Pi. The reason for this is because the 

Raspbian utilizes  the 128 KB L2 cache while the Debian armel does not. These 

results are indicative of the role the operating system plays in obtain performance 

from the hardware. 

When  the  single  threaded  CoreMark  performance  per  watt  metrics  is  compared 

between the Raspberry Pi and the Pandaboard ES, we find that the Raspberry Pi is 

not too far behind the Pandaboard even though the Pandaboard performs 2.5 times 

better  in  terms  of  raw  performance.  This  is  mainly  due  to  the  lower  power 

consumption of the Raspberry Pi during peak load. The Raspberry Pi also uses much 

lower power when running the STREAM benchmark compared to the Pandaboard 

ES.

The ARM architecture roadmap clearly shows the path that is being taken in the 

coming years. ARM currently dominates the mobile market and is poised to enter 

the high performance server market. In order to find a solution to the high power 

consumption of HPC machines, we need to make changes in several layers of the 

hardware and software stack. ARM based processor technology could lead the way 

by starting at the bottom most level which is the hardware.



Appendix A Benchmark Sample Results

A-1 Sample output of CoreMark benchmark on the Pandaboard ES

2K performance run parameters for coremark.
CoreMark Size    : 666
Total ticks      : 309747
Total time (secs): 309.747000
Iterations/Sec   : 6456.882553
Iterations       : 2000000
Compiler version : GCC4.7.1
Compiler flags   : -O3 -funroll-loops -g -DMULTITHREAD=2 -DUSE_PTHREAD 
-DPERFORMANCE_RUN=1  -lrt
Parallel PThreads : 2
Memory location  : Please put data memory location here
(e.g. code in flash, data on heap etc)
seedcrc          : 0xe9f5
[0]crclist       : 0xe714
[1]crclist       : 0xe714
[0]crcmatrix     : 0x1fd7
[1]crcmatrix     : 0x1fd7
[0]crcstate      : 0x8e3a
[1]crcstate      : 0x8e3a
[0]crcfinal      : 0x988c
[1]crcfinal      : 0x988c
Correct operation validated. See readme.txt for run and reporting rules.
CoreMark  1.0  :  6456.882553  /  GCC4.7.1  -O3  -funroll-loops  -g 
-DMULTITHREAD=2  -DUSE_PTHREAD  -DPERFORMANCE_RUN=1   -lrt  / 
Heap / 2:PThreads

A-2 Sample output of CoreMark benchmark on the Raspberry Pi

2K performance run parameters for coremark.
CoreMark Size    : 666
Total ticks      : 711340
Total time (secs): 711.340000
Iterations/Sec   : 1405.797509
Iterations       : 1000000
Compiler version : GCC4.4.5
Compiler flags   : -O3 -funroll-loops -DPERFORMANCE_RUN=1  -lrt
Memory location  : Please put data memory location here
(e.g. code in flash, data on heap etc)
seedcrc          : 0xe9f5
[0]crclist       : 0xe714
[0]crcmatrix     : 0x1fd7



[0]crcstate      : 0x8e3a
[0]crcfinal      : 0x988c
Correct operation validated. See readme.txt for run and reporting rules.
CoreMark  1.0  :  1405.797509  /  GCC4.4.5  -O3  -funroll-loops 
-DPERFORMANCE_RUN=1  -lrt / Heap

A-3 Sample output of STREAM benchmark on the Pandaboard ES

-------------------------------------------------------------
STREAM version $Revision: 5.9 $
-------------------------------------------------------------
This system uses 8 bytes per DOUBLE PRECISION word.
-------------------------------------------------------------
Array size = 32768000, Offset = 0
Total memory required = 750.0 MB.
Each test is run 10 times, but only
the *best* time for each is used.
-------------------------------------------------------------
Number of Threads requested = 2
-------------------------------------------------------------
Printing one line per active thread....
Printing one line per active thread....
-------------------------------------------------------------
Your clock granularity/precision appears to be 29 microseconds.
Each test below will take on the order of 529326 microseconds.
   (= 18252 clock ticks)
Increase the size of the arrays if this shows that
you are not getting at least 20 clock ticks per test.
-------------------------------------------------------------
WARNING -- The above is only a rough guideline.
For best results, please be sure you know the
precision of your system timer.
-------------------------------------------------------------
Function      Rate (MB/s)   Avg time     Min time     Max time
Copy:        1209.6816       0.4346       0.4334       0.4357
Scale:       1227.7488       0.4284       0.4270       0.4295
Add:          949.2687       0.8305       0.8285       0.8340
Triad:       1251.9332       0.6300       0.6282       0.6372
-------------------------------------------------------------
Solution Validates
-------------------------------------------------------------



A-4 Sample output of STREAM benchmark on the Raspberry Pi

-------------------------------------------------------------
STREAM version $Revision: 5.9 $
-------------------------------------------------------------
This system uses 8 bytes per DOUBLE PRECISION word.
-------------------------------------------------------------
Array size = 6553600, Offset = 0
Total memory required = 150.0 MB.
Each test is run 10 times, but only
the *best* time for each is used.
-------------------------------------------------------------
Printing one line per active thread....
-------------------------------------------------------------
Your clock granularity/precision appears to be 2 microseconds.
Each test below will take on the order of 257426 microseconds.
   (= 128713 clock ticks)
Increase the size of the arrays if this shows that
you are not getting at least 20 clock ticks per test.
-------------------------------------------------------------
WARNING -- The above is only a rough guideline.
For best results, please be sure you know the
precision of your system timer.
-------------------------------------------------------------
Function      Rate (MB/s)   Avg time     Min time     Max time
Copy:         375.5592       0.2801       0.2792       0.2814
Scale:        229.7664       0.4598       0.4564       0.4780
Add:          193.4280       0.8147       0.8132       0.8153
Triad:        239.2993       0.6587       0.6573       0.6596
-------------------------------------------------------------
Solution Validates
-------------------------------------------------------------



A-5 Sample output of HPL benchmark on the Pandaboard ES for 12 cores 

using unoptimized BLAS and LAPACK

===========================================================
=====================
HPLinpack 2.0  --  High-Performance Linpack benchmark  --   September 10, 2008
Written  by A. Petitet  and R. Clint  Whaley,   Innovative  Computing  Laboratory, 
UTK
Modified by Piotr Luszczek, Innovative Computing Laboratory, UTK
Modified by Julien Langou, University of Colorado Denver
===========================================================
=====================
An explanation of the input/output parameters follows:
T/V    : Wall time / encoded variant.
N      : The order of the coefficient matrix A.
NB     : The partitioning blocking factor.
P      : The number of process rows.
Q      : The number of process columns.
Time   : Time in seconds to solve the linear system.
Gflops : Rate of execution for solving the linear system.

The following parameter values will be used:
N      :   25344 
NB     :     128 
PMAP   : Row-major process mapping
P      :       3 
Q      :       4 
PFACT  :   Right 
NBMIN  :       4 
NDIV   :       2 
RFACT  :   Crout 
BCAST  :  1ringM 
DEPTH  :       1 
SWAP   : Mix (threshold = 64)
L1     : transposed form
U      : transposed form
EQUIL  : yes
ALIGN  : 8 double precision words
--------------------------------------------------------------------------------
- The matrix A is randomly generated for each test.
- The following scaled residual check will be computed:
      ||Ax-b||_oo / ( eps * ( || x ||_oo * || A ||_oo + || b ||_oo ) * N )
- The relative machine precision (eps) is taken to be               1.110223e-16
- Computational tests pass if scaled residuals are less than                16.0
===========================================================
=====================



T/V                N    NB     P     Q               Time                 Gflops
--------------------------------------------------------------------------------
WR11C2R4       25344   128     3     4           12376.00              8.770e-01
--------------------------------------------------------------------------------
||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)=        0.0039910 ...... PASSED
===========================================================
=====================
Finished      1 tests with the following results:
              1 tests completed and passed residual checks,
              0 tests completed and failed residual checks,
              0 tests skipped because of illegal input values.
--------------------------------------------------------------------------------
End of Tests.
===========================================================
=====================

A-6 Sample output of HPL benchmark on the Pandaboard ES for 2 cores using 

ATLAS 3.10 and compiled with flags for ARM

===========================================================
=====================
HPLinpack 2.0  --  High-Performance Linpack benchmark  --   September 10, 2008
Written  by A. Petitet  and R. Clint  Whaley,   Innovative  Computing  Laboratory, 
UTK
Modified by Piotr Luszczek, Innovative Computing Laboratory, UTK
Modified by Julien Langou, University of Colorado Denver
===========================================================
=====================
An explanation of the input/output parameters follows:
T/V    : Wall time / encoded variant.
N      : The order of the coefficient matrix A.
NB     : The partitioning blocking factor.
P      : The number of process rows.
Q      : The number of process columns.
Time   : Time in seconds to solve the linear system.
Gflops : Rate of execution for solving the linear system.

The following parameter values will be used:
N      :    9984 
NB     :     128 
PMAP   : Row-major process mapping
P      :       1 
Q      :       2 
PFACT  :   Right 



NBMIN  :       4 
NDIV   :       2 
RFACT  :   Crout 
BCAST  :  1ringM 
DEPTH  :       1 
SWAP   : Mix (threshold = 64)
L1     : transposed form
U      : transposed form
EQUIL  : yes
ALIGN  : 8 double precision words
------------------------------------------------------------------------------
- The matrix A is randomly generated for each test.
- The following scaled residual check will be computed:
      ||Ax-b||_oo / ( eps * ( || x ||_oo * || A ||_oo + || b ||_oo ) * N )
- The relative machine precision (eps) is taken to be               1.110223e-16
- Computational tests pass if scaled residuals are less than                16.0
===========================================================
=====================
T/V                N    NB     P     Q               Time                 Gflops
--------------------------------------------------------------------------------
WR11C2R4        9984   128     1     2             414.41              1.601e+00
--------------------------------------------------------------------------------
||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)=        0.0013786 ...... PASSED
===========================================================
=====================
Finished      1 tests with the following results:
              1 tests completed and passed residual checks,
              0 tests completed and failed residual checks,
              0 tests skipped because of illegal input values.
--------------------------------------------------------------------------------
End of Tests.
===========================================================
=====================

A-7 Sample output of HPL benchmark on the Pandaboard ES for 12 cores 

using ATLAS 3.10 and compiled with flags for ARM

===========================================================
=====================
HPLinpack 2.0  --  High-Performance Linpack benchmark  --   September 10, 2008
Written  by A. Petitet  and R. Clint  Whaley,   Innovative  Computing  Laboratory, 
UTK
Modified by Piotr Luszczek, Innovative Computing Laboratory, UTK
Modified by Julien Langou, University of Colorado Denver



===========================================================
=====================
An explanation of the input/output parameters follows:
T/V    : Wall time / encoded variant.
N      : The order of the coefficient matrix A.
NB     : The partitioning blocking factor.
P      : The number of process rows.
Q      : The number of process columns.
Time   : Time in seconds to solve the linear system.
Gflops : Rate of execution for solving the linear system.

The following parameter values will be used:
N      :   25344 
NB     :     128 
PMAP   : Row-major process mapping
P      :       3 
Q      :       4 
PFACT  :   Right 
NBMIN  :       4 
NDIV   :       2 
RFACT  :   Crout 
BCAST  :  1ringM 
DEPTH  :       1 
SWAP   : Mix (threshold = 64)
L1     : transposed form
U      : transposed form
EQUIL  : yes
ALIGN  : 8 double precision words
--------------------------------------------------------------------------------
- The matrix A is randomly generated for each test.
- The following scaled residual check will be computed:
      ||Ax-b||_oo / ( eps * ( || x ||_oo * || A ||_oo + || b ||_oo ) * N )
- The relative machine precision (eps) is taken to be               1.110223e-16
- Computational tests pass if scaled residuals are less than                16.0
===========================================================
=====================
T/V                N    NB     P     Q               Time                 Gflops
--------------------------------------------------------------------------------
WR11C2R4       25344   128     3     4            1673.99              6.484e+00
--------------------------------------------------------------------------------
||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)=        0.0009402 ...... PASSED
===========================================================
=====================
Finished      1 tests with the following results:
              1 tests completed and passed residual checks,
              0 tests completed and failed residual checks,
              0 tests skipped because of illegal input values.



--------------------------------------------------------------------------------
End of Tests.
===========================================================
=====================

A-8 Sample output of Ping Pong benchmark on the Pandaboard ES using 2 

nodes.

Message Size (Bytes) Latency (s) Bandwidth (MB/s)

8
16
32
64
128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288
1048576
2097152
4194304
8388608

0.000392
0.000389
0.000396
0.000420
0.000463
0.000545
0.000618
0.000771
0.000783
0.001004
0.001218
0.002074
0.003435
0.006141
0.014470
0.027330
0.046816
0.092237
0.179291
0.356498
0.714353

0.019458
0.039207
0.077099
0.145339
0.263774
0.447762
0.790108
1.265843
2.494470
3.891370
6.415783
7.532569
9.097896
10.177662
8.638434
9.147350
10.680017
10.841607
11.155026
11.220265
11.198949



A-8  Sample  output  of  embarrassingly  parallelism  benchmark  on  the 

Pandaboard ES for 12 cores

NAS Parallel Benchmarks 3.2 -- EP Benchmark
Number of random numbers generated:    8589934592  
Number of active processes:                    12
EP Benchmark Results:
CPU Time =  141.7163
N = 2^32
No. Gaussian Pairs =    3373275903.
Sums =     4.764367927993350D+04   -8.084072988045315D+04
Counts:
  0    1572172634.
  1    1501108549.
  2     281805648.
  3      17761221.
  4        424017.
  5          3821.
  6            13.
  7             0.
  8             0.
  9             0.

 EP Benchmark Completed.
 Class           =                        C
 Size            =               8589934592  
 Iterations      =                        0
 Time in seconds =                   141.72
 Total processes =                       12
 Compiled procs  =                       12
 Mop/s total     =                    60.61
 Mop/s/process   =                     5.05
 Operation type  = Random numbers generated
 Verification    =               SUCCESSFUL
 Version         =                      3.2
 Compile date    =              07 Aug 2012

 Compile options:
    MPIF77       = mpif77
    FLINK        = $(MPIF77)
    FMPI_LIB     = -L/usr/local/mpi/lib -lfmpich
    FMPI_INC     = -I/usr/local/mpi/include
    FFLAGS       = -O3
    FLINKFLAGS   = -O3
    RAND         = randi8



 Please send the results of this run to:
 NPB Development Team 
 Internet: npb@nas.nasa.gov
 If email is not available, send this to:
 MS T27A-1
 NASA Ames Research Center
 Moffett Field, CA  94035-1000
 Fax: 650-604-3957

A-8 Sample output of 3D FFT benchmark on the Pandaboard ES for 8 cores

 NAS Parallel Benchmarks 3.2 -- FT Benchmark
 No input file inputft.data. Using compiled defaults
 Size                :  512x 256x 256
 Iterations          :          20
 Number of processes :           8
 Processor array     :       1x  8
 Layout type         :          1D

 T =    1     Checksum =    5.177643571579D+02    5.077803458597D+02
 T =    2     Checksum =    5.154521291263D+02    5.088249431599D+02
 T =    3     Checksum =    5.146409228650D+02    5.096208912659D+02
 T =    4     Checksum =    5.142378756213D+02    5.101023387619D+02
 T =    5     Checksum =    5.139626667737D+02    5.103976610618D+02
 T =    6     Checksum =    5.137423460082D+02    5.105948019802D+02
 T =    7     Checksum =    5.135547056878D+02    5.107404165783D+02
 T =    8     Checksum =    5.133910925467D+02    5.108576573661D+02
 T =    9     Checksum =    5.132470705390D+02    5.109577278523D+02
 T =   10     Checksum =    5.131197729984D+02    5.110460304483D+02
 T =   11     Checksum =    5.130070319283D+02    5.111252433800D+02
 T =   12     Checksum =    5.129070537032D+02    5.111968077719D+02
 T =   13     Checksum =    5.128182883503D+02    5.112616233064D+02
 T =   14     Checksum =    5.127393733383D+02    5.113203605551D+02
 T =   15     Checksum =    5.126691062021D+02    5.113735928093D+02
 T =   16     Checksum =    5.126064276005D+02    5.114218460548D+02
 T =   17     Checksum =    5.125504076570D+02    5.114656139760D+02
 T =   18     Checksum =    5.125002331721D+02    5.115053595966D+0
 T =   19     Checksum =    5.124551951846D+02    5.115415130407D+02
 T =   20     Checksum =    5.124146770029D+02    5.115744692211D+02

 Result verification successful
 class = B
 FT Benchmark Completed.
 Class           =                        B
 Size            =            512x 256x 256



 Iterations      =                       20
 Time in seconds =                   378.65
 Total processes =                        8
 Compiled procs  =                        8
 Mop/s total     =                   243.11
 Mop/s/process   =                    30.39
 Operation type  =           floating point
 Verification    =               SUCCESSFUL
 Version         =                      3.2
 Compile date    =              07 Aug 2012

 Compile options:
    MPIF77       = mpif77
    FLINK        = $(MPIF77)
    FMPI_LIB     = -L/usr/local/mpi/lib -lfmpich
    FMPI_INC     = -I/usr/local/mpi/include
    FFLAGS       = -O3
    FLINKFLAGS   = -O3
    RAND         = randi8

 Please send the results of this run to:
 NPB Development Team 
 Internet: npb@nas.nasa.gov
 If email is not available, send this to:
 MS T27A-1
 NASA Ames Research Center
 Moffett Field, CA  94035-1000
 Fax: 650-604-3957



Appendix B Scripts

B-1 execAll.pl

# Author: Nikilesh Balakrishnan
# Description: Script to execute commands from 
#                      the master on all Pandaboard ES boards
#!/usr/bin/perl -w
use strict;

if($#ARGV != 0)
{

print "Usage: ./execAll <Command>\n";
exit(1);

}
my $command = $ARGV[0];

my @machineList = ();
push(@machineList, "panda1");
push(@machineList, "panda2");
push(@machineList, "panda3");
push(@machineList, "panda4");
push(@machineList, "panda5");
push(@machineList, "panda6");

&execCmd();

sub execCmd
{

foreach my $dest (@machineList)
{

print "Executing command $command on $dest\n";
my $cmd = "ssh $dest '$command'";
my $ret = `$cmd`;
die "Error: $?" if($? != 0);

print "Finished executing command $command on $dest\n";
$ret = &trim($ret);
next if($ret eq "");

print "Output: \n$ret\n";
}

}

sub trim
{



my $string = shift;
$string =~ s/^\s+//;
$string =~ s/\s+$//;
return $string;

}

B-2 getAvg.pl

# Author: Nikilesh Balakrishnan
# Description: Script that calculates the average power used
#!/usr/local/bin/perl -w

use strict;
my $count = 0;
my $totalWatts = 0;

while(<>)
{

chomp;
my ($first, $watt) = split(/ /,$_);

++$count;
$totalWatts += $watt;

}

my $avg = $totalWatts / $count;
print "total power: $totalWatts, count: $count, Avg power: $avg\n";

B-3 initialize.sh

# Author: Nikilesh Balakrishnan
# Description: Script to initialize the pandaboard when it boots up
sudo service idmapd stop
sudo service cron stop
sudo service statd stop
sudo service atd stop
sudo service upstart-socket-bridge stop
sudo service upstart-udev-bridge stop
sudo ntpdate -u -b uk.pool.ntp.org
sudo pbs_mom
sudo cpufreq-set -g performance
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