
Building and benchmarking a low power ARM cluster

Nikilesh Balakrishnan

August 24, 2012

Abstract

Mobile and hand-held devices are on the rise in the consumer market. The future of

innovation in the semiconductor industry will be in ubiquitous computing. HPC is

undergoing a paradigm shift towards low power architectures in order to meet the

power requirements to build an Exascale system. GPGPUs and specialized

architectures such as IBM BG/Q have already started making a mark in achieving

high performance while consuming lesser energy. The HPC community is also

looking at using mobile and embedded devices since the hardware architecture for

these devices have been designed for low power consumption. ARM architecture

processors dominate the mobile and embedded market and is a viable candidate to

build a HPC system.

In this project we built a low power cluster consisting of 6 Pandaboard ES boards.

We also configured 2 Raspberry Pi boards running different versions of Debian

Linux. The goal was to run several benchmarks on the Pandaboard and the

Raspberry Pi boards and analyse the raw performance obtained as well as the power

consumed.

Contents

 Contents...i

 Acknowledgements ..v

1 Introduction...1

1.1 Report Organization...2

2 Background...4

2.1 Exascale Challenge..4
2.2 Low power hardware trends...6

2.2.1 GPU...6
2.2.2 Many Integrated Cores (MIC) ...6
2.2.3 ARM processors ...8
2.2.4 DSP...10

3 Project Hardware..11

3.1 Pandaboard ES...11
3.1.1 ARM Cortex-A9 ..12

3.2 Raspberry Pi...13
3.2.1 ARM11...14

4 Literature Review..15

4.1 Energy efficient HPC systems...15
4.1.1 IBM Blue Gene/Q...15

4.1.1.1 BGQ Desgin...16
4.2 ARM clusters...17

4.2.1 Mont-Blanc BSC...18
4.2.2 Phoronix Pandaboard cluster..19
4.2.3 ARM cluster for HPC in the cloud...21

5 Cluster Design ..22

5.1 Hardware Setup..22
5.2 Operating System Setup...24

5.2.1 Panandboard ES..24
5.2.2 Raspberry Pi..25

5.3 Networking..26
5.4 Software setup..27

5.4.1 C/C++..27
5.4.2 Fortran...28
5.4.3 Message Passing Library..28
5.4.4 Queue Management and Job Scheduling..28
5.4.5 Network File System...29

6 Benchmarking & Power Measurement...30

6.1 CoreMark...30
6.2 STREAM...31
6.3 Linpack..31

i

6.4 HPL..32
6.5 Ping Pong...32
6.6 NAS Parallel Benchmarks...33

6.6.1 Embarrassingly Parallel..33
6.6.2 3D Fast Fourier Transform...34

6.7 Power Measurement...34
6.7.1 Metrics..35

7 Results and Analysis...37

7.1 CPU Frequency Scaling...37
7.1.1 Idle Power Reading...38

7.2 CoreMark...39
7.2.1 PPW comparison to Intel Atom and Intel Xeon.......................................44

7.3 STREAM...45
7.3.1 PPW comparison with Intel Atom and Intel Xeon...................................50

7.4 HPL..51
7.5 Linpack..55
7.6 Ping Pong...58
7.7 NAS Parallel Benchmarks...61

7.7.1 Embarrassingly Parallel (EP)..61
7.7.2 3D Fast Fourier Transform (FT)...63

8 Future Work..65

9 Conclusions...67

 Appendix A Benchmark Sample Results..69

 Appendix B Scripts...80

10 Bibliography ..82

ii

List of Tables
 Table 5.1: Hardware specification for the cluster...23

 Table 5.2: Summary of network configuration...26

 Table 6.1: Shows number of bytes and FLOPS counted in each iteration (Source:
www.cs.virginia.edu/stream)...31

 Table 6.2: Performance Per Watt calculation for various benchmarks36

 Table 7.1: Average idle power usage..38

 Table 7.2: CoreMark performance..40

 Table 7.3: Results for STREAM on the Pandaboard ES..45

 Table 7.3: Results for STREAM on the Raspberry Pi..48

 Table 7.8: STREAM PPW comparison with Intel Xeon and Intel Atom.................50

 Table 7.3: HPL results on Pandaboard cluster..52

 Table 7.4: Comparison of HPL performance using unoptimized and optimized
BLAS and LAPACK..52

 Table 7.5: Linpack results on the Raspberry Pi..56

 Table 7.6: Embarrassingly Parallel benchmark results on the Pandaboard cluster. .61

 Table 7.7: 3D FFT benchmark results on the Pandaboard cluster............................63

iii

List of Figures
 Figure 2.1: Timeframe to reach exascale (Source: Top500.org)5

 Figure 2.1: Image of Intel Xeon Phi coprocessor (Source: www.anandtech.com).....7

 Figure 2.3: The ARM RISC processor roadmap for applications (Source: Richard
Grisenthwaite, 2011 ARM TechCon)..9

 Figure 3.1: Pandaboard ES block diagram (Source: www.pandaboard.org)............11

 Figure 3.2: Raspberry Pi Board layout (Source: www.raspberrypi.org)..................13

 Figure 4.1: Blue Gene/Q Computer Chip (Source: Rudd Haring / IBM Blue Gene
Team)...16

 Figure 4.2: Energy-efficient prototypes roadmap (Source: BSC)............................18

 Figure 4.3: Solar powered 96 core ARM cluster (Source: www.phoronix.com).....20

 Figure 5.1: Project cluster setup..23

 Figure 5.2: Network connectivity...27

 Figure 7.1: Idle power usage over 1 hour...39

 Figure 7.2: Single and multi-threaded performance on Pandaboard ES...................41

 Figure 7.3: PPW for single and multiple threads..42

 Figure 7.4: CoreMark performance on Raspberry Pi..43

 Figure 7.5: CoreMark PPW on the Raspberry Pi..44

 Figure 7.6: STREAM performance results on Pandaboard using O3 and prefetch
flags..46

 Figure 7.7: STREAM PPW results on Pandaboard using O3 and prefetch flags.....47

 Figure 7.8: STREAM performance results on the Raspberry Pi using O3 & prefetch
flags..49

 Figure 7.9: STREAM PPW results on the Raspberry Pi using O3 & prefetch flags49

 Figure 7.10: Scaling HPL on the Pandaboard cluster...53

 Figure 7.11: HPL Performance per watt...54

 Figure 7.12: Power utilization of the 12 core Pandaboard cluster while running HPL
..55

 Figure 7.13: Linpack performance on Raspberry Pi...57

iv

 Figure 7.13: Linpack performance per watt on Raspberry Pi...................................57

 Figure 7.14: Ping Pong inter-node latency and bandwidth.......................................58

 Figure 7.15: Ping Pong intra-node latency and bandwidth.......................................60

 Figure 7.16: Embarrassingly Parallel benchmark...62

 Figure 7.17: Embarrassingly Parallel performance per watt....................................62

 Figure 7.18: 3D Fast Fourier Transform performance..64

 Figure 7.19: 3D Fast Fourier Transform performance per watt................................64

v

Acknowledgements

I would like to thank my supervisor Mr. James Perry for the support and guidance

provided throughout the project. I also thank Mr. Sean McGeever and the helpdesk

team for all the support provided with hardware requirements.

vi

1 Introduction

The large systems used today in HPC are dominated by processors that use the x86

and Power instruction sets supplied by three vendors, Intel, AMD and IBM. These

processors have been designed to mainly cater to the server, desktop PC and laptop

market. The processors provide very good single thread performance but suffer from

high cost and power usage. One of the main goals in building an exascale HPC

system is to stay within a power budget of around 20 MW. In order to achieve this

ambitious goal, other low power processor architectures such as ARM are currently

being explored since these processors have been primarily designed for the mobile

and embedded devices market [1].

There is a growing trend towards using accelerators such as GPGPUs in order to

build energy efficient HPC machines. GPUs offer greater FLOPS/watt than

conventional CPUs [2]. However it can be a challenge to program these devices as

developers are required to learn new programming models in order to utilise them

effectively. This is further complicated by the need for vendor specific compilers

such as Nvidia's CUDA compiler to program Nvidia GPUs in order to extract the

last drop of performance.

Today we see a surge in special custom built machines like the IBM BlueGene/Q

which have been designed for low power consumption while giving high

performance. Top 20 machines in the Green500 as well as the Top500 lists are

currently dominated by the IBM BlueGene/Q systems [3] [4].

Post-PC devices such as tablets, PDAs, smartphones and other mobile devices are

gaining in popularity in the consumer space. This trend is predicted to grow as

companies such as Apple, Google and Microsoft begin investing heavily in future

products aimed at the mobile devices market. ARM processors currently dominate

this space and the increase in demand for these devices will bring down the cost of

manufacture of ARM processors even further.

ARM processors have also started to make an entry into the PC and server market.

Future ARM processors are expected to be much more powerful in terms of

performance while still maintaining low power usage. For the HPC market, this

scenario presents a great opportunity to utilize ARM processors to build large HPC

machines. We already see projects such as Mont-Blanc at the Barcelona

supercomputing centre which plan to use ARM CPUs combined with Nvidia GPUs

to achieve petascale compute performance.

A variety of single board computers such as the Beagleboard, Raspberry Pi and the

Pandaboard have become popular among developers and programming enthusiasts

as they are cheaper than desktop PCs and laptops. These boards use a variety of

system on chips (SoCs) with various ARM architecture CPUs. This has led to the

formation of various ARM development communities who spend time and effort

porting a wide range of operating systems, applications, libraries and tools to the

various ARM architecture currently popular in the market.

In this project we will explore the challenges of building a cluster using these single

board ARM computers. We will also measure the performance of the cluster using

various benchmarks while capturing the power usage. We are already aware of the

performance and power usage of clusters built using commodity processors such as

x86. This project will give us further insight into the progress made by ARM

processors in addressing the issue of performance and power usage which is vital to

HPC.

1.1 Report Organization

Chapter 2 in this report provides a background for the project. In this chapter we

look at some of the factors causing a growth in interest in low power HPC. We look

at some of the main trends in hardware in the recent past and how this trend is

progressing as we move towards the Exascale era. We also look at the road map for

ARM processors in the next few years and how ARM could be a major player in the

high performance computing market.

Chapter 3 provides details about the ARM hardware used in this project. We

examine the components present in the Pandaboard ES and Raspberry Pi boards.

Aspects such as CPU features, memory hierarchy and inter-connect are discussed.

Both these boards use different generations of the ARM architecture hence we can

compare and contrast their capabilities.

In Chapter 4 we look at some of the existing energy-efficient HPC systems and also

low power clusters built using ARM processors. Interest in low power ARM clusters

is a very recent trend and is growing rapidly especially with advances being made in

ARM processor designs.

Chapter 5 provides details regarding the steps taken to build the Pandaboard ES

cluster. Here we will explore the hardware and software challenges encountered and

their respective solutions.

In Chapter 6 and 7 we look at the various benchmarks that were identified to be run

on the Pandaboard ES and the Raspberry Pi boards. We also analyse the

performance and power consumption of these boards. There are 6 dual-core

Pandaboards available and hence we look to scale some of the benchmarks over 12

cores and provide a detailed analysis of the results.

In Chapter 8 and 9 we provide possible improvements in future projects involving

ARM processors and also provide conclusions obtained from undertaking this

project.

2 Background

HPC has seen an exponential growth in computational power over the last couple of

decades. This has been mainly due to the evolution of microprocessor technology.

Until around 2003, chip manufacturers improved the serial performance of their

processors by adding more and more performance optimization technology in

hardware such as branch prediction, speculative execution, increase of on chip cache

sizes etc. The clock frequency of the chips also kept getting faster while the down

side was an increase in power consumption. However due the power wall problem,

manufactures began adding multiple cores on a single chip in order to prevent the

CPU from melting due to overheating [7]. Today, multi-core machines are the norm

and we expect the number of cores within a node to increase in future.

In this chapter we will look at the issue of power consumption of HPC machines and

also explore some of the emerging technologies in hardware to address the problem

of power consumption.

2.1 Exascale Challenge

In 2007, DARPA conducted a study in order to identify the challenges involved in

building an exascale HPC machine. The study identified several challenges such as

power consumption, hardware & software resilience, memory bandwidth, storage of

peta-bytes of data and application scalability [6]. The main challenge among these is

the power consumption of an exascale machine. The energy budget fixed by

DARPA is around $20 million USD per year. The power budget of an exascale

system can be estimated to be around 20 MW since a mega watt of power costs

approximately $1 million USD.

HPC is currently in the petascale era and the fastest supercomputer today performs

at approximately 16 petaflops [3]. If we are to follow the growth trend of

supercomputing power, it is estimated that we will reach exascale computing

capabilities by 2018. This is shown in Figure 2.1.

Figure 2.1: Timeframe to reach exascale (Source: Top500.org)

From a chip manufacturers perspective, HPC is only 1% of the total market for their

products. The research and innovations done by these companies are targeted at the

remaining 99% of the market which is dominated by products catering to the PC and

laptop consumer market. With mobile and embedded devices gaining popularity, the

major chip manufacturers such as Intel and AMD have started investing in low

power chip designs. An increase in quantity of low power processors will bring

down the per unit cost.

Today we see a variety of low power technologies being used to build large HPC

machines. The trend is towards using low power CPUs, accelerators, coprocessors or

a combination of these technologies within each compute node. In the section below

we will focus on some of these emerging technologies and their impact on current

and future HPC systems.

2.2 Low power hardware trends

2.2.1 GPU

Graphics processing units were originally developed for the gaming industry. GPUs

are made of a large number of very simple cores focussed purely on performing

computations. Due to the high level of inherent parallelism present in the processor,

the HPC community became interested in utilizing the GPU to achieve parallelism.

However, many of the initial GPU designs did not have a double precision floating

point unit and those that did have one did not perform up to the expectation of the

HPC development community [8]. Over the last 3 years, GPU designs have

undergone major changes and have become a much more acceptable part of the HPC

landscape.

The two big players in GPU technology currently are Nvidia and AMD with Nvidia

being the more popular choice in HPC. The selling point of GPUs is the

performance/watt that they promise. The Nvidia Fermi GPU performs at

approximately 3 gigaflops/watt [9]. Future Nvidia GPUs are expected to provide

even better performance/watt. Similarly AMD has invested in an integrated CPU-

GPU design called AMD Fusion [10]. One of the bottleneck in extracting

performance from GPUs today is the PCIe bus through which the CPU offloads

computation intensive work to the GPU. Future designs from both AMD and Nvidia

are looking to address this problem by integrating both the CPU and GPU into a

single die.

2.2.2 Many Integrated Cores (MIC)

In 2010, Intel announced its new multiprocessor architecture targeting the HPC

market based on the Larrabee many core architecture [11]. This family of processors

was later named as the Xeon Phi at the ISC 2012 in Hamburg. The Xeon Phi has

been marketed as a coprocessor rather than as an accelerator. Figure 2.1 is an image

of the Xeon Phi.

The main goal of the Xeon Phi family of coprocessors is to achieve one teraflop or

more of double precision floating point performance for under 100 W of power [12].

This is achieved by using many simple 64 bit x86 architecture cores with wide

SIMD sharing memory. Since the architecture of the processor is x86 based, the

programming model used can be the same as that used in programming shared

memory CPUs. Hence programming models like OpenMP and MPI which are most

prevalent in HPC application codes can be ported to the MIC without rewriting

them. This is a major advantage for the Xeon Phi family of coprocessors over an

accelerator such as Nvidia GPUs.

Figure 2.1: Image of Intel Xeon Phi coprocessor (Source: www.anandtech.com)

The MIC coprocessor can be used both in offload and native modes unlike current

GPU designs which can only be used in offload mode. With the native mode we can

obtain higher performance, however the bottleneck could be memory access on the

MIC card. The MIC coprocessors come with at least 8 GB GDDR5 memory and the

width of the memory bus could be 256-bits or 512-bits [13].

2.2.3 ARM processors

The ARM instruction set, developed by ARM Holdings is an implementation of the

reduced instruction set computer (RISC) ISA. The ARM architecture is licensable

and there are a number of companies such as Texas Instruments, Nvidia, Samsung,

Broadcom etc., that are licensees. The primary consumers of the ARM processors

have been manufacturers of mobile and embedded devices. ARM processors have

captured over 95% of the smart phone market and 10% of the mobile computer

market. It is predicted that ARM processors will capture approximately 23% of the

PC market share by 2015 [14].

ARM processors have not yet made an impact in the high performance server market

mainly because the processors use a 32-bit instruction set architecture. This is

changing quickly with the new ARMv8 specification which will have support for

64-bit operations along side the conventional 32-bit execution [15]. Companies like

Calexeda have also recently launched a low power SoC called Calxeda EnergyCore

which uses 4 quad-core ARM Cortex-A9 processors, an integrated 80-gigabit

crossbar switch and an integrated management engine all on a single piece of silicon

[16]. The ARM Cotex-A9 processor is based on the 32-bit ARMv7 architecture and

hence may not be suitable for large HPC application that use a lot of double

precision floating point calculations. However it can be used for BigData analytic

applications, web-servers, cloud computing etc. We can see future EnergyCore

products using ARMv8 architecture and that can be used to build a 64-bit energy

efficient HPC system.

Figure 2.3: The ARM RISC processor roadmap for applications (Source: Richard Grisenthwaite,
2011 ARM TechCon)

The support for 64-bit operations in the hardware is crucial for ARM to be

considered seriously in the HPC market. As shown in Figure 2.3 the ARMv8

architecture offers this capability along with efficient energy usage. The ARMv8

also offers double precision NEON SIMD capability in addition to the existing

single precision NEON SIMD available in ARMv7 processors.

Nvidia has already started working on a 64-bit ARM architecture CPU called

“Project Denver” specifically targeting the HPC and server industry [17]. One of the

main design feature with this initiative is the integration of an 8-core custom Nvidia

64-bit ARM CPU and an Nvidia GeForce 600-class GPU on the same chip. GPU

computing has gained a lot of interest among the HPC community due to its superior

FLOPS/watt performance. However the bottleneck of copying data from the CPU to

the GPU and back through the PCIe bus has always been a detriment to gaining

good performance. By combining the CPU and GPU on a single chip we can obtain

very high bandwidth while keeping the latency extremely low.

2.2.4 DSP

A new paradigm in HPC is beginning to emerge with the use of Digital Signal

Processors (DSPs) to perform compute intensive operations. The multi-core DSPs

offered by Texas Instruments deliver greater than 500 GFLOPS of compute

performance while using only 50 W of power [18]. These DSPs deliver a very

impressive FLOPS/watt ratio and can be used as add on cards through the PCIe. The

newer model full length cards are expected to give over a teraflop of performance.

The multi-core DSPs support programming languages such as C and OpenMP.

Texas Instruments also offers a multi-core SDK along with optimizing libraries for

scientific computing so that developers can quickly program the DSPs and get

maximum performance out of them.

3 Project Hardware

In this chapter we look at the high level specifications for 2 single board ARM

processor computers, the Pandaboard ES and the Raspberry Pi used in this project.

Both systems use ARM processors from different generations and have differing

processing power and capabilities.

3.1 Pandaboard ES

The Pandaboard ES is a low power, low cost single board computer that uses the

OMAP4460 SoC. The OMAP4460 SoC contains a dual-core 1.2 Ghz ARM-Cortex

A9 MPCore CPU, a PowerVR SGX 540 GPU and a C64x DSP subsystem [19]. In

this project we will focus on the performance benchmarking of the ARM CPU.

Figure 3.1: Pandaboard ES block diagram (Source: www.pandaboard.org)

The 2 ARM cores share a 1 MB L2 cache and the RAM available on the board is 1

GB dual channel LPDDR2 (Low Power DDR2). The Pandaboard also has an 10/100

Mbps Ethernet port. This gives us the capability to cluster multiple boards on a

network and run parallel applications and benchmarks. The OMAP4460 was

originally designed for mobile devices and hence we see support for audio and

video. There board also provides general purpose expansion headers, camera

expansion headers and LCD signal expansion capabilities.

There are 2 USB 2.0 high-speed ports on the board through which we can connect a

keyboard, mice, SSD or any external device having USB support. The Operating

System can be loaded on an external SSD drive connected via USB or through the

on-board slot for high speed SD card.

The Pandaboard ES is an improved version of its predecessor the Pandaboard which

uses an older OMAP4430 SoC. The OMAP4430 ARM CPU has a lower clock speed

(1 Ghz) when compared to the OMAP4460 ARM CPU.

3.1.1 ARM Cortex-A9

The ARM Cortex-A9 is a 32-bit multi-core processor which implements the ARMv7

instruction set architecture. The cortex-A9 can have a maximum of 4 cache-coherent

cores and clock frequency ranging from 800 to 2000 Mhz [20]. Each core in the

cortex-A9 CPU has a 32 KB instruction and a 32 KB data cache.

One of the key features of the ARM Cortex-A series processors is the option of

having Advanced SIMD (NEON) extensions. NEON is a 128-bit SIMD instruction

set that accelerates applications such as multimedia, signal processing, video

encode/decode, gaming, image processing etc. The features of NEON include

separate register files, independent execution hardware and a comprehensive

instruction set. It supports 8, 16, 32 and 64 bit integer as well as single precision 32-

bit floating point SIMD operations [21]. Support for 64-bit double precision floating

point SIMD operations is part of the ARMv8 NEON extension.

The cortex-A9 also has hardware support for half, single and double precision

floating point arithmetic. The floating point unit on the ARM is called Vector

Floating Point (VFP). The cortex-A9 uses the VFPv3 version for its floating point

calculation. It should be noted that although the VFP unit is intended to support

vector mode, the VFP instructions work on vector elements sequentially and hence

does not offer true (SIMD) vector parallelism [22].

3.2 Raspberry Pi

The Raspberry Pi is a cheap, low power, credit card size single board computer that

was designed in order to create interest in programming among school children. The

Raspberry Pi Foundation is responsible for developing this device.

The Raspberry Pi has a Broadcom BCM2835 SoC which in turn comprises of a 700

Mhz ARM11 CPU and a VideoCode IV GPU [23]. The Raspberry Pi comes in 2

models A and B. The difference in functionality between the two models is that

model B has an ethernet port and 2 USB ports while model A has no ethernet port

and only 1 USB port.

Figure 3.2: Raspberry Pi Board layout (Source: www.raspberrypi.org)

The Raspberry Pi has a 256 MB POP SDRAM shared between the CPU and GPU in

any of 128/128, 192/64, 224/32 MB CPU/GPU ratio. The L1 cache is 32KB for the

instruction and data. The 128KB L2 cache by default is reserved for use by the

GPU. However it can be explicitly enabled for use by the CPU. This is done by the

Raspbian OS which is based on Debian armhf and is optimized for the Raspberry Pi.

The board provides HDMI video and audio outputs. It also provides a SD card slot

on which the operating system is loaded. There is a FAT32 partition on the SD card.

The SD card also contains a kernel image along with GPU firmware. It also has a

EXT2 partition with the rootfs. The system boots via the GPU using a sequence of

steps and starts the ARM CPU.

3.2.1 ARM11

ARM11 is a 32-bit RISC microprocessor that implements the ARMv6 instruction set

architecture. The ARM11 processor family is used to power smart phones, home and

embedded applications. The clock speeds of these processors can range from 350

Mhz to 1Ghz and are extremely energy efficient.

The ARM11 CPU has a VFP unit which implements the VFPv2 vector floating

point architecture [24]. The VFP unit provides low-cost, IEEE 754 compliant

floating point computation support which is essential for multimedia, graphics and

other floating-point intensive applications. Using the right compiler flags and

support from the operating systems we can get maximum performance from the

floating point unit.

4 Literature Review

In this chapter we will look at the design details of the most energy efficient HPC

machine in the world today, the IBM Blue Gene/Q. We will also explore some low

power clusters built using ARM processors. Understanding the design strategies

used and problems encountered in building clusters using ARM hardware is of

particular interest for this project.

4.1 Energy efficient HPC systems

We see a variety of strategies being adopted in HPC to address the problem of power

consumption as we transition through the petascale era and approach exascale age.

Some of these strategies involve special designs in hardware, new heterogeneous

approaches to computing and innovative ways to design cooling systems for large

HPC machines.

4.1.1 IBM Blue Gene/Q

The Blue Gene/Q (BGQ) is the latest design in the Blue Gene series of HPC

machines. The BGQ design focusses on building massively parallel supercomputers

which provide the highest FLOPS/watt ratio [26]. The BGQ is designed to handle

computation intensive as well as data intensive HPC applications. This is evident

from the rankings of the BGQ machines in the Top500, Green500 and the Grap500

lists released recently. There are 4 BGQ machines among the top ten machines in the

Top500 list released in June 2012 [3]. The top 20 machines in the Green500 lists

released in June 2012 are all BGQ machines [4]. The Graph500 benchmarks solves a

large graph problem and is a good indicator of the performance for data intensive

HPC applications. There are 5 machines in the top ten machines of the Graph500 list

[25].

4.1.1.1 BGQ Desgin

The BGQ compute chip is a SoC that integrates processing cores, memory and

neworking login onto a single chip. The core on the SoC use a four-way

hyperthreaded, 64-bit PowerPC A2 chip technology [26]. The chip resembles a large

shared memory processor (SMP) machine.

 Figure 4.1: Blue Gene/Q Computer Chip (Source: Rudd Haring / IBM Blue Gene Team)

The BGQ compute chip consists of 16 user cores used to perform computations plus

one service core to handle OS tasks such as asynchronous I/O, interrupts and

scheduling, messaging assists and RAS [26]. A dedicated core for the OS services

reduces the OS noise and jitter on the 16 compute cores. There is also an 18th core

which is a redundant spare in case one of the cores becomes damaged during

manufacturing.

Each core in the BGQ chip has a clock frequency of 1.6 Ghz and the total power

consumed by the chip is approximately 55 W at peak load giving a peak

performance of 200 GFLOPS. This yields a performance/watt value of 3.6

GFLOPS/Watt per chip. To further reduce power consumption, the chip makes

extensive use of clock gating.

Each processor core has a SIMD Quad-Vector double precision floating point unit.

Each processor core also has a L1 cache with 16KB for instruction and 16 KB for

the data. The L2 cache is 32 MB and 16-way set associative and the main memory is

16GB in size [26]. The BGQ chip also implements transactional memory and gives

IBM the distinction of becoming the first company to deliver commercial chips with

this technology [27].

In a BGQ compute rack there can be up to 16,384 cores and 16 TB of memory. Each

of these racks is water cooled and connect to a 5D network torus [28].

These specialized node design, cooling techniques and interconnect make the BGQ a

very high performing energy efficient machine. However the cost of building such a

machine is huge. Also the power usage of current BGQ systems is still not within

the 20 MW limit when scaled to an exascale HPC machine. In order to reach

exascale with a reasonable power budget, there needs to be changes in all layers of

the hardware and software stack.

4.2 ARM clusters

A couple of decades ago commodity PC microprocessors began entering the HPC

market as people looked for cheaper options to build massively parallel computers

with thousands of cores. This was dubbed the age of the micro-killers where

commodity processors were cheaper as there was a huge demand for PC processors.

This made the cost of manufacturing of microprocessors cheap. We eventually saw

the decline of vector processors. We see this trend today with processors for the

mobile market. As the demand for mobile devices increases, the cost of manufacture

of mobile processors will come down. Also processors used in mobile devices take

much lesser power compared to processors used in PCs and servers. We may be

entering the age of the mobile-killers. We are already beginning to see an interest in

using mobile processors such as ARM processors to build clusters. In the

subsections below we will look at a few of these projects.

4.2.1 Mont-Blanc BSC

The Mont-blanc project is an European exascale approach to build a low power

exascale machine using embedded and mobile processors. This project has a budget

of over 14 million Euros and is managed by the Barcelona Supercomputing Center

(BSC) [29].

The objectives of the Mont-Blanc project is to build a 50 petaflop machine that uses

approximately 7 MW by 2014 and then to design and build a 200 petaflop machine

using 10 MW of power using the latest mobile processor designs at that time.

Figure 4.2: Energy-efficient prototypes roadmap (Source: BSC)

There are 2 hardware design approaches that have been put forward. One is to use a

homogeneous multi-core ARM processors. The other is to use ARM CPUs

combined with a discrete or integrated GPU. In the homogeneous approach,

although ARM processors are extremely energy-efficient, it is important to have

high multi-core density to ensure that the CPU becomes the main power sink. The

rest of the power is “glue power” and goes to components such as memory,

interconnect and storage. Currently ARM processor designs available in the market

have a maximum of 4 cores. However future designs will support more cores on the

same chip as mobile application demands increase and ARM starts making inroads

into other markets such as servers and desktops [30].

The other approach is to use an ARM CPU and a GPU accelerator. The offloading

of work to the GPU could be through the PCIe or with newer designs the GPU can

share memory with the CPU. This design will ensure that there is no power wasted

on the PCIe bus and GDDR5 memory [30].

The interconnect used between nodes for communication is either an SoC integrated

Ethernet or an External NIC through PCIe, LLI or USB 3.0 [30]. In order to hide

communication latency, the programming model must ensure that computations and

communications are overlapped. The BSC has developed the OmpSs programming

model along with an intelligent runtime system that can deal with heterogeneity

[31]. The OmpSs runtime automatically overlaps MPI message communication with

computation [30].

4.2.2 Phoronix Pandaboard cluster

In June 2012, Phoronix an internet media company built a 12 core ARM cluster

using 6 Pandaboard ES development boards [32]. The operating system and GCC

compiler used were Ubuntu 12.04 and GCC 4.6 respectively. The main objective of

was to run various benchmarks on the cluster and measure the performance/watt of

the system. The results were then compared against the Intel Atom, Ivy Bridge and

AMD Fusion processors.

Three programs, discrete 3D Fast Fourier Transform, Embarrassingly Parallel and

Lower-Upper Gauss-Seidel Solver from the NAS parallel benchmark suite were run

on the cluster. Under peak load, the ARM cluster consumed approximately 30 W of

power and when idle the power consumption was below 20 W [32]. The

performance/watt measurements of the Pandaboard cluster was far superior to that of

the Intel Atom while the Ivy Bridge outperformed the Pandaboard cluster both in

terms of raw performance and performance/watt. The cost of purchasing an Ivy

Bridge Intel Core i7 3770 is less than the cost of 6 Pandaboards. The AMD Fusion

E-350 APU was better in terms of raw performance however the Pandaboard

delivered a better performance/watt score [32].

By end of June 2012 a team from MIT with the help of Phoronix assembled a 96

core ARM cluster using 48 Pandaboards [34]. The cluster used a solar panel to

supply power to the nodes. Unlike the 12-core Pandaboard ES cluster, this cluster

from MIT used the older OMAP4430 SoC which is part of the first version of

Pandaboard. The SoC has a 1 Ghz ARM Cortex-A9 CPU along with a PowerVR

GPU. The boards were stacked vertically in order to save space and increase density.

The idle power consumption of the cluster was approximately 170 Watts and during

peak load the power consumption was just over 200 Watts. The Ubunutu 12.04 port

for OMAP4 was installed on all the boards. The MIT team is yet to publish the

benchmark results for this cluster.

Figure 4.3: Solar powered 96 core ARM cluster (Source: www.phoronix.com)

http://www.phoronix.com/

4.2.3 ARM cluster for HPC in the cloud

A 40 node Pandaboard cluster was built by a team comprising of people various

universities in the US. The goal of the project was to compare the performance of

the dual-core Pandaboard cluster against a cluster of Intel Core 2 Duo machines. The

Pandaboard has a 1 Ghz dual core ARM Cortex-A9 CPU. The dual-core Intel node

had a clock frequency of 3 Ghz and was run in 32-bit mode since the ARM Cortex-

A9 is a 32-bit processor [35].

The performance comparison was intended to compare 2 domains in HPC. The first

comparison was when used as a standard dedicated cluster. The second comparison

was for a cluster of Qemu virtual machines running on the cloud. The study also

involved scaling from 1 node up to 40 nodes.

The dedicated cluster was benchmarked using the NAS parallel benchmark suite

which had around 6 problems commonly used in CFD applications within HPC. The

cluster was also benchmarked and compared for the time taken to checkpoint the

NAS/LU.A and the Qemu VM.

During peak load, the Intel Core 2 Duo consumed up to 70 Watts of power while the

ARM Cortex-A9 used 5 Watts. The performance per watt measurements on the

ARM Cortex-A9 was 1.3 to 6.2 times greater than that of the Intel Core 2 Duo. The

Intel processor was however 5 times greater in raw performance. This is mainly due

to the higher clock speed of the Intel processor. The results also showed that for the

largest problem size running on a cluster size of 1-4 nodes, the energy efficiency

ratio was as low as 0.9 since the Intel Core 2 Duo has a 6 MB L2 cache when

compared to a 1 MB cache on the ARM Cortex-A9. However for large problem

sizes on a large cluster size, the ARM outperformed the Intel processor in

performance per watt measurements.

The study concluded that as future SoCs begin using the ARM Cortex-A15

processor and we start seeing processor implementations of the 64-bit ARMv8

architecture, ARM will definitely make an impact in HPC and cloud computing.

5 Cluster Design

In this chapter we will look at the various steps undertaken and issues encountered

while building the 6 node Pandaboard cluster. Two Raspberry Pi boards were also

configured to run different Linux OS versions and compared for performance.

5.1 Hardware Setup

The hardware setup for the Pandaboard cluster consisted of a dual-core x68 master

node, 6 Pandaboard ES boards, 2 Raspberry Pi boards, a power meter and a gigabit

switch. Chapter 3 provides the details regarding the Pandaboard ES and Raspberry

Pi boards.

An Intel dual-core machine with a clock frequency of 1.86 Ghz for each core was

selected as the head node. The memory and disk space on the head node is 4GB and

235 GB respectively. The head node in the cluster was responsible for submitting

and scheduling jobs on the slave nodes in the cluster. The head node acted as a

central point from where commands meant to be run on the slave nodes in the cluster

could be submitted. The head node also collected the power measurement

information from the power meter via the USB port using a program that monitors

the USB port for incoming data.

The power measurement was done by placing the power meter between the power

source and the cluster nodes. The power meter was configured to output the power

consumed by the cluster in watts every second. This information was then fed to the

head node using a USB interface. A more detailed explanation of the procedure to

measure power is given in chapter 6.

The switch used to network the nodes in the cluster was a 8 port Netgear GS608

gigabit Ethernet switch. The power consumed by the switch was not captured and

measured as we were mainly interested in the power consumption of the Pandaboard

and Raspberry Pi nodes.

The summary of the hardware specification for the cluster is as given in Table 5.1.

Processor Clock Memory Storage NIC Hostname

Intel Core 2 Duo 1.86 Ghz 4 GB HDD 235 GB 1 Gbps master

ARM Cortex-A9 1.2 Ghz 1 GB SDC 16 GB 10/100 Mbps panda1

ARM Cortex-A9 1.2 Ghz 1 GB SDC 16 GB 10/100 Mbps panda2

ARM Cortex-A9 1.2 Ghz 1 GB SDC 16 GB 10/100 Mbps panda3

ARM Cortex-A9 1.2 Ghz 1 GB SDC 16 GB 10/100 Mbps panda4

ARM Cortex-A9 1.2 Ghz 1 GB SDC 16 GB 10/100 Mbps panda5

ARM Cortex-A9 1.2 Ghz 1 GB SDC 16 GB 10/100 Mbps panda6

ARM1176JZF-S 700 Mhz 256 MB SDC 8GB 10/100 Mbps rpi1

ARM1176JZF-S 700 Mhz 256 MB SDC 16GB 10/100 Mbps rpi2
Table 5.1: Hardware specification for the cluster

Figure 5.1: Project cluster setup

5.2 Operating System Setup

5.2.1 Panandboard ES

The ARM architecture is supported by a wide range of operating systems. The

Pandaboard ES has a ARM Cortex-A9 CPU which implements the ARMv7

architecture. The Pandboard community offers support for Linux distributions such

as Ubuntu and Linaro. The community also provides an Android port for the

OMAP4 platform [33].

For this project, we decided to install the latest Ubuntu 12.10 “Quantal Quetzal”

server edition on the Pandaboards. The Ubuntu 12.10 has a newer Linux kernel

(3.4) and also supports the latest GCC 4.7 version. The other option was to use the

older Ubuntu 12.04 “Precise Pangolin” release. The 12.04 release uses an older

Linux 3.2 along with GCC 4.6. The newer kernel and GCC compiler on the 12.10

could offer improved performance over the 12.04.

The pre-installed compressed Ubuntu 12.10 image for OMAP4 can be downloaded

from the web and copied to the SD card using the following command,

sudo dd if=/path/to/image/linux_image.img of=/dev/mmcblk0 ; sync

This Pandaboard ES has an HDMI and a DVI port for display. In order to boot the

image and setup the initial configuration on the Pandaboard, a serial ouput cable was

connected to the serial port on the Pandaboard. This was then connected to a host

machine that supported serial input or a serial to USB converter could be used to

plug the cable into the USB port on the host machine. On the host machine a

program such as Minicom or Screen was used to read from /dev/ttyUSB0.

One of the issues we faced during this step was that although the output from the

serial port was being displayed on the host machines terminal, there was no input

command being sent back from the host machine to the Pandaboard's serial port.

This caused the initial setup to stall on the language selection screen waiting for

input. After trying out various options, a decision was taken to disable the

Pandaboard's initial configuration program called oem-config by manually

modifying the oem-config setup program. By doing this we were skipping all the

initial configuration steps such as choice of language, date & location configuration

and user account setup. In order to login and configure the system manually, we

needed root access. Hence a dummy password was manually setup for the root user

by modifying the /etc/password file on the SD card. These modifications ensured

that the initial oem-config steps were bypassed and a login prompt was obtained on

the monitor connected to the Pandaboard through the HDMI port.

5.2.2 Raspberry Pi

On the Raspberry Pi, 2 different versions of Debian Linux were installed. The first

version is the Debian armel which uses the “EABI baseline” C ABI. This version of

Debian uses software in order to perform single and double precision floating point

arithmetic. The Debian armel version does not make full use of the VFP (Vector

Floating point) unit on the Raspberry Pi. We can build code compatible with Debian

armel which use hardware floating point instructions by passing the flags -mfpu=vfp

and -mfloat-abi=softfp to the GCC compiler. However since the system libraries and

binaries still use software floating point and not the VFP to carry out its floating

point calculations, there is very little performance gain.

The newer Debian armhf port for the Raspberry Pi is called Raspbian. This port for

the Raspberry Pi has a Linux kernel that has been completely recompiled with the

“EABI vfp hardfloat” C ABI. It is expected that for floating point computation

intensive applications, this Linux port will provide a huge increase in performance.

Also the ARM CPU running the Raspbian Linux OS utilizes the 128 KB L2 cache

which by default is used by the GPU in the armel version. Hence for memory

intensive operations, the Raspberry Pi running Raspbian could potentially give

better performance.

The 2 Debian Linux ports were copied and installed on separate SD cards and the

initial setup on the Raspberry Pi was without any issues.

5.3 Networking

The head node in the cluster had 2 network interfaces eth0 and eth1. The first

interface eth0 was used for communication within the private network (cluster) and

had a private IP address. The second interface eth1 had a public IP address and was

used to access the external network and the internet. Each of the slave nodes in the

cluster also had an IP address and could communicate with the head node and each

other through a switch. The switch used in this setup was an 8 port gigabit switch. In

order to install software packages easily on the slave nodes, it was important for the

slave nodes to have access to the internet. To achieve this, the gateway for all the

slave nodes in the cluster was configured as the master/head node. The master node

was setup to forward the internet requests from the other nodes in the cluster. Hence

all network traffic to the public network were routed through the master. The

network configuration for the entire cluster is as shown in Table 5.2.

Hostname IP Address Status

GX745MSCP1 129.215.62.197 Gateway

master 192.168.1.6 Head node

rpi1 192.168.1.7 Compute node

rpi2 192.168.1.8 Compute node

panda1 192.168.1.11 Compute node

panda2 192.168.1.12 Compute node

panda3 192.168.1.13 Compute node

panda4 192.168.1.14 Compute node

panda5 192.168.1.15 Compute node

panda6 192.168.1.16 Compute node
Table 5.2: Summary of network configuration

The network connectivity between the master node and the slave nodes in the cluster is

illustrated in Figure 5.2 below.

Figure 5.2: Network connectivity

5.4 Software setup

Ubuntu comes packaged with the apt-get tool which is an advanced packaging tool

that is used to install and remove libraries and packages on Debian based systems.

We made use of the apt-get utility in order to find and install various software tool

chains if available on the Pandboards. This is one of the advantages of choosing

Ubuntu as the OS because there is a big community of developers constantly

updating various Ubuntu package repositories with tools and utilities.

5.4.1 C/C++

There are a wide variety of C/C++ compilers both commercial and open source that

are available for the ARM architecture. However for this project we decided to use

the GCC/G++ compilers because they are freely downloadable and also provides a

wide variety of optimization options for the ARMv7 architecture. The 4.7.1

GCC/G++ version were installed on the Pandaboards and supports shared memory

APIs for Posix threads and OpenMP.

5.4.2 Fortran

Libraries like BLAS, LAPACK and benchmarking codes like FFT and EB which are

part of the NAS parallel benchmark suite require a Fortran compiler. If there is no

available Fortran compiler, it would have been necessary to port the code from

Fortran to C using a utility such as Netlib's f2c [36]. This was indeed the case in one

of the MSc. dissertations from 2011 where scripts were created in order to port a lot

of the Fortran code to C [37]. Linux distributions such as Debian and Ubuntu

provide GNU Fortran 95 compiler for armel and armhf architectures. The GNU

Fortran version 4.7.1 was installed on the Pandaboards.

5.4.3 Message Passing Library

The library used for inter-node communication is MPICH2 release 1.4.1. MPICH2

was developed by Argonne National Laboraty and is an implementation of the MPI-

2.2 standard. The library is portably across a wide variety of platforms and

architectures [38]. The MPICH 1.4.1 supports multi-threaded code that uses hybrid

MPI-OpenMP programming model. Inter-process communication within the node is

achieved using shared memory rather than using TCP/IP or other such protocols.

The default protocol used for communication on an Ethernet based system is

TCP/IP. However this can be changed during the compilation of MPICH2 to use a

protocol such as OpenMX. OpenMX is a high performance implementation of the

Myrinet Express stack over Ethernet [39]. The advantage of using OpenMX instead

of TCP/IP is the reduction in latency during inter-node message passing. In this

project we compiled the MPICH2 library with the default TCP/IP over Ethernet

option. We could not explore the possibility of using OpenMX due to lack of time.

5.4.4 Queue Management and Job Scheduling

A queue management utility was necessary in order to submit and manage jobs on

the cluster. The queue management utility identifies the resources on the cluster and

enables the client nodes on the cluster to communicate with the master node. The

TORQUE resource manager version 2.4.16 was installed on the cluster. TORQUE

stands for Terascale Open-source Resource and Queue Manager. TORQUE is based

on the original PBS project and is highly scalable, reliable and fault tolerant [40].

TORQUE has an inbuilt scheduler program that is a very rudimentary scheduling

tool. It follows a round robin schedule to assign jobs to nodes and also does not have

advanced features like assigning queues to a subset of resources. For this project, we

setup separate queues for the Raspberry Pi nodes and the Pandaboard resources.

Hence there was a need for a more advanced job scheduler. We used the open source

Maui cluster scheduler version 3.3.1 to enable more advanced scheduling. Maui was

initially developed by Cluster Resources, Inc. and was designed to be used on

clusters and supercomputers [41].

5.4.5 Network File System

In a homogeneous HPC cluster, the application code to be executed on the cluster is

compiled on the front-end or head node as the architecture of the head node is the

same as that of the slave nodes in the cluster. In this project we use an Intel x86

machine as the head node and the slave nodes are either ARMv7 or ARMv6

architecture. Hence compiling the application code on the head node is not an option

due to binary incompatibility. The solution to this is to compile the code on one of

the back-end nodes depending on the architecture and generate the correct binary.

However in order for the MPICH2 Hydra process manager to run parallel jobs on

the cluster, the generated binary should be available on all the resources in the

cluster. This requires manually copying the binary to all the nodes. This is a

laborious and time consuming process.

To ease this process, we installed an NFS server on the front-end node. An entry

was added to the /etc/fstab on all the slave nodes on the cluster to mount a directory

present on the front-end node over the network. Now any program that is compiled

on this NFS mounted path is visible to all nodes on the cluster. Hence the MPI

runtime can execute the binary using the NFS mount path on the requested

resources. Since the code is compiled on the correct architecture there is no binary

incompatibility.

6 Benchmarking & Power Measurement

In this chapter we will discuss about the various benchmarks that were run on the

Pandaboard ES boards and the Raspberry Pi boards. The benchmarks were chosen

based on various performance metrics of the system and cluster that is of interest to

HPC applications.

6.1 CoreMark

CoreMark is a system independent benchmark developed by the Embedded

Microprocessor Benchmark Consortium (EEMBC) [42]. It is seen as a replacement

for the Dhrystone benchmark developed in the 80s which is no longer applicable to

current systems. The benchmark can be run in single thread as well as multi-

threaded mode.

The CoreMark benchmark implements algorithms and data structures used

commonly in most applications [43]. Some of the tests performed are as follows,

1. List processing such as sorting, searching and reversing a list. This tests the

non-serial access of memory with the use of pointers. It also tests the

memory hierarchy and cache efficiency of a system for lists that do not fit

into the systems cache [43].

2. A 16-bit Cyclic Redundancy Check (CRC) is also performed on the data

elements contained in the list. CRC is one of the most commonly used

algorithms in embedded applications and hence this test is included in the

timing of the benchmark [43].

3. Matrix operations such as multiplication with another matrix, a vector and a

constant. CoreMark extracts bits from a part of the data in the matrix and

performs operations [43]. A CRC is performed in the end to validate the

operations on the matrix.

4. State machine processing where branch operations such as if, else and switch

are used to test how the CPU handles control statements [43].

The final output of the CoreMark benchmark is the number of iterations executed

per second. The number of iterations can be changed during compilation depending

on the attributes of the machine such as clock speed, memory capacity, number of

levels of cache etc.

6.2 STREAM

The STREAM benchmark was developed by John McCalpin and is the industry

standard for measuring the memory bandwidth of a system and the rate of

computation for simple vector kernels [44]. STREAM counts the number of bytes to

be read plus the number of bytes to be written. There are 4 operations performed by

STREAM implemented as 4 separate kernels and the output gives the memory

bandwidth obtained for each operations in MB/s. The table below shows the flops

and bytes counted per iteration of the STREAM loop.

Name Kernel Bytes/Iter FLOPS/Iter

COPY a(i) = b(i) 16 0

SCALE a(i) = q * b(i) 16 1

SUM a(i) = b(i) + c(i) 24 1

TRIAD a(i) = b(i) + q * c(i) 24 2

Table 6.1: Shows number of bytes and FLOPS counted in each iteration (Source:
www.cs.virginia.edu/stream)

6.3 Linpack

Linpack is a program implemented either in Fortran or C to perform numerical

linear algebra computations on computers. It was initially developed as a benchmark

to measure the number of FLOPS on supercomputers. Linpack solves a dense NxN

system of linear equations Ax=b as it is a common problem in engineering and

scientific computing. Linpack makes use of the Basic Linear Algebra Library

http://www.cs.virginia.edu/stream

(BLAS) to perform matrix and vector operations. Linpack has now been superseded

by LAPACK which is a more suitable for modern architectures [45]. The Linpack

benchmark used in this project measures the double precision floating point

performance on a 200x200 array. The performance output is calculated as the

average rolled and unrolled performance.

6.4 HPL

High Performance Linpack (HPL) is a parallel implementation of the Linpack

benchmark and is portable on a wide number of machines. HPL uses double

precision 64-bit arithmetic to solve a linear system of equations of order N [46]. It is

usually run on distributed memory computers to determine the double precision

floating point performance of the system. The HPL benchmark uses LU

decomposition with partial row pivoting. It uses MPI for inter-node communication

and relies on various routines from BLAS and LAPACK libraries.

The algorithm can be described as having the characteristics, “Two-dimensional

block-cyclic data distribution - Right-looking variant of the LU factorization with

row partial pivoting featuring multiple look-ahead depths - Recursive panel

factorization with pivot search and column broadcast combined - Various virtual

panel broadcast topologies - bandwidth reducing swap-broadcast algorithm -

backward substitution with look-ahead of depth 1” [46].

The input file, HPL.dat for the HPL benchmark provides information regarding the

problem size, the block size, the grid dimension etc. This input file can be tweaked

for performance according to the system on which the HPL benchmark is being run

on and the network topology used for interconnecting the nodes.

6.5 Ping Pong

The ping pong benchmark measures the latency and bandwidth of network

communication between 2 nodes on the cluster. Latency is defined as the hardware

and software overhead involved in transmitting a zero byte message between 2 MPI

processes. The bandwidth is the rate of transmission of data between 2 MPI

processes. The ping pong benchmark allocates a message of specified size and sends

it from one process to another and the same message is received back. This

communication pattern is performed over multiple iterations and the time taken to

execute these iterations is calculated. The latency and bandwidth of the

communication is given by the formulae,

Latency = 0.5 * (T2 – T1) / Total Number of Iterations

Bandwidth = Total Message Size / (T2 – T1)

Where (T2 – T1) gives the total time to execute all iterations in seconds. Latency is

given in milliseconds or seconds and Bandwidth is in MB/s.

6.6 NAS Parallel Benchmarks

The NAS parallel benchmarks developed by NASA consist of a set of programs that

implement various algorithms used in Computational Fluid Dymamics (CFD) [47].

There are 5 kernels and 3 pseudo applications that are part of this benchmark suite.

For this project we are interested in 2 kernels namely, Embarrassingly Parallel (EP)

and 3D Fast Fourier Transform (FFT). We use the MPI version of these benchmarks

and scale the problem size as the number of processes grows.

6.6.1 Embarrassingly Parallel

This benchmark measures the upper limit of floating point performance of the

cluster without having significant inter-process communication. Embarrassingly

parallel problems scale well on clusters where the inter-node communication could

be a bottleneck since there is very little communication taking place. Since the

Pandaboard uses a 10/100 Mbps network card and uses TCP/IP over Ethernet for

inter-node message passing, there is a significant performance loss when scaling

benchmarks that use inter-node communication frequently. An embarrassingly

parallel benchmark should scale almost linearly on this cluster and give us a good

measure of raw floating point performance. This type of benchmark is typically used

in simulation applications that use the Monte Carlo method.

6.6.2 3D Fast Fourier Transform

3D Fast Fourier Transforms kernel is used widely in spectral codes. This kernel uses

forward and inverse FFTs to numerically solve a partial differential equation. This

benchmark tests the network performance of the cluster rigorously as the array

transpose operations being performed require the use the all to all communications

[48]. The MPICH2 library version used in this project uses shared memory for on

node communication. For inter-node communication it uses TCP/IP over Ethernet.

We should see a performance degradation when inter-node communications happen

and should be a good test to measure the network performance and power usage of

the cluster when there is significant network activity.

6.7 Power Measurement

Measuring power accurately is an important aspect of this project. There are many

techniques for measuring the power consumption of the cluster. A software

approach would involve using a tool such as Intel Power Gadget to measure the

processor power in watts using energy counters [49]. The other approach is to use a

power meter between the power supply and the cluster nodes. Due to lack of free

power measurement tools available for ARM architectures we used the second

approach.

The device used to measure the power consumption of the cluster is a Watts Up?

PRO power meter. The meter captured the power consumption of the components

connected via its output socket. The power meter comes equipped with a USB

interface which can be plugged into the front-end node to log the power utilization

of the node(s) being monitored. In order to read the power measurements from the

USB device on the front-end node a software was needed to interpret and output the

incoming data. This was achieved by using a free user developed C program that

reads the input from /dev/ttyUSB0 and outputs the power in watts to the screen every

second.

The power measurement is typically started just before a benchmark is submitted to

run on the cluster. Once the benchmark completes, the power capture program on

the front-end is terminated. The power consumption of the cluster can have

variations during the run time of the benchmarks depending on the type of

computation or communication happening on the nodes in the cluster. Hence we

take the average power consumed by the cluster over the total run time of the

benchmark. A Perl script was used to parse the power information and calculate the

average power consumption of the cluster.

6.7.1 Metrics

The Top500 list ranks supercomputers according to the raw floating point

performance. Power consumption although captured is not a criteria in ranking these

big machines. The Green500 list on the other hand ranks the most energy efficient

supercomputers in the world. The HPL benchmark is used to calculate the

performance of the cluster in GFLOPS. The power consumed by the cluster during

the running of HPL is also captured. Then the performance per watt is determined

using the following formulae [50],

Performance Per Watt (PPW) = Performance / Power

For the Green500 list this is given as MFLOPS/watt. The most energy efficient

supercomputer today is the IBM Blue Gene/Q which has a PPW of 2100.88 [4].

The performance value given in the formulae above can be any other performance

measure of the system using other benchmarks. Some of the PPW values for the

other benchmarks in this project are given in Table 6.2,

Benchmark PPW

CoreMark Iterations / Watt

STREAM MB / Watt

HPL MFLOPS / Watt

NAS EB Mops / Watt

NAS FT Mops / Watt

Table 6.2: Performance Per Watt calculation for various benchmarks

7 Results and Analysis

In this chapter we analyse the results for the various serial and parallel benchmarks

that were run on the Pandaboard and Raspberry Pi boards. We focus on the raw

performance figures for these benchmarks and also take into account the power

consumption during the running of the benchmarks. The performance per watt

(PPW) data is also presented and discussed.

7.1 CPU Frequency Scaling

CPU Frequency scaling refers to the technique by which the CPU can scale the

clock frequency of its cores up or down depending on the load of the system [51].

This feature is useful in scenarios where power saving becomes critical. For example

when mobile devices run on battery power, running the CPU cores at full clock

frequency is a waste of energy. Instead if the CPU is able to scale down the

frequency when there is little or no load, there could be a significant amount of

savings made in terms of energy consumed.

This functionality is achieved with the help of CPU frequency governors which are

part of some Linux kernels. There are 5 types of governors in the Linux kernel,

Performance: In this mode the CPU frequency is set statically to the highest

frequency value as specified in scaling_max_freq. This governor is desirable on

machines that are used to run applications that expect the maximum performance

from the CPU.

Ondemand: This governor is set by default after the installation of Ubuntu. With this

governor the CPU frequency is scaled up or down depending on the current usage of

the system. The CPU must perform this change is frequency very quickly, usually in

nano seconds in order to ensure that applications running on the machine are able to

get extract good performance from the CPU.

Conservative: The conservative governor performs the same functionality as the

ondemand governor where the CPU clock frequency is scaled up or down depending

on the current usage. However unlike the ondemand governor the scaling is done

more gracefully wherein the increase in clock speed is gradual.

Userspace: This governor allows any program or user with root privilege to set the

frequency of the CPU manually. This could be useful in cases where we need to

over clock the CPU.

Powersave: With this governor, the CPU frequency is set statically to the lowest

frequency value as given in scaling_min_frequency. This mode would be suitable

for systems where performance is not a criteria and saving power is the highest

priority.

 A user can set a specific governor by modifying the following file,

/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

This scaling governor can also be changed using the cpufreq-set tool which can be

downloaded and installed on the Ubuntu. Once installed, the governor can be

changed using the following command,

cpufreq-set -g <governor name>

We use the performance governor for all the machines in the project since we want

to obtain maximum performance from the system.

7.1.1 Idle Power Reading

Machine Governor Average Power (Watts)

Pandaboard ES Ondemand 2.124

Pandaboard ES Performance 2.607

Raspberry Pi NA 1.993

Table 7.1: Average idle power usage

We measured the average idle power consumption of the Pandaboard ES board

using both the ondemand as well as the performance governors. The average idle

power consumption was also measured for the Raspberry Pi running the Raspbian

Linux OS with a clock frequency of 700 Mhz. These readings are presented in Table

7.1 and the graph in Figure 7.1 shows the variation in power consumption for a

period of 1 hour.

Figure 7.1: Idle power usage over 1 hour

7.2 CoreMark

As discussed in Chapter 6, the CoreMark benchmark measures the number of

iterations per second by executing a variety of algorithms. The CoreMark

benchmark was run on the Pandaboard ES board both in single threaded and multi-

threaded mode. The single threaded version was run on the Raspberry Pi board using

both the Debian armel and Raspbian versions of Linux.

The CoreMark source code was compiled with various levels of optimization in

order to compare the improvement in performance as well as power usage. The

number of iterations was chosen as 1 million to ensure that the benchmark runs for

at least for 10 minutes. The CoreMark benchmark has 2 phases. Phase 1 is the

performance run and phase 2 is the validation run. Both these phases are timed and

the number of iterations chosen is the same for both phases. The readings are

presented only for the first phase as the results in both phases are similar.

Table 7.2 shows the iterations and iterations per watt along with the various

compiler optimization levels for both the Pandaboard ES and Raspberry Pi boards.

Machine Threads Iterations/sec Avg. Power
(Watts)

Optimization PPW

Pandaboard 1 3237.199 4.080 -O2 793.431

Pandaboard 1 3364.262 4.200 -O3 801.014

Pandaboard 1 3398.332 4.200 -O3 unroll 809.126

Raspberrry
Pi (armel)

1 1309.066 2.410 -O2 543.180

Raspberrry
Pi (armel)

1 1364.904 2.404 -O3 567.763

Raspberrry
Pi (armel)

1 1405.797 2.405 -O3 unroll 584.530

Raspberrry
Pi (armhf)

1 1282.0036 2.240 -O2 572.323

Raspberrry
Pi (armhf)

1 1321.0039 2.253 -O3 568.331

Raspberrry
Pi (armhf)

1 1381.1963 2.240 -O3 unroll 616.605

Pandaboard 2 6456.882 5.320 -O3 unroll 1213.699

Table 7.2: CoreMark performance

On the Pandaboard ES board we see that in the single thread mode there is a

marginal increase in the performance per watt as we compile the code with the

optimization level 3 and also explicitly unroll loops. The average power usage of the

Pandaboard ES also goes up marginally. The level 3 optimization with gcc involves

all the flags of level 2 plus additional flags such as inlining functions and tree

vectorizing [52].

Figure 7.2: Single and multi-threaded performance on Pandaboard ES

From Figure 7.2 we see that when CoreMark is run using 2 threads on the

Pandaboard, we get almost linear speedup. This is the expected behaviour as the

code runs the same number of iterations on both the threads and there is no

communication overhead. However we see in Figure 7.3 that the iterations per watt

does not remain the same when both the cores are used on the Pandaboard. When

CoreMark is run on a single core using one thread, the other free core still uses some

amount of power (idle power) and that power is part of the average power calculated

while determining the iterations per watt value. Ideally we should only consider the

power consumed by the core on which the benchmark runs in order to get the true

performance per watt measure (PPW). In this case both the cores are running with

the scaling governor set to performance. Also the idle power used by the Pandaboard

(2.6 W) is constant for both the single and multi threaded power measurements. If

the PPW is to remain constant, the idle power used should also double. For multi-

core machines, the PPW is best measured by loading all the cores with work. We

must also consider the jitter caused by certain OS services such as interrupt handler

and scheduler.

Figure 7.3: PPW for single and multiple threads

From Table 7.2 we see that the Raspberry Pi boards running both the Debian armel

and Raspbian versions of Linux running the single thread version of CoreMark have

approximately 40% of the raw performance of the Pandaboard. The Raspberry Pi

clock frequency is 700 Mhz and has 25% of the memory capacity of the Pandaboard

ES. The L2 cache size on the Raspberry Pi is also much smaller than that of the

Pandaboard ES. This explains the lower performance of the Raspberry Pi when

compared to the Pandaboard ES. However the Raspberry Pi (running Raspbian)

consumes only 2.25W which is just over 50% of the power consumed by the

Pandaboard ES to run the single thread benchmark.

Figure 7.4: CoreMark performance on Raspberry Pi

The Raspberry Pi has an idle power usage of 2W. When we run CoreMark, the

average power used only increases by 0.25W. The Pandaboard ES on the other hand

uses 1.6W more power than its idle power of 2.6W. This makes the iterations per

watt measurement of the Raspberry Pi much closer to that of the Pandaboard ES. As

discussed earlier, the PPW measurement on the Pandaboard ES should be

considered with both cores being used to run the benchmark to eliminate the idle

power used by one of the cores when its not being used. If the multi-threaded

performance of the Pandaboard is considered, we get approximately twice the

performance per watt compared to the Raspberry Pi.

From Figure 7.5 we see that the the Raspberry Pi running Raspbian has a marginally

better iterations per watt measure when compared to that of Debian armel. This is

because the power consumption of the Raspberry Pi running Raspbian is less than

that of the Raspberry Pi running the Debian armel version.

Figure 7.5: CoreMark PPW on the Raspberry Pi

7.2.1 PPW comparison to Intel Atom and Intel Xeon

From a previous MSc. project on low power HPC [37], we find that the CoreMark

PPW result obtained on the Intel Atom was 65.9 iterations per watt and the Intel

Xeon at 55.76 iterations per watt. This was the single threaded result for for 1

million iterations using CoreMark. As shown in Table 7.2, the single threaded PPW

ratio of the ARM Cortex-A9 processor on the Pandaboard ES is 12 times greater

than that of the Intel Atom and 14.5 times greater than that of the Intel Xeon. The

ARM11 processor on the Raspberry Pi (running Raspbian) has a iterations per watt

ratio approximately 9 times greater than that of the Intel Atom and 11 times greater

than that of the Intel Xeon.

The Intel Atom processor benchmarked has 2 processors, each 2-way hyper-

threaded giving a total of 4 virtual processors. The Intel Xeon has 8 cores. When the

multi-threaded version of CoreMark was run on these machines with 4 threads on

the Atom and 8 threads on the Xeon, the iterations per watt obtained was 201.7 and

432.90 respectively. The multi-threaded (2 threads) version on the ARM Cortex-A9

processor delivers a iterations per watt ratio approximately 3 times greater than that

of the Intel Xeon and 6 times greater than that of the Intel Atom.

7.3 STREAM

Table 7.3 show the STREAM benchmark results for a memory size of 750 MB. The

benchmark was run both in single and multi threaded modes. The code for the

STREAM benchmark was also compiled with various GCC optimization levels

along with flags that can assist the compiler to extract good performance from the

Pandaboard.

Machine Num.
Threads

Function Rate
(MB/s)

Avg.
Time
(secs)

Avg.
Power
(Watts)

PPW Compiler Flags

Pandaboard ES 1 Copy

Scale
Add

Triad

741.566

689.926
812.799

782.349

0.7086

0.7613
0.9693

1.0063

3.77

196.680

182.984
215.573

207.497

O2

Pandaboard ES 1 Copy

Scale
Add

Triad

743.427

691.064
813.235

784.277

0.7086

0.7603
0.9681

1.0044

3.76

197.719

183.793
216.285

208.584

O3

Pandaboard ES 1 Copy

Scale
Add

Triad

998.482

1008.503
808.591

934.027

0.5254

0.5209
0.9733

0.8423

3.81

262.068

264.698
212.228

245.151

-O3 -fprefetch-
loop-arrays

-march=armv7-a
-mtune=cortex-a9

Pandaboard ES 2 Copy

Scale
Add

Triad

1209.681

1227.748
949.268

1251.933

0.4346

0.4284
0.8305

0.6300

4.33

279.372

283.544
219.230

289.130

-O3 -fprefetch-
loop-arrays

-march=armv7-a
-mtune=cortex-a9

Table 7.3: Results for STREAM on the Pandaboard ES

As explained in Chapter 3, the RAM on the Pandaboard ES board is a 1 GB dual

channel LPDDR2 memory. The peak transfer rate possible with the LPDDR2

technology is given as 32Gbps or 4 GB/s [53]. However we can lose memory

bandwidth due to various reasons and therefore do not expect to attain full peak

bandwidth while running the benchmark.

We see that between the O2 and O3 optimization levels there is almost no

improvement in memory bandwidth obtained for the 4 kernels. When the option to

prefetch memory is added, a drastic increase in memory bandwidth is obtained. The

-fprefetch-loop-arrays flag tells the compiler to generate instructions to prefetch

memory on platforms that support this feature. With the multi-threaded version of

STREAM we get further improvement for all 4 kernels.

Figures 7.6 shows the memory bandwidth per second results obtained for both the

single and multi threaded versions of STREAM.

Figure 7.6: STREAM performance results on Pandaboard using O3 and prefetch flags

Figure 7.7: STREAM PPW results on Pandaboard using O3 and prefetch flags

When the STREAM benchmark was run with 2 threads on the Pandaboard, we did

not see linear increase in performance. However the second core on the Pandaboard

used more than half a Watt of power. Hence from Figure 7.7 we see that the

MB/Watt metrics when running 2 threads is only marginally better than the single

threaded version.

Machine Num.
Threads

Function Rate
(MB/s)

Avg.
Time
(secs)

Avg.
Power
(Watts)

PPW Compiler
Flags

Raspberry Pi
(Debian armel)

1 Copy

Scale

Add

Triad

193.976

109.252

119.608

78.073

0.5440

0.9784

1.3554

2.0425

2.511

77.250

43.509

47.633

31.092

O3

Raspberry Pi
(Debian armel)

1 Copy

Scale

Add

Triad

194.126

166.799

158.872

98.915

0.5436

0.6486

1.0367

1.6502

2.593

74.865

64.326

61.269

38.146

-O3
-fprefetch-
loop-arrays

Raspberry Pi
(Raspbian)

1 Copy

Scale

Add

Triad

190.442

181.604

175.529

173.916

0.5516

0.5787

0.8974

0.9077

2.35

81.039

77.278

74.693

74.006

O3

Raspberry Pi
(Raspbian)

1 Copy

Scale

Add

Triad

375.559

229.766

193.428

239.299

0.2801

0.4598

0.8147

0.6587

2.369

158.530

96.988

81.649

101.012

-O3
-fprefetch-
loop-arrays

Table 7.3: Results for STREAM on the Raspberry Pi

The STREAM benchmark with the various compiler optimization levels and the

prefetch option was run on the Raspberry Pi running both the Debian armel and the

Raspbian versions of Linux. The Raspberry Pi has a 256 MB RAM however we

have configured the CPU/GPU split as 224/32 MB. The size of the data used was

150 MB. We see that adding the prefetch flag on the Debian armel version, we get a

slight improvement in memory bandwidth for the scale, add and triad functions.

The Raspberry Pi running Raspbian on the other hand has the L2 cache available for

use by the CPU and hence we expect to see better improvement in performance. As

shown in Table 7.3 the Raspbian version is able to attain better memory bandwidth

for the scale, add and triad operations than the Debian armel when just the O3 flags

is used. When the -fprefetch-loop-arrays flag is used in conjunction with the O3

flag, we see that the Raspbian version is able to achieve much higher bandwidth for

all 4 operations. This is mainly due to the availability of the 128 KB L2 cache on the

Raspbian.

Figure 7.8: STREAM performance results on the Raspberry Pi using O3 & prefetch flags

Figure 7.9: STREAM PPW results on the Raspberry Pi using O3 & prefetch flags

The performance per watt (MB/watt) measurement on the Raspberry Pi running both

Debian armel and Raspbian is shown in Figure 7.9. Here we see that the Raspbian

version is able to achieve better memory bandwidth using lesser power than the

Debian armel version. Thereby the performance per watt on the Raspbian is superior

to that of the Debian armel version.

7.3.1 PPW comparison with Intel Atom and Intel Xeon

In Table 7.8 we see the bandwidth per watt comparison of the Pandaboard and

Raspberry Pi versus that of the Intel Xeon and Intel Atom. The results for the Xeon

and Atom were taken from a previous MSc. project on low power HPC.

Number of Threads PPW ratio type Function PPW ratio

1 Pandaboard / Intel Xeon Copy
Scale
Add
Triad

8.495
8.575
6.322
7.214

1 Pandaboard / Intel Atom Copy
Scale
Add
Triad

4.013
4.574
3.077
4.820

2 Pandaboard / Intel Xeon Copy
Scale
Add
Triad

9.125
9.185
6.531
8.509

2 Pandaboard / Intel Atom Copy
Scale
Add
Triad

4.311
4.900
6.531
5.684

1 Raspberry Pi / Intel Xeon Copy
Scale
Add
Triad

5.178
3.168
2.432
2.972

1 Raspberry Pi / Intel Atom Copy
Scale
Add
Triad

2.44
1.67
1.18
1.98

Table 7.8: STREAM PPW comparison with Intel Xeon and Intel Atom

For 4 functions in the STREAM benchmark, the Pandaboard ES outperforms the

Intel Xeon by approximately 6 to 9 times in bandwidth per watt measurements.

When compared to the the PPW of the Intel Atom, the Pandaboard ES has

approximately 3 to 5 times the bandwidth per watt metrics for the 4 kernels used in

the STREAM benchmark.

The Raspberry Pi running Raspbian has approximately 2.5 to 5 times the bandwidth

per watt metrics when compared to that of the Intel Xeon. The bandwidth per watt of

the Raspberry Pi is only 1.2 to 2.4 times greater than that of the Intel Atom.

7.4 HPL

The HPL benchmark was only run on the Pandaboard ES cluster. HPL depends on

the BLAS library for its basic vector and matrix operations. HPL also uses the

LAPACK library which is a linear algebra package. We initially downloaded the

source code for these libraries and compiled them manually. Then HPL was

compiled using these libraries. However the performance obtained was a small

fraction of the expected performance on the Pandaboard. The reason for the lack of

performance was because the BLAS and LAPACK routines were not tuned and

optimized for the Pandaboard ES. Machine specific BLAS libraries compiled by

vendors such as IBM, Intel, Sun etc., are available for their respective hardware

platforms. For the ARM architecture, we can use an automatic code generator such

as ATLAS (Automatically Tuned Linear Algebra Software). In order to get the best

performance for our HPL benchmark, we used the ATLAS 3.10 release. The 3.10

release has code to detect and optimize for ARM hardware. Specifically the code has

GEMM routines implemented in assembly code using NEON SIMD instructions

contributed by Vesperix Corporation. The code also has the option of using GEMM

routines implemented in assembly code that uses VFP instructions. The library also

has ARM Cortex-A9 specific defaults and supports Linux distributions that use the

hard-float ABI [54].

The HPL benchmark was run on 2, 4, 6, 8, 10 and 12 cores on the Pandaboard

cluster with the problem size scaled to 80% of the amount of memory available.

Various block sizes were experimented with and the optimal block size was

determined as 128.

Number of
cores

Problem size /
Block size

Performance
(GFLOPS)

Avg. Power
(Watts)

PPW
(GFLOP/Watt)

2 9984 / 128 1.601 5.496 0.2913

4 14592 / 128 2.618 11.06 0.2367

6 17920 / 128 3.641 17.304 0.2104

8 20608 / 128 4.748 23.18 0.2048

10 23168 / 128 5.833 29.256 0.1993

12 25344 / 128 6.484 34.535 0.1877

Table 7.3: HPL results on Pandaboard cluster

HPL Number of
cores

Problem size /
Block size

Performance
(GFLOPS)

Unoptimized 2 9984 / 128 1.590e-01

Optimized 2 9984 / 128 1.601e+00

Unoptimized 12 25344 / 128 8.770e-01

Optimized 12 25344 / 128 6.484e+00

Table 7.4: Comparison of HPL performance using unoptimized and optimized BLAS and LAPACK

We see from Table 7.4 that there is approximately a 10 times increase in

performance between the unoptimized and optimized BLAS and LAPACK versions

of the library for the HPL benchmark using 2 cores on a single node. Within a node

the MPICH2 1.4.1 library uses shared memory for inter process communication and

therefore there is very little overhead. Even when scaled to 12 cores (6 nodes), we

see that there is approximately a 700% increase in performance between the

optimized and unoptimized versions.

Figure 7.10: Scaling HPL on the Pandaboard cluster

As shown in Figure 7.10 we see that HPL scales quite well as we increase the

number of cores running the benchmark. We should also note here that the problem

size is scaled along with the number of cores so that at least 80% of the available

memory is utilized. The problem size can be input using the HPL.dat file which is

read by the program during start up. The HPL.dat file also contains information such

as block size, grid size and process grid ratio. The block size is used for granularity

and data distribution. Hence a small block size would imply that for data distribution

there is good load balance. However from a computation perspective, by choosing a

smaller block size there is a risk of data not being reused by the systems cache

hierarchy. Also there will be an increase in the number of messages communicated

and for a cluster such as the Pandaboard cluster which uses 10/100 Mbps ethernet,

this can be expensive. Hence by trial and error we can arrive at an optimal value for

the block size and this is dependent on the computation/communication ratio of the

system. The process grid ratio PxQ is chosen such that both P and Q values are as

close as possible with Q always being the larger of the two.

Figure 7.11: HPL Performance per watt

The performance per watt measurement taken on the Pandaboard cluster shows that

as the number of nodes running HPL increases, the raw HPL performance obtained

drops and the power consumption of the cluster increases. Thereby causing a

decrease in the performance per watt metrics. We should note that when there is

inter-node communication, the network controller is also drawing extra current in

order to communicate the data though the Ethernet port. This is not the case when

there is interprocess communication happening within the node as the MPICH2

library uses shared memory thereby bypassing the network controller. Hence future

ARM CPUs should have higher core density to decrease the glue power of each

node.

We tried running HPL with only one process per node so that only 1 core in a node

is utilized. This is not a good option to get a reasonable performance per watt

measurement since the other idle core (possibly running OS services) utilizes some

of the total power and hence we get a decreased performance per watt ratio.

Figure 7.12: Power utilization of the 12 core Pandaboard cluster while running HPL

From the power consumption graph shown in Figure 7.12, we see that there is a

surge is utilization of power at the beginning of the HPL benchmark. During the

start up of HPL, there is initialization and setup activity taking place. Also there are

communication patterns using broadcast messages to all processes within the cluster.

Eventually the power consumption settles at around 34 Watts. The peaks in the

power consumption graph could represent phases in the benchmark where there is

communication activity going on between the processes.

7.5 Linpack

The Linpack benchmark was run on the Raspberry Pi boards running the Debian

armel and Raspbian Linux versions. The array size used was 200x200. The

benchmark calculates the average rolled and unrolled double precision floating point

performance. This benchmark is of interest to us mainly to compare the performance

of the Raspberry Pi when it uses the soft-float abi (Debian armel) versus the hard-

float abi (Raspbian).

Operating
System

KFLOPS Avg. Power
(Watts)

KFLOP/Watt Compiler Flags

Debian armel 8199.005 2.165 3787.069 -O3

Debian armel 8719.577 2.17 4018.238 -O3 -fprefetch-
loop-arrays

Raspbian 42256.41 2.18 19383.674 -O3

Raspbian 43084.967 2.18 19763.746 -O3 -mfloat-
abi=hard

-mfpu=vfp

Raspbian 53593.496 2.16 24811.803 -O3 -fprefetch-
loop-arrays

-mfloat-abi=hard
-mfpu=vfp

Table 7.5: Linpack results on the Raspberry Pi

We see from Table 7.5 that the Raspberry Pi running Debian armel is only able to

achieve a mere 8.7 MFLOPS when compiled with the optimization level 3 and the

prefecth flag. In our analysis of the STREAM benchmark we observed that since the

Debian armel does not use the L2 cache, there is very little performance gain when

data is prefetched from memory. Also the Debian armel uses the soft-float ABI

where the compiler emulates floating point arithmetic by means of library calls in

software. This way of performing floating-point arithmetic can be slow and hence

there is a loss of performance especially since the ARM11 CPU does have a VFP

unit.

In the Raspbian version, the compiler is able to generate VFP hardware floating-

point instructions using the VFP ABI. With this ABI, the VFP registers are used to

pass function arguments and return values, thereby resulting in faster floating-point

code. The Raspbian OS also utilizes the 128 KB L2 cache and hence adding the

prefetch flag during compilation, the compiler is able to prefetch data from memory

and store it in the cache for future access. From Figure 7.13 we see that the Raspbian

version delivers approximately 6 times better floating-point performance than the

Debian armel version.

Figure 7.13: Linpack performance on Raspberry Pi

It is also interesting to find that the Raspberry Pi running Raspbian uses the same

amount of power as the Raspberry Pi running Debian armel while giving 6 times the

performance. Hence the performance per watt obtained on the Raspbian is 6 times

the performance per watt obtained on the Debian armel. This clearly shows the

importance of the hardware floating-point unit and the L2 cache.

Figure 7.13: Linpack performance per watt on Raspberry Pi

7.6 Ping Pong

The ping pong benchmark was implemented in C using MPI to exchange a message

between 2 processes for a certain number of iterations. The benchmark measures the

latency and bandwidth of MPI communication. We executed the benchmark for both

inter-node as well and intra-node MPI communication. The MPICH2 1.4.1 library

uses the Nemesis channel which supports multiple network protocols and uses

shared memory communication within the node.

From Figure 7.14 we see that the benchmark begins by exchanging an 8 byte

message and with each step the message size doubles. There is a gradual increase in

the latency until the message size is 64 KB. After this point, there is a steep increase

in the communication latency. Similarly the bandwidth keeps increasing till the 64

KB mark. However when the message size reaches 128 KB, there is a drop in the

bandwidth before resuming increasing again. The reason for this behaviour is due to

the switch in messaging protocol at 128KB message size.

Figure 7.14: Ping Pong inter-node latency and bandwidth

MPICH2 uses 2 protocols Eager and Rendezvous which are internal to MPI in order

to accomplish message delivery. The Eager protocol is used for small messages up

to a certain size. It assumes that a message sent from one process can be stored on

the receiving process and hence does not wait for an acknowledgement from a

matching receive. The receiving process buffers the message upon arrival even if a

receive has not been posted. The Rendezvous protocol requires an acknowledgement

from the receiving process in order for the send operation to complete. This protocol

is generally used for large messages since there cannot be any assumptions made

regarding the buffer space available on the receiving process [55].

The advantage of the Eager protocol is that there is no acknowledgement required

from the receiving process and therefore there is no synchronization. The

disadvantage is that it is not scalable if there are many senders as there is significant

buffering required. Also buffering can take up CPU cycles on the receivers side.

Thee Rendezvous protocol on the other hand is scalable as there is no buffer space

needed for the data payload on the receivers side. However, since there is

handshaking taking place between the sender and receiver we get higher latency.

The Eager limit message size in the MPICH2 1.4.1 has been set to 128 KB [56].

When the message size is greater than or equal to 128 KB, the MPI runtime

automatically switches to using the Rendezvous protocol.

In Figure 7.15 we see the ping pong results for the intra-node latency and

bandwidth. Since the MPI library uses shared memory for intra-node

communication, the latency is extremely low. Also we are able to reach a maximum

bandwidth of almost 1.2 GB/s. If future versions of the Pandaboard support gigabit

Ethernet, this difference in bandwidth between the inter and intra node

communication will be greatly reduced. MPICH2 uses the TCP/IP for inter-node

communication and can add to the communication latency. Using a protocol such as

Open-MX could reduce this latency for inter-node communication further [39].

Figure 7.15: Ping Pong intra-node latency and bandwidth

7.7 NAS Parallel Benchmarks

Two benchmarks from the NAS parallel benchmark suite were run on the

Pandaboard cluster. In the sections below, we will look at the results produced by

these benchmarks.

7.7.1 Embarrassingly Parallel (EP)

Number of
Processes

Problem Size Mop/s Avg. Power
(Watts)

PPW
(Mop/Watt)

2 536870912 10.24 4.99 2.052

4 2147483648 20.38 11.13 1.831

6 2147483648 30.42 16.378 1.857

8 2147483648 40.49 21.304 1.900

10 8589934592 50.77 28.893 1.757

12 8589934592 60.61 35.422 1.711

Table 7.6: Embarrassingly Parallel benchmark results on the Pandaboard cluster

The EP benchmark was run on the Pandaboard cluster to measure the performance

per watt for problems where there is very little communication between the MPI

processes in the cluster. As shown in Table 7.6 the problem was scaled up to 12

cores with an increase in problem size at a certain stage. This was done to ensure

that the benchmark ran for at least 1 minute.

From Figure 7.16 we see that the problem scales quite well on the Pandaboard

cluster. For 2 cores, we get are able to perform approximately 10 million operations

per second and when scaled up to 12 cores we get just over 60 million operations per

second . Hence the performance obtained is directly proportional to the number of

cores used. This is mainly because there is good load balance across the various

cores in the cluster and also very little communication between them. Hence

increasing the number of cores while increasing the problem size gives us almost

linear scaling.

Figure 7.16: Embarrassingly Parallel benchmark

Figure 7.17: Embarrassingly Parallel performance per watt

We see from Figure 7.17 that scaling the EP benchmark to more cores leads to a

decrease in the performance per watt measured. This is mainly because even though

the performance scales linearly, the power used does not. For each node (2 cores)

being added to the benchmark measurement, the average power used does not

increase by 4.99 watts (average power used for 2 cores). Instead there is some extra

usage of power. If the power used also scaled linearly, we could have a linearly

scaling PPW reading which is the ideal scenario.

7.7.2 3D Fast Fourier Transform (FT)

The FFT benchmark was run on the cluster to mainly test the raw performance and

performance per watt when there is a high amount of network activity. The FFT

benchmark uses MPI all to all communication pattern.

Number of
processes

Problem Size Mop/s Avg. Power
(Watts)

PPW
(Mop/Watt)

1 256x256x128 140.47 3.654 38.442

2 256x256x128 209.46 4.730 44.283

4 512x256x256 102.35 10.84 9.441

8 512x256x256 243.11 23.89 10.172

Table 7.7: 3D FFT benchmark results on the Pandaboard cluster

The number of processes used to run the 3D FFT benchmark should be a power of 2.

Hence as shown in Table 7.7, we see that this benchmark was executed on up to 8

cores in the cluster. The problem size was also scaled along with the number of

cores in order to ensure that benchmark runs for a reasonably long period of time.

We see from Figure 7.18 that at 4 cores, there is a drop in performance of the FFT

benchmark. The number of operations per second obtained is less than that obtained

when the benchmark is run on 1 and 2 cores. This is mainly because for the 1 and 2

core runs, the interprocess communication uses shared memory for all MPI all to all

messages. Communication has much higher bandwidth and very low latency when

compared to inter-node TCP/IP based communication. The performance per watt

measurement shown in Figure 7.19 illustrates the point that network communication

on the Pandaboard cluster is expensive. For a cluster that does not have a high speed

inter-connect, a problem involving little or no communication would be suitable.

Figure 7.18: 3D Fast Fourier Transform performance

Figure 7.19: 3D Fast Fourier Transform performance per watt

8 Future Work

There is a lot of scope for further research and experimentation in the area of low

power HPC. The ARM processors used in this project were 32-bit, had a much

lower clock speed and memory capacity when compared to some of the commonly

used processors in HPC such as Intel and AMD. Future ARM processors such as the

Cortex-A15 and the newly released ARMv8 architecture are definite candidates to

compete against the big players in HPC.

Future projects could use an ARM SoC that is based on the ARMv8 architecture.

One possible candidate is Nvidia's Project Denver processors which are on track to

hit the mobile market in 2013 [58]. Nvidia is also planning to release its Tegra 4

SoCs in 2013 which has a quad-core ARM Cortex-A15 processor. Future

Pandaboard designs could use the OMAP5 SoCs from Texas Instruments which also

use the ARM Cortex-A15 CPU.

ARM processor designs in the future will have higher core densities. As we move to

4, 8 and 16 cores on the chip, the glue power used by memory, network controller

and disk/SD card become a small fraction of the total power used by the node. This

scenario is ideally suited for projects like this one where the CPUs performance per

watt metrics is of importance.

There is also scope for exploring the possibility of using the hybrid MPI-OpenMP

programming model and compare its performance per watt metrics against a pure

MPI implementation when the core count goes up.

The Ubuntu 12.10 release installed on the cluster was a development branch image.

As a result there were no kernel headers available for this specific kernel version

(3.4.0-201-omap4). Hence we were unable to compile and configure OpenMX on

the Pandaboard ES. Once Ubuntu 12.10 is officially released, we could recompile

MPICH2 with OpenMX support and benchmark the cluster. We should see some

improvement in inter-node communication latency.

In this project we have mainly used industry standard benchmarks to test various

performance aspects of the cluster. We can run real scientific applications such as

Molecular Dynamics, simulations used in biology and chemistry on the Pandaboard

cluster. This will give us a realistic scenario of using ARM processors in HPC.

9 Conclusions

ARM processors have created a lot of interest among HPC community due to its low

power usage. This project attempts to use ARM based single board computers to

build a cluster. The focus of the project is to measure the performance per watt of

the ARM boards by running a variety of benchmarks. We were able to successfully

build the cluster using open-source software tools and run benchmarks on the

system.

The Pandaboard ES which uses the ARM Cortex-A9 processor turns out to be very

energy-efficient for the performance it is able to deliver. This is evident from the

performance per watt results obtained on the Pandaboard. The Pandaboard

consistently outperforms machines like the Intel Atom and Intel Xeon when the

metrics used is performance per watt. From a previous comparison study on low

power HPC [37], we saw that for most benchmarks the ARM (Marvell 88F6281)

processor gave better performance per watt results that the Intel Atom and Intel

Xeon processors. The results obtained in this project show that processors with

modern ARM architecture such as ARMv7 not only provide very good raw

performance, they also use lesser energy than older ARM architectures, thereby

widening the performance per watt gap.

We executed the benchmarks CoreMark, STREAM and HPL by compiling the

source code using various flags and optimization levels. There was a significant

improvement in performance when flags to unroll loops, vectorize code and prefetch

data from memory were added, depending on the operations performed in the

benchmarks. The ARM Cortex-A9 processor provides NEON SIMD instructions.

Although the NEON instructions supports only 32-bit floating point SIMD

operations, we saw a significant improvement in performance between the ATLAS

implementation that used NEON SIMD to implement GEMM routines versus the

unoptimized ATLAS version. This reinforces the point that tuning the code for the

architecture and usage of compiler optimization flags is crucial to obtain high

performance.

The Raspberry Pi boards were benchmarked using the Debian armel and Raspbian

versions of Linux. The Raspbian uses the hard-float ABI and delivers much higher

floating point performance when compared to the Debian armel which uses the soft-

float ABI. The Raspbian also outperformed the Debian armel when the STREAM

benchmark was executed on the Raspberry Pi. The reason for this is because the

Raspbian utilizes the 128 KB L2 cache while the Debian armel does not. These

results are indicative of the role the operating system plays in obtain performance

from the hardware.

When the single threaded CoreMark performance per watt metrics is compared

between the Raspberry Pi and the Pandaboard ES, we find that the Raspberry Pi is

not too far behind the Pandaboard even though the Pandaboard performs 2.5 times

better in terms of raw performance. This is mainly due to the lower power

consumption of the Raspberry Pi during peak load. The Raspberry Pi also uses much

lower power when running the STREAM benchmark compared to the Pandaboard

ES.

The ARM architecture roadmap clearly shows the path that is being taken in the

coming years. ARM currently dominates the mobile market and is poised to enter

the high performance server market. In order to find a solution to the high power

consumption of HPC machines, we need to make changes in several layers of the

hardware and software stack. ARM based processor technology could lead the way

by starting at the bottom most level which is the hardware.

Appendix A Benchmark Sample Results

A-1 Sample output of CoreMark benchmark on the Pandaboard ES

2K performance run parameters for coremark.
CoreMark Size : 666
Total ticks : 309747
Total time (secs): 309.747000
Iterations/Sec : 6456.882553
Iterations : 2000000
Compiler version : GCC4.7.1
Compiler flags : -O3 -funroll-loops -g -DMULTITHREAD=2 -DUSE_PTHREAD
-DPERFORMANCE_RUN=1 -lrt
Parallel PThreads : 2
Memory location : Please put data memory location here
(e.g. code in flash, data on heap etc)
seedcrc : 0xe9f5
[0]crclist : 0xe714
[1]crclist : 0xe714
[0]crcmatrix : 0x1fd7
[1]crcmatrix : 0x1fd7
[0]crcstate : 0x8e3a
[1]crcstate : 0x8e3a
[0]crcfinal : 0x988c
[1]crcfinal : 0x988c
Correct operation validated. See readme.txt for run and reporting rules.
CoreMark 1.0 : 6456.882553 / GCC4.7.1 -O3 -funroll-loops -g
-DMULTITHREAD=2 -DUSE_PTHREAD -DPERFORMANCE_RUN=1 -lrt /
Heap / 2:PThreads

A-2 Sample output of CoreMark benchmark on the Raspberry Pi

2K performance run parameters for coremark.
CoreMark Size : 666
Total ticks : 711340
Total time (secs): 711.340000
Iterations/Sec : 1405.797509
Iterations : 1000000
Compiler version : GCC4.4.5
Compiler flags : -O3 -funroll-loops -DPERFORMANCE_RUN=1 -lrt
Memory location : Please put data memory location here
(e.g. code in flash, data on heap etc)
seedcrc : 0xe9f5
[0]crclist : 0xe714
[0]crcmatrix : 0x1fd7

[0]crcstate : 0x8e3a
[0]crcfinal : 0x988c
Correct operation validated. See readme.txt for run and reporting rules.
CoreMark 1.0 : 1405.797509 / GCC4.4.5 -O3 -funroll-loops
-DPERFORMANCE_RUN=1 -lrt / Heap

A-3 Sample output of STREAM benchmark on the Pandaboard ES

STREAM version $Revision: 5.9 $

This system uses 8 bytes per DOUBLE PRECISION word.

Array size = 32768000, Offset = 0
Total memory required = 750.0 MB.
Each test is run 10 times, but only
the *best* time for each is used.

Number of Threads requested = 2

Printing one line per active thread....
Printing one line per active thread....

Your clock granularity/precision appears to be 29 microseconds.
Each test below will take on the order of 529326 microseconds.
 (= 18252 clock ticks)
Increase the size of the arrays if this shows that
you are not getting at least 20 clock ticks per test.

WARNING -- The above is only a rough guideline.
For best results, please be sure you know the
precision of your system timer.

Function Rate (MB/s) Avg time Min time Max time
Copy: 1209.6816 0.4346 0.4334 0.4357
Scale: 1227.7488 0.4284 0.4270 0.4295
Add: 949.2687 0.8305 0.8285 0.8340
Triad: 1251.9332 0.6300 0.6282 0.6372

Solution Validates

A-4 Sample output of STREAM benchmark on the Raspberry Pi

STREAM version $Revision: 5.9 $

This system uses 8 bytes per DOUBLE PRECISION word.

Array size = 6553600, Offset = 0
Total memory required = 150.0 MB.
Each test is run 10 times, but only
the *best* time for each is used.

Printing one line per active thread....

Your clock granularity/precision appears to be 2 microseconds.
Each test below will take on the order of 257426 microseconds.
 (= 128713 clock ticks)
Increase the size of the arrays if this shows that
you are not getting at least 20 clock ticks per test.

WARNING -- The above is only a rough guideline.
For best results, please be sure you know the
precision of your system timer.

Function Rate (MB/s) Avg time Min time Max time
Copy: 375.5592 0.2801 0.2792 0.2814
Scale: 229.7664 0.4598 0.4564 0.4780
Add: 193.4280 0.8147 0.8132 0.8153
Triad: 239.2993 0.6587 0.6573 0.6596

Solution Validates

A-5 Sample output of HPL benchmark on the Pandaboard ES for 12 cores

using unoptimized BLAS and LAPACK

===
=====================
HPLinpack 2.0 -- High-Performance Linpack benchmark -- September 10, 2008
Written by A. Petitet and R. Clint Whaley, Innovative Computing Laboratory,
UTK
Modified by Piotr Luszczek, Innovative Computing Laboratory, UTK
Modified by Julien Langou, University of Colorado Denver
===
=====================
An explanation of the input/output parameters follows:
T/V : Wall time / encoded variant.
N : The order of the coefficient matrix A.
NB : The partitioning blocking factor.
P : The number of process rows.
Q : The number of process columns.
Time : Time in seconds to solve the linear system.
Gflops : Rate of execution for solving the linear system.

The following parameter values will be used:
N : 25344
NB : 128
PMAP : Row-major process mapping
P : 3
Q : 4
PFACT : Right
NBMIN : 4
NDIV : 2
RFACT : Crout
BCAST : 1ringM
DEPTH : 1
SWAP : Mix (threshold = 64)
L1 : transposed form
U : transposed form
EQUIL : yes
ALIGN : 8 double precision words
--
- The matrix A is randomly generated for each test.
- The following scaled residual check will be computed:
 ||Ax-b||_oo / (eps * (|| x ||_oo * || A ||_oo + || b ||_oo) * N)
- The relative machine precision (eps) is taken to be 1.110223e-16
- Computational tests pass if scaled residuals are less than 16.0
===
=====================

T/V N NB P Q Time Gflops
--
WR11C2R4 25344 128 3 4 12376.00 8.770e-01
--
||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)= 0.0039910 PASSED
===
=====================
Finished 1 tests with the following results:
 1 tests completed and passed residual checks,
 0 tests completed and failed residual checks,
 0 tests skipped because of illegal input values.
--
End of Tests.
===
=====================

A-6 Sample output of HPL benchmark on the Pandaboard ES for 2 cores using

ATLAS 3.10 and compiled with flags for ARM

===
=====================
HPLinpack 2.0 -- High-Performance Linpack benchmark -- September 10, 2008
Written by A. Petitet and R. Clint Whaley, Innovative Computing Laboratory,
UTK
Modified by Piotr Luszczek, Innovative Computing Laboratory, UTK
Modified by Julien Langou, University of Colorado Denver
===
=====================
An explanation of the input/output parameters follows:
T/V : Wall time / encoded variant.
N : The order of the coefficient matrix A.
NB : The partitioning blocking factor.
P : The number of process rows.
Q : The number of process columns.
Time : Time in seconds to solve the linear system.
Gflops : Rate of execution for solving the linear system.

The following parameter values will be used:
N : 9984
NB : 128
PMAP : Row-major process mapping
P : 1
Q : 2
PFACT : Right

NBMIN : 4
NDIV : 2
RFACT : Crout
BCAST : 1ringM
DEPTH : 1
SWAP : Mix (threshold = 64)
L1 : transposed form
U : transposed form
EQUIL : yes
ALIGN : 8 double precision words
--
- The matrix A is randomly generated for each test.
- The following scaled residual check will be computed:
 ||Ax-b||_oo / (eps * (|| x ||_oo * || A ||_oo + || b ||_oo) * N)
- The relative machine precision (eps) is taken to be 1.110223e-16
- Computational tests pass if scaled residuals are less than 16.0
===
=====================
T/V N NB P Q Time Gflops
--
WR11C2R4 9984 128 1 2 414.41 1.601e+00
--
||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)= 0.0013786 PASSED
===
=====================
Finished 1 tests with the following results:
 1 tests completed and passed residual checks,
 0 tests completed and failed residual checks,
 0 tests skipped because of illegal input values.
--
End of Tests.
===
=====================

A-7 Sample output of HPL benchmark on the Pandaboard ES for 12 cores

using ATLAS 3.10 and compiled with flags for ARM

===
=====================
HPLinpack 2.0 -- High-Performance Linpack benchmark -- September 10, 2008
Written by A. Petitet and R. Clint Whaley, Innovative Computing Laboratory,
UTK
Modified by Piotr Luszczek, Innovative Computing Laboratory, UTK
Modified by Julien Langou, University of Colorado Denver

===
=====================
An explanation of the input/output parameters follows:
T/V : Wall time / encoded variant.
N : The order of the coefficient matrix A.
NB : The partitioning blocking factor.
P : The number of process rows.
Q : The number of process columns.
Time : Time in seconds to solve the linear system.
Gflops : Rate of execution for solving the linear system.

The following parameter values will be used:
N : 25344
NB : 128
PMAP : Row-major process mapping
P : 3
Q : 4
PFACT : Right
NBMIN : 4
NDIV : 2
RFACT : Crout
BCAST : 1ringM
DEPTH : 1
SWAP : Mix (threshold = 64)
L1 : transposed form
U : transposed form
EQUIL : yes
ALIGN : 8 double precision words
--
- The matrix A is randomly generated for each test.
- The following scaled residual check will be computed:
 ||Ax-b||_oo / (eps * (|| x ||_oo * || A ||_oo + || b ||_oo) * N)
- The relative machine precision (eps) is taken to be 1.110223e-16
- Computational tests pass if scaled residuals are less than 16.0
===
=====================
T/V N NB P Q Time Gflops
--
WR11C2R4 25344 128 3 4 1673.99 6.484e+00
--
||Ax-b||_oo/(eps*(||A||_oo*||x||_oo+||b||_oo)*N)= 0.0009402 PASSED
===
=====================
Finished 1 tests with the following results:
 1 tests completed and passed residual checks,
 0 tests completed and failed residual checks,
 0 tests skipped because of illegal input values.

--
End of Tests.
===
=====================

A-8 Sample output of Ping Pong benchmark on the Pandaboard ES using 2

nodes.

Message Size (Bytes) Latency (s) Bandwidth (MB/s)

8
16
32
64
128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288
1048576
2097152
4194304
8388608

0.000392
0.000389
0.000396
0.000420
0.000463
0.000545
0.000618
0.000771
0.000783
0.001004
0.001218
0.002074
0.003435
0.006141
0.014470
0.027330
0.046816
0.092237
0.179291
0.356498
0.714353

0.019458
0.039207
0.077099
0.145339
0.263774
0.447762
0.790108
1.265843
2.494470
3.891370
6.415783
7.532569
9.097896
10.177662
8.638434
9.147350
10.680017
10.841607
11.155026
11.220265
11.198949

A-8 Sample output of embarrassingly parallelism benchmark on the

Pandaboard ES for 12 cores

NAS Parallel Benchmarks 3.2 -- EP Benchmark
Number of random numbers generated: 8589934592
Number of active processes: 12
EP Benchmark Results:
CPU Time = 141.7163
N = 2^32
No. Gaussian Pairs = 3373275903.
Sums = 4.764367927993350D+04 -8.084072988045315D+04
Counts:
 0 1572172634.
 1 1501108549.
 2 281805648.
 3 17761221.
 4 424017.
 5 3821.
 6 13.
 7 0.
 8 0.
 9 0.

 EP Benchmark Completed.
 Class = C
 Size = 8589934592
 Iterations = 0
 Time in seconds = 141.72
 Total processes = 12
 Compiled procs = 12
 Mop/s total = 60.61
 Mop/s/process = 5.05
 Operation type = Random numbers generated
 Verification = SUCCESSFUL
 Version = 3.2
 Compile date = 07 Aug 2012

 Compile options:
 MPIF77 = mpif77
 FLINK = $(MPIF77)
 FMPI_LIB = -L/usr/local/mpi/lib -lfmpich
 FMPI_INC = -I/usr/local/mpi/include
 FFLAGS = -O3
 FLINKFLAGS = -O3
 RAND = randi8

 Please send the results of this run to:
 NPB Development Team
 Internet: npb@nas.nasa.gov
 If email is not available, send this to:
 MS T27A-1
 NASA Ames Research Center
 Moffett Field, CA 94035-1000
 Fax: 650-604-3957

A-8 Sample output of 3D FFT benchmark on the Pandaboard ES for 8 cores

 NAS Parallel Benchmarks 3.2 -- FT Benchmark
 No input file inputft.data. Using compiled defaults
 Size : 512x 256x 256
 Iterations : 20
 Number of processes : 8
 Processor array : 1x 8
 Layout type : 1D

 T = 1 Checksum = 5.177643571579D+02 5.077803458597D+02
 T = 2 Checksum = 5.154521291263D+02 5.088249431599D+02
 T = 3 Checksum = 5.146409228650D+02 5.096208912659D+02
 T = 4 Checksum = 5.142378756213D+02 5.101023387619D+02
 T = 5 Checksum = 5.139626667737D+02 5.103976610618D+02
 T = 6 Checksum = 5.137423460082D+02 5.105948019802D+02
 T = 7 Checksum = 5.135547056878D+02 5.107404165783D+02
 T = 8 Checksum = 5.133910925467D+02 5.108576573661D+02
 T = 9 Checksum = 5.132470705390D+02 5.109577278523D+02
 T = 10 Checksum = 5.131197729984D+02 5.110460304483D+02
 T = 11 Checksum = 5.130070319283D+02 5.111252433800D+02
 T = 12 Checksum = 5.129070537032D+02 5.111968077719D+02
 T = 13 Checksum = 5.128182883503D+02 5.112616233064D+02
 T = 14 Checksum = 5.127393733383D+02 5.113203605551D+02
 T = 15 Checksum = 5.126691062021D+02 5.113735928093D+02
 T = 16 Checksum = 5.126064276005D+02 5.114218460548D+02
 T = 17 Checksum = 5.125504076570D+02 5.114656139760D+02
 T = 18 Checksum = 5.125002331721D+02 5.115053595966D+0
 T = 19 Checksum = 5.124551951846D+02 5.115415130407D+02
 T = 20 Checksum = 5.124146770029D+02 5.115744692211D+02

 Result verification successful
 class = B
 FT Benchmark Completed.
 Class = B
 Size = 512x 256x 256

 Iterations = 20
 Time in seconds = 378.65
 Total processes = 8
 Compiled procs = 8
 Mop/s total = 243.11
 Mop/s/process = 30.39
 Operation type = floating point
 Verification = SUCCESSFUL
 Version = 3.2
 Compile date = 07 Aug 2012

 Compile options:
 MPIF77 = mpif77
 FLINK = $(MPIF77)
 FMPI_LIB = -L/usr/local/mpi/lib -lfmpich
 FMPI_INC = -I/usr/local/mpi/include
 FFLAGS = -O3
 FLINKFLAGS = -O3
 RAND = randi8

 Please send the results of this run to:
 NPB Development Team
 Internet: npb@nas.nasa.gov
 If email is not available, send this to:
 MS T27A-1
 NASA Ames Research Center
 Moffett Field, CA 94035-1000
 Fax: 650-604-3957

Appendix B Scripts

B-1 execAll.pl

Author: Nikilesh Balakrishnan
Description: Script to execute commands from
the master on all Pandaboard ES boards
#!/usr/bin/perl -w
use strict;

if($#ARGV != 0)
{

print "Usage: ./execAll <Command>\n";
exit(1);

}
my $command = $ARGV[0];

my @machineList = ();
push(@machineList, "panda1");
push(@machineList, "panda2");
push(@machineList, "panda3");
push(@machineList, "panda4");
push(@machineList, "panda5");
push(@machineList, "panda6");

&execCmd();

sub execCmd
{

foreach my $dest (@machineList)
{

print "Executing command $command on $dest\n";
my $cmd = "ssh $dest '$command'";
my $ret = `$cmd`;
die "Error: $?" if($? != 0);

print "Finished executing command $command on $dest\n";
$ret = &trim($ret);
next if($ret eq "");

print "Output: \n$ret\n";
}

}

sub trim
{

my $string = shift;
$string =~ s/^\s+//;
$string =~ s/\s+$//;
return $string;

}

B-2 getAvg.pl

Author: Nikilesh Balakrishnan
Description: Script that calculates the average power used
#!/usr/local/bin/perl -w

use strict;
my $count = 0;
my $totalWatts = 0;

while(<>)
{

chomp;
my ($first, $watt) = split(/ /,$_);

++$count;
$totalWatts += $watt;

}

my $avg = $totalWatts / $count;
print "total power: $totalWatts, count: $count, Avg power: $avg\n";

B-3 initialize.sh

Author: Nikilesh Balakrishnan
Description: Script to initialize the pandaboard when it boots up
sudo service idmapd stop
sudo service cron stop
sudo service statd stop
sudo service atd stop
sudo service upstart-socket-bridge stop
sudo service upstart-udev-bridge stop
sudo ntpdate -u -b uk.pool.ntp.org
sudo pbs_mom
sudo cpufreq-set -g performance

10 Bibliography

[1] HPCWire: Arm Yourselves for Exascale, Part 1. Online at

http://www.hpcwire.com/hpcwire/2011-11-

09/arm_yourselves_for_exascale,_part_1.html (referenced 07/18/2012).

[2] Performance per watt - Wikipedia. Online at

http://en.wikipedia.org/wiki/Performance_per_watt (referenced 07/18/2012).

[3] Top500 Supercomputing Sites. Online at

http://www.top500.org/list/2012/06/100 (referenced 07/21/2012).

[4] The Green500 List :: Environmentally Responsible Supercomputing :: The

Green500 List June 2012. Online at

http://www.green500.org/lists/2012/06/top/list.php?from=1&to=100

(referenced on 07/21/2012).

[5] Moore's law – Wikipedia, the free encyclopedia. Online at

http://en.wikipedia.org/wiki/Moores_law (referenced on 07/26/2012).

[6] Exascale Computing Study: Technology Challenges in Achieving Exascale

Systems. (DARPA)

[7] Why CPU Frequency Stalled – IEEE Spectrum. Online at

http://spectrum.ieee.org/computing/hardware/why-cpu-frequency-stalled

(reference on 07/27/2012).

[8] Computational efficiency for CPUs and GPUs in 2012. Online at

http://www.realworldtech.com/compute-efficiency-2012/ (referenced on

07/30/2012).

[9] HPCWire: The 2012 Performance per watt wars. Online at

http://www.hpcwire.com/hpcwire/2012-07-

26/the_2012_performance_per_watt_wars.html (referenced on 07/30/2012)

[10] The future of AMD's Fusion APUs: Kaveri will fully share memory

between CPU and GPU. Online at

http://www.extremetech.com/computing/130939-the-future-of-amds-fusion-

http://www.extremetech.com/computing/130939-the-future-of-amds-fusion-apus-kaveri-will-fully-share-memory-between-cpu-and-gpu
http://www.hpcwire.com/hpcwire/2012-07-26/the_2012_performance_per_watt_wars.html
http://www.hpcwire.com/hpcwire/2012-07-26/the_2012_performance_per_watt_wars.html
http://www.realworldtech.com/compute-efficiency-2012/
http://spectrum.ieee.org/computing/hardware/why-cpu-frequency-stalled
http://en.wikipedia.org/wiki/Moores_law
http://www.green500.org/lists/2012/06/top/list.php?from=1&to=100
http://www.top500.org/list/2012/06/100

apus-kaveri-will-fully-share-memory-between-cpu-and-gpu (referenced on

08/01/2012)

[11] Intel MIC – Wikipedia, the free encyclopedia. Online at

http://en.wikipedia.org/wiki/Intel_MIC (referenced on 08/01/2012).

[12] Tim Mattson, Intel Labs. Many core processors at Intel: lessons learned

and a view of the future.

[13] AnandTech – Intel Announces Xeon Phi Family of Co-Processors – MIC

Goes Retail. Online at http://www.anandtech.com/show/6017/intel-

announces-xeon-phi-family-of-coprocessors-mic-goes-retail/ (referenced on

08/01/2012).

[14] ARM, Windows 8 to Power Future Notebooks, says IHS. Online at

http://it.tmcnet.com/topics/it/articles/201819-arm-windows-8-power-future-

notebooks-says-ihs.htm (referenced on 08/02/2012).

[15] Richard Grisenthwaite, Lead Architect and Fello, ARM. ARMv8

Technology Preview

[16] Calxeda EnergyCore. Online at http://www.calxeda.com/wp-

content/uploads/2012/06/ECX1000-Product-Brief-612.pdf (referenced on

08/02/2012)

[17] “Project Denver” Processor to Usher in New Era of Computing – Nvidia.

Online at h ttp://blogs.nvidia.com/2011/01/project-denver-processor-to-usher-

in-new-era-of-computing/ (referenced on 08/03/2012).

[18] TMS320C66x multicore DSPs for high-performance computing. Online at

http://www.ti.com/lit/ml/sprt619/sprt619.pdf (referenced on 08/03/2012).

[19] OMAP4460 Pandaboard ES System Reference Manual. Online at

http://pandaboard.org/sites/default/files/board_reference/pandaboard-es-

b/panda-es-b-manual.pdf (referenced on 08/04/2012).

[20] Cortex-A9 Processor – ARM. Online at

http://arm.com/products/processors/cortex-a/cortex-a9.php (referenced on

http://arm.com/products/processors/cortex-a/cortex-a9.php
http://pandaboard.org/sites/default/files/board_reference/pandaboard-es-b/panda-es-b-manual.pdf
http://pandaboard.org/sites/default/files/board_reference/pandaboard-es-b/panda-es-b-manual.pdf
http://www.ti.com/lit/ml/sprt619/sprt619.pdf
http://blogs.nvidia.com/2011/01/project-denver-processor-to-usher-in-new-era-of-computing/
http://blogs.nvidia.com/2011/01/project-denver-processor-to-usher-in-new-era-of-computing/
http://blogs.nvidia.com/2011/01/project-denver-processor-to-usher-in-new-era-of-computing/
http://www.calxeda.com/wp-content/uploads/2012/06/ECX1000-Product-Brief-612.pdf
http://www.calxeda.com/wp-content/uploads/2012/06/ECX1000-Product-Brief-612.pdf
http://it.tmcnet.com/topics/it/articles/201819-arm-windows-8-power-future-notebooks-says-ihs.htm
http://it.tmcnet.com/topics/it/articles/201819-arm-windows-8-power-future-notebooks-says-ihs.htm
http://www.anandtech.com/show/6017/intel-announces-xeon-phi-family-of-coprocessors-mic-goes-retail/
http://www.anandtech.com/show/6017/intel-announces-xeon-phi-family-of-coprocessors-mic-goes-retail/
http://en.wikipedia.org/wiki/Intel_MIC
http://www.extremetech.com/computing/130939-the-future-of-amds-fusion-apus-kaveri-will-fully-share-memory-between-cpu-and-gpu
http://www.extremetech.com/computing/130939-the-future-of-amds-fusion-apus-kaveri-will-fully-share-memory-between-cpu-and-gpu

08/04/2012).

[21] ARM Information Center. Online at

http://infocenter.arm.com/help/index.jsp?

topic=/com.arm.doc.ddi0409f/Chdceejc.html (referenced on 08/04/2012).

[22] ARM Architecture – Wikipedia. Online at

http://en.wikipedia.org/wiki/ARM_architecture#Floating-point_.28VFP.29

(Referenced on 08/04/2012).

[23] Rpi Hardware – eLinux.org. Online at http://elinux.org/RPi_Hardware

(Referenced on 08/04/2012).

[24] ARM1176JZF-S, Revision: r0p7. Technical Reference Manual, ARM.

Findings pp-18-2.

[25] The Graph 500 List. Online at http://www.graph500.org/ (Referenced on

08/06/2012).

[26] The Blue Gene/Q Compute Chip. Rudd Haring / IBM Blue Gene Team.

[27] IBM plants transactional memory in CPU. Online at

http://www.eetimes.com/electronics-news/4218914/IBM-plants-

transactional-memory-in-CPU (Referenced on 08/06/2012).

[28] IBM Blue Gene/Q supercomputer delivers petascale computing for high-

performance computing applications. Online at http://www-

01.ibm.com/common/ssi/rep_ca/8/897/ENUS112-028/ENUS112-028.PDF

(Referenced on 08/06/2012).

[29] Mont-Blanc. European scalable and power efficient HPC platform based

on low-power embedded technology. Alex Ramirez, Barcelona

Supercomputing Center, Technical Coordinator.

[30] The Mont-Blanc architecture, BoF session ISC 2012. Alex Ramirez.

[31] The OmpSs programming model | Programming models @ BSC. Online at

http://pm.bsc.es/ompss (Referenced on 08/08/2012).

[32] [Phoronix] 12-Core ARM Cluster Benchmarked Against Interl Atom, Ivy

http://pm.bsc.es/ompss
http://www-01.ibm.com/common/ssi/rep_ca/8/897/ENUS112-028/ENUS112-028.PDF
http://www-01.ibm.com/common/ssi/rep_ca/8/897/ENUS112-028/ENUS112-028.PDF
http://www.eetimes.com/electronics-news/4218914/IBM-plants-transactional-memory-in-CPU
http://www.eetimes.com/electronics-news/4218914/IBM-plants-transactional-memory-in-CPU
http://www.graph500.org/
http://elinux.org/RPi_Hardware
http://en.wikipedia.org/wiki/ARM_architecture#Floating-point_.28VFP.29
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0409f/Chdceejc.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0409f/Chdceejc.html

Bridge and AMD Fusion. Online at http://www.phoronix.com/scan.php?

page=article&item=phoronix_effimass_cluster&num=1 (Referenced on

08/08/2012). pp 1-16.

[33] Software Pandaboard. Online at

http://pandaboard.org/content/resources/software (Referenced on

08/09/2012).

[34] [Phoronix] Building A 96-Core Ubuntu ARM Solar-Powered Cluster.

Online at http://www.phoronix.com/scan.php?

page=article&item=mit_cluster_build&num=1 (Referenced on 08/08/2012).

[35] Towards Fault-Tolerant Energy-Efficient High Performance Computing in

the Cloud. Kurt L.Keville, Rohan Garg, David J.Yates, Kapil Arya, Gene

Cooperman.

[36] F2c. Online at http://www.netlib.org/f2c/ (Referenced on 08/08/2012).

[37] Low-Power High Performance Computing. Panagiotis Kritikakos, EPCC.

[38] MPICH2: High Performance and Widely Portable MPI. Online at

http://www.mcs.anl.gov/research/projects/mpich2/ (Referenced on

08/10/2012).

[39] Open-MX: Myrinet Express over Generic Ethernet Hardware. Online at

http://open-mx.gforge.inria.fr/ (Referenced on 08/10/2012).

[40] TORQUE Resource Manager. Online at

http://www.adaptivecomputing.com/products/open-source/torque/

(Referenced on 08/10/2012).

[41] Cluster resources :: Products - Maui Cluster Scheduler. Online at

http://www.clusterresources.com/products/maui-cluster-scheduler.php

(Referenced on 08/10/2012).

[42] CoreMark an EEMBC Benchmark. Online at http://coremark.org/

(Referenced on 08/11/2012).

[43] CoreMark: A realistic way to benchmark CPU performance. Online at

http://coremark.org/
http://www.clusterresources.com/products/maui-cluster-scheduler.php
http://www.adaptivecomputing.com/products/open-source/torque/
http://open-mx.gforge.inria.fr/
http://www.mcs.anl.gov/research/projects/mpich2/
http://www.netlib.org/f2c/
http://www.phoronix.com/scan.php?page=article&item=mit_cluster_build&num=1
http://www.phoronix.com/scan.php?page=article&item=mit_cluster_build&num=1
http://pandaboard.org/content/resources/software
http://www.phoronix.com/scan.php?page=article&item=phoronix_effimass_cluster&num=1
http://www.phoronix.com/scan.php?page=article&item=phoronix_effimass_cluster&num=1

http://www.eetimes.com/design/embedded/4212735/CoreMark--A-realistic-

way-to-benchmark-CPU-performance?pageNumber=0 (Referenced on

08/11/2012). pp 1-3.

[44] STREAM Benchmark Reference Information. Online at

https://www.cs.virginia.edu/stream/ref.html (Referenced on 08/11/2012).

[45] LINPACK. Online at http://www.netlib.org/linpack/ (Referenced on

08/11/2012).

[46] HPL - A Portable Implementation of the High-Performance Linpack

Benchmark for Distributed-Memory Computers. Online at

http://www.netlib.org/benchmark/hpl/ (Referenced on 08/11/2012).

[47] NAS Parallel Benchmarks. Online at

http://www.nas.nasa.gov/publications/npb.html (Referenced on 08/11/2012).

[48] THE NAS PARALLEL BENCHMARKS. D Bailey, E Barszcz, J Barton, D

Browning, R Carter, L Dagum, R Fatoohi, S Fineberg, P Frederickson, T

Lasinski, R Schreiber, H Simon, V Venkatakrishnan and S Weeratunga.

RNR Technical Report RNR-94-007, March 1994.

[49] Intel Power Gadget 2.0. Online at http://software.intel.com/en-

us/articles/intel-power-gadget/ (Referenced on 08/12/2012).

[50] Power Measurement Tutorial for the Green500 List. R. Ge, X. Feng, H.

Pyla, K. Cameron, W. Feng.

[51] CPU frequency and voltage scaling code in the Linux(TM) kernel. Online

at http://kernel.org/doc/Documentation/cpu-freq/governors.txt (Referenced

on 08/13/2012).

[52] Optimize Options - Using the GNU Compiler Collection (GCC). Online at

http://gcc.gnu.org/onlinedocs/gcc-4.4.2/gcc/Optimize-Options.html

(Referenced on 08/14/2012).

[53] LP-DDR2, The Next Generation Memory Technology. Jaime Borras,

Wireless Silicon Group, Inc.

http://gcc.gnu.org/onlinedocs/gcc-4.4.2/gcc/Optimize-Options.html
http://kernel.org/doc/Documentation/cpu-freq/governors.txt
http://software.intel.com/en-us/articles/intel-power-gadget/
http://software.intel.com/en-us/articles/intel-power-gadget/
http://www.nas.nasa.gov/publications/npb.html
http://www.netlib.org/benchmark/hpl/
http://www.netlib.org/linpack/
https://www.cs.virginia.edu/stream/ref.html
http://www.eetimes.com/design/embedded/4212735/CoreMark--A-realistic-way-to-benchmark-CPU-performance?pageNumber=0
http://www.eetimes.com/design/embedded/4212735/CoreMark--A-realistic-way-to-benchmark-CPU-performance?pageNumber=0

[54] ATLAS-ARM FAQ. Online at http://www.vesperix.com/arm/atlas-

arm/faq/index.html (Referenced on 08/16/2012).

[55] MPI Performance Topics. Online at

https://computing.llnl.gov/tutorials/mpi_performance/ (Referenced on

08/17/2012).

[56] MPICH2 1.4.1 source code. Filename:

./src/mpid/ch3/channels/nemesis/include/mpidi_ch3_post.h,

MPIDI_CH3_EAGER_MAX_MSG_SIZE.

[57] Nvidia: Project Denver Is On-Track, Does Not Interfere with ARM's Own

64-Bit Tech - X-bit labs. Online at

http://www.xbitlabs.com/news/cpu/display/20111110230832_Nvidia_Project

_Denver_Is_On_Track_Does_Not_Interfere_with_ARM_s_Own_64_Bit_Te

ch.html (Referenced on 08/20/2012).

[58] F.Bloggs. 1993 Latex Users do it in Environments Int. Journal of Silly

Findings. pp 23-29.

http://www.xbitlabs.com/news/cpu/display/20111110230832_Nvidia_Project_Denver_Is_On_Track_Does_Not_Interfere_with_ARM_s_Own_64_Bit_Tech.html
http://www.xbitlabs.com/news/cpu/display/20111110230832_Nvidia_Project_Denver_Is_On_Track_Does_Not_Interfere_with_ARM_s_Own_64_Bit_Tech.html
http://www.xbitlabs.com/news/cpu/display/20111110230832_Nvidia_Project_Denver_Is_On_Track_Does_Not_Interfere_with_ARM_s_Own_64_Bit_Tech.html
https://computing.llnl.gov/tutorials/mpi_performance/
http://www.vesperix.com/arm/atlas-arm/faq/index.html
http://www.vesperix.com/arm/atlas-arm/faq/index.html

	1 Introduction
	1.1 Report Organization

	2 Background
	2.1 Exascale Challenge
	2.2 Low power hardware trends
	2.2.1 GPU
	2.2.2 Many Integrated Cores (MIC)
	2.2.3 ARM processors
	2.2.4 DSP

	3 Project Hardware
	3.1 Pandaboard ES
	3.1.1 ARM Cortex-A9

	3.2 Raspberry Pi
	3.2.1 ARM11

	4 Literature Review
	4.1 Energy efficient HPC systems
	4.1.1 IBM Blue Gene/Q
	4.1.1.1 BGQ Desgin

	4.2 ARM clusters
	4.2.1 Mont-Blanc BSC
	4.2.2 Phoronix Pandaboard cluster
	4.2.3 ARM cluster for HPC in the cloud

	5 Cluster Design
	5.1 Hardware Setup
	5.2 Operating System Setup
	5.2.1 Panandboard ES
	5.2.2 Raspberry Pi

	5.3 Networking
	5.4 Software setup
	5.4.1 C/C++
	5.4.2 Fortran
	5.4.3 Message Passing Library
	5.4.4 Queue Management and Job Scheduling
	5.4.5 Network File System

	6 Benchmarking & Power Measurement
	6.1 CoreMark
	6.2 STREAM
	6.3 Linpack
	6.4 HPL
	6.5 Ping Pong
	6.6 NAS Parallel Benchmarks
	6.6.1 Embarrassingly Parallel
	6.6.2 3D Fast Fourier Transform

	6.7 Power Measurement
	6.7.1 Metrics

	7 Results and Analysis
	7.1 CPU Frequency Scaling
	7.1.1 Idle Power Reading

	7.2 CoreMark
	7.2.1 PPW comparison to Intel Atom and Intel Xeon

	7.3 STREAM
	7.3.1 PPW comparison with Intel Atom and Intel Xeon

	7.4 HPL
	7.5 Linpack
	7.6 Ping Pong
	7.7 NAS Parallel Benchmarks
	7.7.1 Embarrassingly Parallel (EP)
	7.7.2 3D Fast Fourier Transform (FT)

	8 Future Work
	9 Conclusions
	10 Bibliography

