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Abstract  
 
Processing large volumes of scientific data requires an efficient and scalable parallel 
computing framework to obtain meaningful information quickly. MapReduce is a 
programming model and an execution framework introduced by Google Inc. to facilitate 
processing of large datasets (Dean and Ghemawat 2004). Since its inception, MapReduce has 
found widespread adoption for processing massive amounts of textual data such as web 
pages, web request logs and crawled documents but only recently has it gained significant 
attention from various scientific disciplines for analyzing large volumes of scientific data.  

In many cases, scientific applications may have characteristics which make it harder to apply 
programming models like MapReduce. The data to be analysed may come from many 
different sources, may be unevenly distributed or may be updated or superseded by new data. 
The application itself may display signs of being I/O bound or memory-bound as well as 
being CPU-bound. 

In this dissertation, we evaluate a scientific application from the environmental sciences (ccc-
gistemp  Python reimplementation of the original NASA GISS model for estimating the 
global temperature change) for its applicability to use the MapReduce framework, 
specifically the Hadoop implementation of MapReduce. The application consists of several 
stages, each of which display differing dynamic, distributed and data-intensive 
characteristics, and we examine the code to determine how to parallelise data and compute 
intensive tasks efficiently. 

Three stages of the ccc-gistemp code have been ported using Hadoop and mrjob library 
(Python interface for Hadoop streaming jobs). Step1 is trivially data-parallel and well suited 
to MapReduce; Step2 is both data and compute intensive and appears suited to MapReduce 
but reveals issues due to uneven distribution of input data; and step3 does not initially appear 
to suit MapReduce but can be successfully ported by slight modification of the data access 
pattern. Performance bottlenecks encountered while porting and possible solutions for their 
resolution are highlighted, with benchmarking carried out on two commodity clusters: the St. 
Andrews cloud infrastructure and the University of Edinburgh EDIM1 data-intensive 
research machine. 

This work has shown that: 

1. MapReduce provides the necessary programming abstraction for parallelising data 
and compute intensive steps of a scientific application code. 

2. The MapReduce programming framework is capable of handling applications with 
varying indices along the three axes of being dynamic, distributed and data-intensive. 

3. Implementations of MapReduce programming model on infrastructures consisting of 
low-end commodity machines are cost-effective and efficient for data-intensive 
computing.  
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Chapter  1    

Introduction  
 
The ability to create rich, detailed models of natural and artificial phenomena and to process 
large volumes of experimental data created by new generation of scientific instruments that are 
themselves powered by computing, highlights the importance of computational science as a 
critical enabler of scientific discovery (Hey, Tansley and Tolle 2009). 

1.1 Motivation  and  Context  
 
Advancing the state-of-the-art research in computational science require analyses of large 
volumes of data collected from numerous scientific instruments and experiments conducted 
around the globe. Petabyte data sets are already becoming increasingly common in many High 
End Computing (HEC) applications from a diverse range of scientific disciplines (Mackey, et 
al. 2008), and this is only expected to grow in the near future. An exemplar to this is the Large 
Hadron Collider (LHC) which is estimated to produce roughly 15 petabytes of data a year 
when it is fully operational1. This necessitates the need for providing abstraction2 at multiple 
levels for acquiring, managing and processing of data (Hey, Tansley and Tolle 2009), thus 
enabling the scientific commun
complexities involved in setting up and maintaining the cyber-infrastructure required to 
facilitate data intensive computing.   

Processing the large volumes of data quickly requires efficient parallel programming models 
that meet the performance requirements entailed by these scientific applications. Several 
attributes need be considered before selecting a suitable methodology for parallelising data-
intensive applications which include data volumes, data access patterns in the algorithm, 
computational requirements, task sharing and global synchronisation constraints, scalability, 
ease of programming and the underlying execution infrastructure. The main focus of this work 
is to evaluate if MapReduce, specifically Hadoop implementation of MapReduce, can provide 
the necessary high level parallel programming framework that is required for parallelising data 
and compute intensive tasks of a scientific application from the environmental sciences. 

GISS Surface Temperature Analysis (GISTEMP)3 is an open-source model from the 
environmental sciences for estimating the global temperature change, implemented by NASA 
Goddard Institute of Space Studies (GISS). GISTEMP was originally written in FORTRAN.  

                                                 
1 http://public.web.cern.ch/public/en/LHC/Computing-en.html 
2 Abstraction commonly refers to the way of representing data or computation at a higher-level, hiding the 
underlying complexity.  
3 http://www.giss.nasa.gov 

http://www.giss.nasa.gov/
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ccc-gistemp is a part of the Clear Climate Code (CCC) project from Climate Code Foundation 
to re-implement the NASA GISS Gistemp algorithm in Python. In this project, ccc-gistemp is 
ported to the MapReduce framework using mrjob API to provide the python interface for 
Hadoop streaming jobs.  

The St. Andrews cloud infrastructure (StACC) and the University of Edinburgh EDIM1 
machine are used extensively for development and testing of the ported code. EDIM14 is a 
cluster of commodity machines jointly funded by the Edinburgh Parallel Computing Center 
(EPCC) and the School of Informatics, primarily intended for Data-intensive research. 
Performance evaluations have been done on this machine configured as a sixteen node cluster 
(one master node, one job tracker and fourteen slave nodes). 

Map-Reduce is a programming model introduced by Google Inc. to support distributed 
computing on large volumes of data, using clusters of commodity machines (Dean and 
Ghemawat 2004). Firstly, this parallel data-processing model is understood as a means of 
providing abstraction for distributed, data-intensive computing. Secondly, from an architectural 
perspective, the existing ccc-gistemp application code is reviewed to verify its applicability to 
be ported to the MapReduce framework. Data and compute-intensive steps within the code that 
are likely to improve the overall performance when ported are identified. Thirdly, the identified 
steps are ported to the MapReduce programming model in small increments using iterative 
technique (agile development practises), while noting performance and verifying the 
correctness of the algorithm. Lastly, the ported code is benchmarked to evaluate performance 
and scalability.   

1.2 Related  Work  
 
MapReduce is extensively used within Google for processing large volumes of raw data such 
as crawled documents and web request logs (Dean and Ghemawat 2004). With its widespread 
adoption via an open source implementation called Hadoop5 (Lin and Dyer 2009), primarily for 
data-intensive computing, there have been many evaluations of this programming model using 
large volumes of web and textual data. However, there have been only a few evaluations with 
scientific data (Ekanayake, Pallickara and Fox 2008). 

(Zhu, et al. 2009), evaluated the feasibility of porting two applications (Water Spatial6 and 
Radix Sort7) from the Stanford SPLASH-28 suite to the Hadoop implementation of 
MapReduce. Performance bottlenecks with porting were identified and suggestions provided 
for enhancing the MapReduce framework to suite these applications.  

                                                 
4 http://www.epcc.ed.ac.uk/projects/research/dataintensive 
5 (Apache Hadoop framework 2008) 
6 Water Spatial is an N-body molecular dynamics application that evaluates the forces and potentials over time in 
a cluster of water molecules in liquid state (Zhu, et al. 2009). 
7 Integer sorting technique implemented as an iterative algorithm. 
8 The Splash-2 Suite consists of a set of complete applications and computational kernels specifically designed to 
facilitate the study of centralized and distributed shared-address space multi-processors (Zhu, et al. 2009). 



3 

 

The main attributes of the implementation strategy that were considered in porting these 
applications were the data access patterns and computational steps. It was identified that most 
scientific applications require shared data and hence synchronisation was a major source of 
overhead. Additionally, the probability of scientific applications using matrices and multi-
dimensional arrays for their processing was much higher than simple data-structures. 

Global synchronisation across all reduce tasks in a MapReduce job was achieved with a single 
reduce task. Suggestions to provide better support for distributing array and matrices within the 
HDFS to reduce communication overheads were made.  Also, the advantages of directly 
dumping the output of first stage to the second in a multi-stage job, without the need for 
intermediate HDFS store were highlighted to reduce I/O overheads.  

(Ekanayake, Pallickara and Fox 2008), evaluated Hadoop implementation of MapReduce with 
High Energy Physics data analysis. The analyses was conducted on a collection of data files 
produced by high-energy physics experiments, which is both data and compute intensive. As an 
outcome of this porting, it was observed that scientific data analyses that has some form of 
SPMD9 (Single-Program Multiple Data) algorithms are more likely to benefit from MapReduce 
when compared to others. Additionally, MapReduce implemenations were scalable with the 
increase in data volume and computational nodes, minimizing the impact of overheads.  

However, the use of iterative algorithms required by many scientific applications were seen as 
limitation to the existing MapReduce implementations. It was suggested that support for 
directly accessing data in binary format could benefit many scientific applications which would 
otherwise need some form of data transformation, reducing performance. 

In this work, we study an application code from the environmental sciences to evaluate its 
applicability to be used with the MapReduce framwork. Implementation stratregies such as 
data access patterns in the algorithm, task sharing and global synchronisation constraints, 
scalabilty and ease of programming are considered for evaluation. Programming abstractions at 
various levels of execution are introduced and studied. 

1.3 Organisation  of  the  Dissertation  
 
The rest of the dissertation work is organised as follows: 

Chapter 2:  A brief overview of the application domain and GISS surface temperature analysis 
is provided. 

Chapter 3: ccc-gistemp is introduced along with a discussion on the merits of using this code 
for programmers. 

Chapter 4: Cloud computing and the use of cloud based resources to support data-intensive 
computing are discussed. 

                                                 
9 SPMD is a technique employed to achieve parallelism where the tasks are split and run simultaneously on 
multiple processors with different input data (http://en.wikipedia.org/wiki/SPMD).  
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Chapter 5: MapReduce framework and the Hadoop implementation of MapReduce are 
discussed in detail. mrjob, the Python interface for Hadoop streaming job is introduced along 
with discussion on the merits of using it in this work. An example of MapReduce programming 
model is provided to assist in better understanding of the overall framework. 

Chapter 6: The development infrastructure which includes the execution and test environment, 
project hosting and the software development methodology is introduced. 

Chapter 7: - ccc-gistemp code are 
provided while identifying patterns that are suitable to be ported to the MapReduce 
programming model. Issues encountered while porting are discussed with possible solution for 
its resolution. Test cases that are executed to ensure correctness of the ported code are 
summarised. 

Chapter 8: Performance analyses carried out on the ported mapreduce-cccgistemp code is 
reported in this chapter. 

Chapter 9: The dissertation concludes by outlining some suggestions for future work. Risks 
that were initially identified are reviewed to assess its final impact on the completion of this 
work. 
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Chapter 2 

Background  
 
This chapter provides an overview of the three commonly used terms in this work  Dynamic, 
Distributed and Data-intensive. Additionally, the application from environmental sciences 
(GISTEMP) that is considered for porting is introduced along with its significance for 
estimating long term global temperature changes.  

 

2.1 Dynamic,  Distributed,  Data-­intensive  
 
Technology - encompassing computers as single entity capable of efficiently storing, managing 
and processing data; high-speed network infrastructure supporting the Internet; software 
platforms and applications, has played an important role in supporting collaboration, sharing of 
information across geography and data management within the context of a research project. 

An application can be classified along the three axes of being dynamic, distributed and data-
intensive (3D). When the processing -
application is said to be data-intensive (E.g. the European Bioinformatics Institute (EBI)10 
holds a central repository of DNA sequence data, amounting to nearly 5 petabytes which is 
accessible by scientists and researchers around the globe). Much of this data arises from many 
different biomedical research centres scattered across the globe, and hence the genome 
processing involves distributed data. New DNA sequences are added frequently for improved 
genome analysis. Coping with this variability in the input data-stream constitutes the 
dynamicity of the application and hence dynamic. 

An application may have varying indices along these three axes. For example, an application 
may process large volumes of data but the input data-set may be relatively static. An ideal 
programming abstraction should provide capability to handle varying indices along these three 
axes of being Dynamic, Distributed and Data-intensive.  

2.2 Earth  and  Environmental  Sciences      
 
Earth and environmental sciences offer tremendous opportunities and challenges for data-
intensive computing. Sensors and scientific instruments monitoring our planet from deep 
within the ocean to space based high resolution satellite imaging system, generate large 
volumes of data that require quick analysis to help better understand the changing environment 
around us. The results from these analyses could aid scientists, researchers, policy makers and 
general public make informed decision (Hey, Tansley and Tolle 2009).  

                                                 
10 http://www.ebi.ac.uk/ 



6 

 

Global temperature change is one of the active environmental sciences issues gaining sufficient 
interest from government organisations, researchers in pedagogy and industry and the general 
public alike. It has become increasingly important to monitor changes in global weather 
patterns in order to avert catastrophic loss of lives and property.      

In this work we analyse GISTEMP, a model for estimating the global temperature change. 
GISTEMP is analysed for its applicability to use the MapReduce framework for parallelising 
data and compute intensive tasks. Parallelising execution could result in a model that generates 
the required meaningful information from large volumes of temperature data gathered across 
various weather stations around the globe quickly and thus make informed decisions faster. 

2.3 GISS  Surface  Temperature  Analysis  (GISTEMP)  
 
Analyses of surface air temperature and ocean surface temperature changes are carried out by 
several groups, including the Goddard institute of space studies (GISS) (Hansen, Ruedy and 
Glascoe, et al. 1999) and the National Climatic Data Center (Peterson, et al. 1998) based on the 
data available from a large number of land based weather stations and ship data, which forms 
the instrumental source of measurement of global climate change. Uncertainties in the collected 
data from both land and ocean, with respect to their quality and uniformity, force analysis of 
both the land based station data and the combined data to estimate the global temperature 
change. Another valuable source of global temperature data through the troposphere and lower 
stratosphere is provided by the radiosonde11 stations (Hansen and Lebedeff 1987).  

Estimating long term global temperature change has significant advantages over restricting the 
temperature analysis to regions with dense station coverage, providing a much better ability to 
identify phenomenon that influence the global climate change, such as increasing atmospheric 
CO2. This has been the primary goal of GISS analysis.  

Non climatic influence on the measured temperature change, such as urbanisation, are 
minimised by applying a homogeneity adjustment. The homogeneity adjustment procedure 
(Hansen, Ruedy and Glascoe, et al. 1999) changes long-term temperature trend of an urban 
station to make it agree with the mean trend of nearby rural stations. The current analysis uses 
satellite observed nightlights (Hansen, Ruedy and Sato, et al. 2010) to identify land based 
weather stations in extreme darkness and perform urban adjustments for non-climatic factors, 
such that urban effects on the analysed global temperature change are small. The GISS 
temperature analyses which include maps, graphs and tables of the results are available for 
download on the GISS website (http://www.giss.nasa.gov).     

 

 

                                                 
11 A radiosonde is a unit for use in weather balloons that measure various atmospheric parameters and transmits 
them to a fixed receiver.  

http://www.giss.nasa.gov/
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2.1.1 Data  Sources  
 
The current GISS analysis obtains the monthly mean station temperatures from the Global 
Historical Climatology Network (GHCN), available for download from the NCDC website12. 
GHCN maintains data from about 7000 stations out of which only those stations that have a 
period of overlap with neighbouring stations (within 1200 km) of at least 20 years are 
considered (Hansen, Ruedy and Sato, et al. 2010). Effectively, only 6300 stations are available 
for GISS analysis after this reduction. No data adjustments are done on the original GHCN data 
for clarity. 

The data from United States Historical Climatology Network (USHCN), which is a subset of 
the GHCN, is however adjusted via homogenisation intended to remove effects of urbanisation 
and other artefacts. Bad data from GHCN are minimised at NCDC via checks for all monthly 
mean outliers that differ from their climatology by more than 2.5 standard deviations. About 
15% of these outliers are eliminated for being incompatible with neighbouring stations, with 
the remaining 85% being retained. (Hansen, Ruedy and Sato, et al. 2010).  

The GHCN land based temperature records would be incomplete without measurements from 
the Antarctic region. Credible data over long continuous period was not available until the 
International Geophysical year 1957 (Hansen, Ruedy and Sato, et al. 2010). Current GISS 
analysis uses monthly data from Scientific Committee on Antarctic Research (SCAR). 
Specifically, the data are from the SCAR Reference Antarctic Data for Environmental 
Research project (http://www.antarctica.ac.uk/met/READER/).  

The ocean surface temperature measurement is an integration of the data from Met Office 
Hadley Centre analysis of sea surface temperatures (HadISST1) for the period 1880-1981, 
which was ship based during that interval, and satellite measurements of sea surface 
temperature for 1982 to the present (Optimum Interpolation Sea Surface Temperature version 2 
(OISST.v2) [ (Hansen, Ruedy and Sato, et al. 2010)]. The satellite measurements are calibrated 
with the help of ship and buoy data (Reynolds, et al. 2002). Uncertainties in the pre-satellite era 
aroused due to homogeneity issues where the temperature measurements were dependent on 
ships, and each had their own techniques and units of measurement. Lately, due to availability 
of satellite temperature measurement systems, ocean coverage has improved to a large extent 
providing a much better quality of sea-surface temperature. However, satellite data also have 
their own sources of uncertainties, despite their high spatial resolution and broad geographical 
coverage (Hansen, Ruedy and Sato, et al. 2010).  

2.3.2 Urban  effects  on  Global  temperature  
 
Urbanisation, which includes human-made structures and energy sources, can significantly 
impact the accuracy of temperature measured by stations located in or near urban areas. This 
has been a major concern in the analysis of global temperature change.  

                                                 
12 http://www.ncdc.noaa.gov/oa/ncdc.html 

http://www.antarctica.ac.uk/met/READER/
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Current analyses either omit urban stations or perform urban adjustments to eliminate or 
minimise the urban effect. A detailed study on this topic is provided by (Parker 2010). Global 
satellite measurements of night lights allow the possibility for an additional check on the 
magnitude of the urban influence on global temperature analyses (Hansen, Ruedy and Sato, et 
al. 2010). It has been shown in (Imhoff, et al. 1997)  that all stations located in areas with night 
light brightness exceeding a value (32 µWm-2 sr-1 µm-1) approximately divides the station into 
two categories, rural and urban or peri-urban. Current GISS global temperature analysis 
perform urban adjustments on temperature data for stations located in regions with night light 
brightness exceeding this limit to agree with the temperature data of nearby rural stations. If 
there are no sufficient numbers 
the analysis. Also, it has been shown that urban warming has little effect on standard global 
temperature analysis (Hansen, Ruedy and Sato, et al. 2010). 
 
Figure 1 shows the satellite observed night light radiance (µWm-2 sr-1 µm-1) at a spatial 
resolution of 0.5o x 0.5o that aid in the categorization of stations as rural and urban or peri-
urban. 
 

 

F igure 1: Satellite observed night light radiances at a spatial resolution of 0.5o x 0.5o 
[Source: (Hansen, Ruedy and Sato, et al. 2010)] 

 

Figure 2 shows the global surface temperature anomalies for the past 4 decades, relative to the 
1951  1980 base periods. In can be seen that on an average, the successive decades warmed by 
0.170C. In addition, it is shown in (Hansen, Ruedy and Sato, et al. 2010) that warming in the 
recent decades is larger over land than over ocean because the ocean responds more slowly to 

s large thermal inertia.  
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Warming during the past decade is enhanced, relative to the global mean warming, by about 
50% in the United States, a factor of 2-3 in Eurasia, and a factor of 3-4 in the Arctic and 
Antarctic Peninsula. Warming of the ocean surface has been largest over the Arctic Ocean, 
second largest over the Indian and western Pacific oceans, and third largest over most of the 
Atlantic Ocean (Hansen, Ruedy and Sato, et al. 2010). 

 

 

F igure 2: Decadal surface temperature anomalies relative to 1951 - 1980 base periods 
[Source: (Hansen, Ruedy and Sato, et al. 2010)] 

 
 
F igure 3: 12 month running mean of 
global temperature anomalies using data 
through June 2010 
[Source: (Hansen, Ruedy and Sato, et al. 
2010)] 
 

 
Figure 3 shows a simple graph of 12 month running mean global temperature using data 
through June 2010.  
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Modifications to the GISS analysis method, if any, are available at GISS site: 
http://data.giss.nasa.gov/gistemp/updates/. 

To summarise, Graphs, tables and maps are constructed by modifying the current GHCN, 
USHCN and SCAR files in two stages. In the first stage, redundant multiple records are 
combined into one and in the second stage the urban adjustments are performed so that their 
long-term trend matches that of the mean of neighbouring rural stations. Urban stations without 
sufficient number of rural stations in its vicinity are dropped from further analysis.  

FORTRAN programs used in GISTEMP analysis along with the documentation on their use 
are open source and are available for download at http://data.giss.nasa.gov/gistemp/sources/. 

   

http://data.giss.nasa.gov/gistemp/updates/
http://data.giss.nasa.gov/gistemp/sources/
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Chapter 3 

Clear  Climate  Code  (CCC)  Project  
 
This chapter provides an overview of the ccc-gistemp project and outlines the merits of using 
this code for programmers. Stable release of ccc-gistemp is ported to the MapReduce 
programming model. 

 

3.1 ccc-­gistemp  
 
The Climate Code Foundation (http://www.climatecode.org/) is a non-profit organisation to 
promote the public understanding of climate sciences. The Clear Climate Code project is a part 
of the Climate Code Foundation to re-implement NASA GISS Gistemp algorithm in Python for 
improved clarity called ccc-gistemp (http://code.google.com/p/ccc-gistemp/). ccc-gistemp 
release 0.6.1 is the current stable release available for download from 
http://code.google.com/p/ccc-gistemp/downloads/list which is used in the code development 
phase of this project.  

3.1.1 A  brief  comparative  study13  
 
The combination of FORTRAN code and shell scripts in the original GISS software, for both 
core GISS algorithms and supporting libraries, makes it hard to perceive the code flow and the 
underlying algorithm. An all- -to-
execution further exemplifies the essence of ccc-gistemp. The ccc-gistemp execution can be 
started from a single call to run.py by specifying the required step(s). Besides, by isolating the 
core GISS algorithms from the supporting functions (algorithms for reading input and writing 
output), ccc-gistemp has efficient code packaging further improving the readability and 
maintainability of the software.   

has differing representations in different parts of the code making it hard for new users to 
comprehend the code easily. This has been modified in ccc-gistemp to have a single 
representation throughout the code. Additionally, the exhaustive use of intermediate files to 
store and manipulate temporary data has been modified to make efficient use of Python data 
structures and iterators, significantly reducing the I/O overheads. 

 

                                                 
13 Much of this is compiled by reading blogs and discussions among ccc-gistemp developers and users, at the ccc-
gistemp Google groups. 

http://www.climatecode.org/
http://code.google.com/p/ccc-gistemp/downloads/list
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To perform urban adjustments, all rural stations in the vicinity of a given urban station are 
identified (section 2.3.2). In the original GISS code, the station latitudes (northern and 
southern) and longitudes (western and eastern) used to compute the distances were rounded to 
the nearest tenths for ease of storage in intermediate files. Additionally, in the same step, the 
annual anomaly series that is used in the computation of adjustment to apply to an urban station 
were also rounded to the nearest tenths of degree Celsius (originally in hundredths of a degree). 
In the ccc-gistemp
(floating-point) providing a much better representation of the data. 

Although there has been significant amount of modifications to the structure of the original 
code, ccc-gistemp developers have ensured that the ported algorithms are identical to the 
original by constant comparison of the output at every stage with the expected results. 

 

3.2 Merits  of  ccc-­gistemp  
 

1. Lack of well defined coding standards and documentation made the original GISTEMP 
code hard to perceive. This was overcome in ccc-gistemp which has well defined 
coding standards (http://code.google.com/p/ccc-gistemp/wiki/CodingStandard) that aid 
programmers to quickly read and understand the code, while improving the 
maintainability of the code. 
 

2. ccc-gistemp provides code comments for most function definitions making it easy to 
understand the GISTEMP algorithms and code flow.  
 

3. The results produced by ccc-gistemp are almost identical to that that produced by the 
GISS code. 
 

4. A script to compare the results of two executions is provided (tool/compare_results.py) 
to aid comparison of results obtained after code modification, without the need for any 
manual comparison.  
 

5. The use of high level programming language like Python makes future code 
developments simpler and quicker.  
 

6. The CCC GISTEMP discussion (http://groups.google.com/group/ccc-gistemp-discuss) 
group make it easier for developers to clarify doubts and share ideas.   

http://code.google.com/p/ccc-gistemp/wiki/CodingStandard
http://groups.google.com/group/ccc-gistemp-discuss
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Chapter 4 

Cloud  Infrastructure  
 
This chapter provides a brief overview of Cloud computing and the use of Cloud based 
resources (infrastructure) to support data-intensive computing. The advantages of utility 
computing and pay-per-use model for the scientific community are discussed. Finally, the 
chapter concludes by establishing a relationship between MapReduce programming model and 
cloud  for providing cost-effective data-intensive computing. 

 

4.1 The  Definition  
 
Numerous definitions have been coined for the term by researchers, 
developers and commercial hardware and software service providers. Vaquero, Rodero-
Merino, Caceres, & Lindner, 2009 define Clouds  as a large pool of easily usable and 
accessible virtual resources (such as hardware, development platforms and/or services) which 
can be configured and used as and when required by a pay-per-use model. W most 
important to understand here is how the concept of cloud computing and the use of cloud 
infrastructure could shape scientific research, by making hardware and software resources 
available to innovative ideas, without the need for large capital investment.  

4.2 Utility  Computing  
 
The pay-per-use model has led to the use of computing resources as a metered service, like 
electricity and natural gas, in what is called as utility computing 

and only pay for what is consumed (Lin and Dyer 2009). In practical terms, the cloud user is 
provided access to an instance of the operating system such as Linux, called a virtual machine. 
The choice and configuration of the operating system depends upon the user and the 
availability of such system with the cloud provider. Provisioning of the requested physical 
resources is handled by the cloud provider by use of Virtualization technology, ensuring 
security and isolation between multiple users sharing the same hardware. Virtual machines that 
are no longer required are deleted, freeing up system resources that can be used by other users. 

With utility computing, the cloud users with innovative ideas for a new Internet service or with 
significant amount of computation do not have to invest upfront in building large data centres 
or in manpower to maintain them. Operational costs, dominated by cost of electricity and 
cooling can also be avoided.  
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Additionally, by subscribing to a  the users gain an important advantage by the 
property of elasticity (Armbrust, et al. 2009) where the demand for computing resources can be 
varied depending on the requirements of the cloud based application. If there is an unpredicted 
increase in computation, for example due to increase in customers for web based applications 
and due to increase in problem size for scientific computation, more physical resources can be 
requested from the cloud without interrupting the service. As demand falls, provisioned 
resources can be released.  

There are a number of cloud service providers around the globe, with Amazon Web Services 
(AWS)14 being a dominant player. It offers various products and services that support the cloud 
computing paradigm, which are billed on usage.  

Eucalyptus15 offers an open source cloud computing platform that is gaining significant 
popularity. In this work we use the eucalyptus platform supporting the cloud infrastructure 
provided by University of St. Andrews, United Kingdom. (http://www.cs.st-
andrews.ac.uk/stacc).  

4.3      Levels  of  Abstraction  
 
Current taxonomy classifies clouds based on the type of services being offered: 

Infrastructure as a Service 

The cloud provider offering computing resources such as storage and processing capacity to 
users by providing access to virtual machine instances through virtualization is infrastructure 
as a service (IaaS) scenario.  

Platform as a Service 

At the next higher level, the cloud systems offering computing platforms on which the user 
application can run, is platform as a service (PaaS).  PaaS offerings may include facilities for 
application design, application development, testing, deployment and hosting (Armbrust, et al. 
2009). A well known example is the Google App Engine which provides the backend data-
store and APIs for anyone interested to build highly scalable web applications.  

Software as a Service 

At an even higher level, software applications that are of interest to a wide variety of users can 
be hosted on the cloud system, which is software a service (SaaS). An example of this is the 
Google Docs which allows online editing and sharing of documents, spreadsheets and 
presentations.   

 

                                                 
14 http://aws.amazon.com/ 
15 http://www.eucalyptus.com/ 

http://www.cs.st-andrews.ac.uk/stacc
http://www.cs.st-andrews.ac.uk/stacc
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These levels of abstraction provided by the cloud services play a significant role in the 
scalability and elasticity of operations, thereby avoiding under-utilisation (idle resources) or 
over utilisation (repeated failures) of computing resources. It is therefore important to study 
and understand cloud infrastructure to identify appropriate levels of abstraction required for 
any data-intensive computing, that may as well be dynamic. 

The infrastructure provisioned by the St. Andrews cloud for this work exemplifies the 

predetermined. With just a few mouse clicks, new instances with greater computational 
capacity and disk space were created for increased computational needs.    

4.4 Cloud  Computing  and  MapReduce  
 
Cloud computing and the use of cloud infrastructure is related to MapReduce and data-
intensive computing, which is one of the main areas of focus in this work. This relationship is 
more obvious than what it seems, as processing large volumes of distributed data with 
MapReduce require access to clusters with sufficient capacity and not everyone with large-data 
problems can afford to purchase and maintain clusters (Armbrust, et al. 2009). With utility 
computing, resources can be provisioned depending on the user requirements and paid for only 
as much as is required to solve the problem.  This close coupling between MapReduce 
programming model and utility computing provide an ideal platform to developers in the 
industry and academia for data-intensive computing and research.  

Barroso & Hölzle, 2009 conducted a comparative study between the communication costs 
associated with high-end symmetric multiprocessing (SMP) machine and low-end network-
based cluster under similar workloads. It was observed that cluster of low-end servers approach 
the performance of the equivalent cluster of high-end servers and that the small gap was 
insufficient to justify the price premium of high-end servers. In addition, the cost associated 
with high-end SMP machine does not scale linearly with the increase in computing power (i.e., 
a machine with twice as many processors is often significantly more than twice as expensive). 
The Google implementation of MapReduce runs on a large cluster of commodity machines 
connected together with switched Ethernet, processing many terabytes of data on thousands of 
machines (Dean and Ghemawat 2004). Such systems are scalable and elastic.  It appears from 
these observations that huge capital investment on high-end machines is unjustifiable in order 
to obtain the required computational power and performance for data-intensive computing. 
Thus many implementations of MapReduce programming model are designed around clusters 
of low- (Lin and Dyer 2009).  

System failures are a commonplace across large cluster and hence the computing platform must 
be resilient and fault tolerant. MapReduce is designed to cope up with system failures 
gracefully (detailed description in section 5.3.2).  This further strengthens the point made 
earlier that implementations of MapReduce programming model on cloud infrastructure 
consisting of low-end commodity machines (Utility Computing)  is cost-effective and efficient 
for data-intensive computing.  
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Chapter 5 

Programming  Paradigm  
 
This chapter introduces the MapReduce programming model as a means of providing 
abstraction for distributed, data-intensive computing. The challenges associated with task 
parallelisation and data distribution are discussed along with the characteristic features of 
MapReduce framework that facilitate overcoming these complexities. Brief overview of the 
Hadoop implementation of MapReduce and Hadoop Distributed File System (HDFS) is 
provided.  

mrjob API and its advantages as a simple abstraction for writing MapReduce jobs in Python are 
summarized. Finally, the chapter concludes with a weather data mining example from the 
environmental sciences to provide a better understanding of the MapReduce concepts.  

 

5.1 Introduction      
 
The challenges associated with Distributed computing16 are greatly compounded when 
compared to sequential programming. In addition to algorithmic issues, language syntax and 
semantics, the developer has to deal with concurrency issues such as race conditions17 and 
deadlocks18 as the code executes in parallel across several machines, accessing data in 
unpredictable patterns. Hence, it is imperative to provide a layer of abstraction to separate the 
algorithmic details (implementation) from the parallelisation chores (execution). MapReduce 
addresses the challenges of distributed computing by providing an abstraction that isolate the 
developer from system-level details such as handling concurrent data access, scheduling and 
load balancing.   

5.2 Programming  Abstraction     The  Basics  
 
Within a programming system, programming abstraction may be viewed as a way of 
supporting or implementing commonly occurring modes of computation, composition and/or 
resource usage at a high-level (Jha, et al. 2009). In other words, abstractions hide underlying 
complexity and expose only the simple and well-defined interface to users of the abstraction. 
The novel idea behind this work is an attempt to verify if MapReduce provides an ideal 
programming abstraction for dynamic, distributed, data-intensive (3D) computing for real-
world problems.  
                                                 
16 Distributed computing refers to the use of distributed systems to solve computational problems. In general, the 
problem is divided into many tasks, each of which is solved by one or more computers. 
17 A race condition occurs when multiple threads access a shared memory location at the same time.  
18 Deadlock is a situation when two or more threads are waiting for the other to release a resource and none do so 
leading to the program being stalled. 
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Before delving into the details of the project, at first, it is essential to understand the nuances of 
MapReduce programming model and its characteristic features that make it suitable for data-
intensive computing.  

In computer science, the divide and conquer19 approach is conventionally used to solve large 
problems by breaking down the problem into two or more sub-problems. The solutions to the 
sub-problems are then combined to give a solution to the original problem. This technique has 
found applicability in a wide range of problems across multiple domains and is also the basis 
for writing data-intensive applications (large-data problems). However, the complexities in 
applying the divide and conquer technique such as task parallelisation, work distribution and 
load-balancing, synchronisation and communication issues must be addressed for a particular 
problem in order to obtain optimum results.  

Application programming interfaces (APIs) such as OpenMP20 for shared-memory 
architectures and MPI21 for distributed-memory architectures provide abstractions that facilitate 
parallel programming on these architectures. In shared-memory programming, the developer 
needs to explicitly take care of access to shared data structures using locks, barriers or critical 
sections which has the risk of accidentally introducing synchronisation bugs and race-
conditions. With MPI, the developer is burdened with load balancing issues and minimising 
communication overheads. Additionally, these frameworks are ideal for compute-intensive 
applications and large-scale simulations but have minimal support for dealing with data-
intensive problems (Lin and Dyer 2009). MapReduce framework provides a simple abstraction 
to the developer by automatically handling task management, concurrent data access and 
communication primitives.  

In addition to the above mentioned issues, data-intensive computing has yet another important 
challenge of data locality  bringing data and code together for computation to occur (Lin and 
Dyer 2009). Data locality minimises network overheads resulting in improved performance and 
better resource utilisation. The MapReduce framework takes the location information of the 
input data and attempts to schedule task on the node that contains the data or at least on a node 
as close as possible to the input data. This is where MapReduce finds its biggest advantage, 
making it ideally suitable for data-intensive computation.   

  

                                                 
19 For more information, see: Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to 
Algorithms (MIT Press, 2000) 
20 http://www.openmp.org/ 
21 http://www.mcs.anl.gov/mpi/ 
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5.3 Map-­Reduce  Framework  
 
Map-Reduce is a programming model introduced by Google Inc. to support distributed 
computing on large datasets (Dean and Ghemawat 2004). The application is implemented as a 
sequence of Map-Reduce operations, each consisting of a Map phase and a Reduce phase. In its 
basic form, the user specifies a  function that processes a key/value pair to generate a set 
of intermediate key/value pairs, and a  function that merges all intermediate values 
associated with the same intermediate key (Dean and Ghemawat 2004).  

At Google, the need for such a programming abstraction arose due to the large amount of 
distributed data that was required to be processed in order to obtain meaningful information in 
a reasonably short period of time. Examples of such data-intensive operations are processing 
the web request logs to identify the most frequent search query for a given day and to generate 
summaries of the number of pages crawled per host. Although these operations were 
computationally straightforward, processing large amount of distributed data brought in 
additional complexities pertaining to task parallelisation, data partitioning and fault tolerance.   

The Map-Reduce framework enables the programmer to focus on the computation at hand 
while the system automatically takes care of the messy details such as parallelisation, 
distribution of computation, load balancing, task management and fault tolerance.   

5.3.1 Map-­Reduce  Programming  Model  
 
To use the Map-Reduce framework, programmer specifies a  function and a  
function. Multiple instances of these functions are run in parallel. The input data set is split into 
independent chunks which are then processed by these multiple instances in a completely 
parallel manner. The  function processes the input key/value pair to generate another 
key/value pair. The multiple instances of  function running in parallel, on the data 
partitioned across the cluster produce a set of intermediate key/value pairs which are passed to 
the  function. 

The  function then merges all intermediate values associated with the same 
intermediate key to produce the next set of key/value pair. Output key/value pairs from each 
reduce task are written back onto the distributed file-system. The intermediate key/value pairs 
serve only as input to the  function and are not preserved. 

map  (k1, v1)   list(k2, v2) 

reduce (k2, list (v2))    list(k3, v3) 

 
The framework takes care of scheduling the various  and  tasks to run in parallel, 
monitoring them and re-executing the failed task. Such programming abstraction provided by 
the Map-Reduce framework allows programmers without any prior experience with parallel 
and distributed computing to easily utilize the resources of a large distributed system.  
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F igure 4: Map-Reduce execution overview 
 [Source: (Dean and Ghemawat 2004)] 

 
Figure 4 shows the sequence of operations that occur when the user program calls the Map-
Reduce function. The figure and the text below are reproduced here from (Dean and Ghemawat 
2004) for completeness, with a few modifications. Also, the numbered labels in Figure 4 
correspond to the numbers in the list below.  

1. The Map-Reduce library in the user program first splits the input files into M pieces of 
typically 16 megabytes to 64 megabytes (MB) per piece which is controllable by the 
user via an optional parameter. It then starts up multiple copies of the program on a 
cluster of machines. 

2. One of the copies of the program is the Master which assigns work to the rest of the 
copies, called workers. There are M  tasks and R  tasks to assign. R is 
either decided by the configuration specified with the user program or by the cluster 
wide default configuration. The master picks idle workers and assigns each one a map  
task or a reduce  task.  

3. A worker who is assigned a map task reads the contents of the corresponding input split 
which is parsed to obtain the key/value pairs from the input data. The key/value pairs 
are passed to the user-defined map  function to generate the intermediate key/value 
pairs which are buffered in memory. 

4. The buffered pairs are periodically written to local disk and partitioned into R regions 
by the partitioning function. The partitioning function is provided as default by the 
framework. However, the programmers have the flexibility to override this default 
function to provide custom partitioning. The locations of the buffered pairs on local 
disk are passed back to the master who in turn is responsible for forwarding these 
locations to the reduce workers. 
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5. When a reduce worker is notified by the master about these locations, it uses remote 
procedure calls to read the buffered data from the local disks of the map workers. When 
a reduce worker has read all intermediate data, it sorts it by the intermediate keys so 
that all occurrences of the same key are grouped together. The sorting is needed 
because typically many different keys map to the same reduce task. 

6. The reduce worker iterates over the sorted intermediate data and for each unique 
intermediate key encountered, it passes the key and the corresponding set of 
intermediate values to the users reduce  function. The output of the reduce  function 
is appended to a final output file, for this reduce partition. 

7. When all map  tasks and reduce  tasks have been completed, the master wakes up the 
user program. At this point, the Map-Reduce call in the user program returns back to 
the user code.  

5.3.2 Fault  Tolerance  
 
The Map-Reduce library provides a robust fault tolerance mechanism to handle machine 
failures gracefully while processing large amounts of distributed data on hundreds or thousands 
of machines. This is an essential feature as MapReduce was explicitly designed to operate on 
low-end commodity machines where failures are inevitable. 

In its simplest form, the master pings every worker periodically. If no response is received 
from a worker in certain amount of time, the master marks the worker as failed and the task is 
rescheduled for execution on other available workers (Dean and Ghemawat 2004).  

On failure, the completed map tasks are re-executed as their output is stored on the local disk(s) 
of the failed machine and is therefore inaccessible. However, this is not the case with reduce 
tasks as they have their output stored in a global file system (Dean and Ghemawat 2004). 

However, if the master task fails then the current implementation aborts the Map-Reduce 
computation. This condition can be checked by the user-program and reinitialize the operation 
if required. 

5.3.3 Load  Balancing        
 
MapReduce employs two strategies for load balancing: 

1. Dynamic load balancing is achieved when the worker nodes are assigned map and 
reduce tasks by the master, as and when they finish processing the current task. Slower 
nodes are assigned less work when compared to the faster ones. 

2. 22 is minimized by re-executing tasks on 
other available nodes. The task is marked as complete whenever either the primary or 
the backup execution completes.  

                                                 
22 Degenerately slow workers taking unusually long time to complete one of the last few map or reduce tasks in 
the computation (Dean and Ghemawat 2004).  
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5.3.4 Data  locality  
 
Data locality  collocation of data and the node that performs computation, is a characteristic 
feature of MapReduce that facilitates data-intensive computing. The MapReduce master 
acquires information of the location of the input file from the distributed file-system and 
attempts to assign processing on the machine that actually contains the data. If this results in a 
failure, then the master reassigns the processing on a machine that is as close as possible to the 
input data. This has the effect of moving code to the data, improving the overall network 
utilisation by avoiding unnecessary data transfers. 

(Butt, et al. 2009), conducted a series of experiments to evaluate the impact of data locality on 
application performance. It was observed that having to retrieve data over the network from 
remote racks significantly deteriorated the performance when compared to having the data on 
the same compute nodes or at least on a node within the same rack of compute nodes.  

Observations in (Xie, et al. 2010) indicate that data locality is a determining factor for 
MapReduce performance and ignoring it can have noticeable reduction in performance, 
especially in heterogeneous environment such as virtualized data centres (Cloud infrastructure).   

5.4 Hadoop  overview    
 
Hadoop (Apache Hadoop framework 2008) is the Apache Software Foundation open-source 
implementation of the Map-Reduce framework in Java. It provides tools for processing vast 
amounts of data using the Map-Reduce framework and, additionally, implements a distributed 

 called Hadoop Distributed File System or HDFS. 
Hadoop can be used to process vast amounts of data in parallel on large clusters in a reliable 
and fault-tolerant fashion. Today, a significant amount of software development activity 
surrounds Hadoop with many distributed, data-intensive applications taking advantage of the 
open-source implementation in both industry and academia.  

Although the Hadoop framework is implemented in Java, it is not required that Map-Reduce 
functions be written in Java. Hadoop streaming is a utility that allows programmers to create 
and run Map-Reduce jobs with executables (map and/or reduce function) written in any 
programming language that can read standard input and write to standard output. It uses UNIX 
standard streams as an interface between Hadoop framework in Java and the user program.  

5.4.1 Hadoop  Distributed  File  System  (HDFS)  
 
The fundamental idea of having a distributed file system is to divide user data (usually of the 
order of few gigabytes to a few terabytes) into blocks and replicate those blocks across the 
local disks of nodes in the cluster (Lin and Dyer 2009) such that it is easier to assign Map-
Reduce job locally23. HDFS is designed based on this principle.  

                                                 
23 See section 5.3.3 on Data locality 
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Additionally, data-intensive computing using MapReduce is dominated by long streaming 
reads and large sequential writes (batch operation involving large proportion, if not all, of the 
dataset). As a result, the time to read the whole dataset is important than the latency in reading 
the first record (White 2010).  

 
F igure 5: Architecture of HDFS.  

[The namenode is responsible for maintaining the file namespace and directing clients to 
datanodes that actually hold blocks of user data. Source: (Lin and Dyer 2009)] 

 
HDFS adopts master-slave architecture as shown in Figure 5. The Namenode (master) 
maintains the file namespace (metadata, directory structure, location of data blocks and file 
access permissions) and Datanode (slave) manages the actual data blocks (Lin and Dyer 2009). 
The Namenode is the first point of contact for any application wanting to read a file in order to 
obtain the physical location of the data (file metadata). In response to this request, Namenode 
returns the block id and the block location (Datanode) where the file is stored. The application 
then contacts the relevant Datanode to fetch the data. All data transfer occurs directly between 
the application and Datanodes, thereby improving reliability and robustness of the system 
(Namenode is rarely the bottleneck).    

5.4.2 Hadoop  Cluster  
 
Figure 6 shows the architecture of Hadoop cluster which primarily consists of the following 
components, all of which are implemented as JVM daemons24. 

1. Namenode - Primarily responsible for controlling the HDFS and maintaining the 
overall health of the file system. Namenode runs the namenode daemon.  Additionally, 
it maintains the file namespace as discussed in section 5.4.1., and hence is responsible 
for serving any file access requests made by the application client. 
 

2. Jobtracker - Master node primarily responsible for scheduling, coordinating and 
monitoring the execution of MapReduce jobs25 on various tasktracker nodes. It is the 
single point of contact for an application client wishing to execute a MapReduce job. 

                                                 
24 A daemon is program that runs in the background, rather than under the direct control of a user. 
25 The MapReduce job consists of the input data, the MapReduce program (map and reduce function) and the 
configuration information. 



23 

 

As a fault-tolerant mechanism it periodically pings the slave nodes to check status. In 
case of a node failure, the jobtracker reschedules the failed job on another node. 

 

F igure 6: Hadoop Cluster 
[ (Lin and Dyer 2009)] 

 
3. Tasktracker - Responsible for actually running the user code. It periodically sends 

updates back to the jobtracker.  
 

4. Datanode - Runs the datanode daemon for serving HDFS data. The data blocks are 
actually stored on standard single-machine file system, like Linux and HDFS is 
designed to lie on top of the standard operating system stack (Lin and Dyer 2009).  

5.4.3 MapReduce  Job  Configuration  
 
A JobConf configuration file must be specified by the user application program in order to run 
MapReduce jobs on Hadoop cluster. It provides a primary interface for a user to describe 
MapReduce jobs to the Hadoop framework for execution.  

JobConf is typically used for specifying: 

1. The Mapper, Combiner and Reducer classes. 
Eg: JobConf.setMapperClass( ), JobConf.setReducerClass( ). 
 

2. The number of Reducer tasks within the user program. 
Eg: JobConf.setNumReduceTasks( ). 
 

3. Input and output files required for the MapReduce job. 
Eg: F ileInputFormat.setInputPaths(conf, inputpaths), addInputPath(conf, path) and 
setInputPaths(conf, commaSeperatedPaths).  

http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/mapred/FileInputFormat.html#setInputPaths%28org.apache.hadoop.mapred.JobConf,%20org.apache.hadoop.fs.Path%5B%5D%29
http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/mapred/FileInputFormat.html#addInputPath%28org.apache.hadoop.mapred.JobConf,%20org.apache.hadoop.fs.Path%29
http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/mapred/FileInputFormat.html#setInputPaths%28org.apache.hadoop.mapred.JobConf,%20java.lang.String%29
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5.5 Python  programming  language  and  mrjob  API  
 

 26 is  a Python package that aids in the development and execution of Hadoop 
streaming jobs on Amazon Elastic MapReduce (EMR) or Hadoop cluster. Version 0.2.627 was 
used in the development of this project. Some of the features of mrjob that were particularly 
useful in this project are: 

1. Run jobs on EMR, Hadoop cluster and locally (for testing). 
2. Write multi-step jobs (one map-reduce step feeds into the next). 
3. Custom switches can be added to the map-reduce jobs, including file options. 
4. Setup of map-reduce job handled transparently by mrjob.conf config file28. 
5.  
6. Easy installation and mrjob configuration. 

 
mrjob provides a simple abstraction for writing MapReduce jobs in Python by defining steps 
for specifying  and  functions, input and output file format (protocol) and 
paths. Additionally, it provides APIs for setting necessary parameters in the Hadoop 
MapReduce JobConf configuration file. 

5.5.1 Dumbo  and  mrjob  
 
Dumbo29 is another open-source MapReduce python module which provides similar 
programming abstraction like mrjob to develop and execute Hadoop streaming jobs. mrjob, 
however being newer provides some additional functionality that makes it an ideal choice for 
this project.  

At the onset of this work, it was not very obvious which cloud infrastructure would be used to 
test the map-reduce implementation of the original ccc-gistemp code. Various cloud 
infrastructures and cloud computing platforms were evaluated, including the Eucalyptus 
platform supporting the cloud infrastructure provided by the National Grid Service on 
campuses at the University of Edinburgh, University of Oxford and the Imperial College at 
London, cloud services offered by the University of St. Andrews30 and the Amazon Elastic 
MapReduce31 on Amazon Elastic Compute Cloud (Amazon EC2). Reading blogs32 from 
developers and users of dumbo and mrjob, it was concluded that map-reduce jobs developed 
using mrjob integrates easily with Amazon Elastic MapReduce with little or no manual 
intervention. mrjob also provided an easy interface to launch jobs locally and on Hadoop 
cluster setup on any cloud infrastructure. As the choice of cloud infrastructure was not very 
clear at the beginning of this work, mrjob proved to be a better pick of the two.  
                                                 
26 http://pypi.python.org/pypi/mrjob/0.2.6 
27 http://packages.python.org/mrjob/index.html 
28 More information about mrjob configuration can be found at: http://packages.python.org/mrjob/configs-
conf.html#module-mrjob.conf 
29 http://klbostee.github.com/dumbo/ 
30 http://www.cs.st-andrews.ac.uk/stacc 
31 http://aws.amazon.com/elasticmapreduce/ 
32 Example of one of the blogs at https://github.com/Yelp/mrjob/issues/11 
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In addition, ccc-gistemp code has complex data-structures which are to be passed between the 
map and reduce functions. mrjob provides JSON  and other communication protocols like 
P 33 which enables easy serialisation and de-serialisation of data when passed between 

map and reduce functions. Although dumbo provides similar implementation of these 
protocols, mrjob  documentation and examples strengthened its choice.   

Testing individual steps of code (map and reduce functions) is made possible with custom 
switches that can be specified as command line arguments. These switches enable easy testing 
of individual map and reduce functions without having to run the complete MapReduce job. 

Further investigation and comparison of dumbo and mrjob to provide the necessary abstraction 
was not performed in greater detail. However, many experiments with the code and 
functionalities provided by mrjob were investigated further and in detail.  

5.5.2 JSON  and  Pickle  communication  protocols  
 
mrjob uses communication protocols to allow arbitrary values as input and output rather than 
just strings. JSON34 (JavaScript Object Notation) format being simple and lightweight, is the 
most commonly used protocol to exchange information. JSON is also the default 
communication protocol within the mrjob framework. It is primarily used to transfer simple 
objects such as lists, structures and nested dictionaries. However, it does not support complex 
data objects such as class instances and function definitions.  

When using the JSON protocol, the key/value pairs are encoded as two JSONs separated by a 
tab within the mrjob.  

To facilitate transfer of complex data structures, python provides a powerful interface called 
Pickle35 module. It is primarily used for serialising and de-serialising python object structure. 
Pickling results in data objects being converted into byte stream so that they can be transferred 
easily through a data pipe such as a network. Un-pickling results in the reverse operation where 
a byte stream is converted back into a data object. An extended version of the Pickle module is 
cPickle which is much faster and efficient than its predecessor. This improved performance is 
attributed to its language of development which is C, hence cPickle.  

mrjob implements the cPickle module to provide the communication protocol. The key/value 
pairs are represented as two string-escaped pickles separated by a tab. 

In this project we extensively use the cPickle protocol for transferring data objects to, and 
receiving data objects from Hadoop streaming job. The use of heavier pickle protocol is 
necessitated by the fact that primary data object in the original ccc-gistemp code are instances 

7.1) and this object is transferred from the map 
task to reduce task for most computations.     

                                                 
33 Refer to section 5.5.2 for more information 
34 http://www.json.org/ 
35 http://docs.python.org/library/pickle.html 
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In addition to the above mentioned protocols, mrjob API provides support for two other 
protocols ca in 
between the simple JSON to a more complex Pickle module.  

The use of these protocols can be verified by checking the intermediate and final output files 
generated by mrjob, while processing the Hadoop MapReduce tasks. The input to and output 
from map-reduce tasks (including multi-stage reducers) can be checked for correctness by 
verifying these files.   

The output from the reducer tasks is written in a common output directory specified by the 
F ileOutput Format in the Hadoop job configuration. This can also be specified from the mrjob 
as a command line argument using the switch --output-dir. The output files are typically named 

- , where xxxx is the partition id associated with the reduce task. If the execution of 
the job succeeds then these part files are automatically cleaned by the mrjob. These files, if 
required, can be retained for testing purposes by specifying --cleanup NONE before running 
the job.  

The NullOutputFormat generates no output (consume all outputs and put them in /dev/null). 
This can be specified from the mrjob using the switch --no-output. 

 

5.6 An  Example  of  Map/Reduce  Programming  Model  
 
In this section, an example from the environmental sciences is considered to provide a better 
understanding of all the topics discussed so far. The program is written in Python and interacts 
with the Hadoop MapReduce using Hadoop streaming. The code is tested on the St. Andrews 
cloud infrastructure where Hadoop is run on single node in a pseudo-distributed mode36. In this 
mode each Hadoop daemon runs as a separate Java process on a single node.  

Hadoop streaming is a utility that allows programmers to create and run Map-Reduce jobs with 
executables (map and/or reduce function) written in any programming language. This 
flexibility has led to a widespread adoption of the Hadoop MapReduce for development as well 
as porting of exiting data-intensive applications.   

Figure 7 shows the interaction between MapReduce programs written using Python 
programming language and Hadoop streaming. Standard input and output streams are used in 
the communication between the Python process running the user program and streaming task. 
The input key-value pairs are read from standard input (stdin) or from the user-specified file 
stored in HDFS. The python process runs the input key-value pairs through the user specified 
map or reduce function and passes the output key-value pairs back to the Java process. The 
actual number of map and/or reduce task run depends on the target machine (available number 
of cores and the amount of memory). 

                                                 
36 Detailed explanation is provided in section 6.1.1 
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F igure 7: Block diagram showing the interaction between Python MapReduce user program, 
mrjob API & Hadoop streaming. 

[Hadoop streaming reproduced from (White 2010)] 
 
When a function is specified as a map/reduce, each mapper/reducer task will execute it as a 
separate process. The mapper task converts the input stream into lines and feeds these lines to 
the stdin of the process. The map function collects these lines from the stdout of the process 
and converts each line into key/value pair. By default, the prefix of a line up to the first tab 
character is the key and the rest of the line is the value (Apache Hadoop framework 2008).  

The output of the mapper is given as input to the reducer task which converts the input 
key/value pairs into lines and feeds these lines to the stdin of the process. The reduce function 
then collects these lines from the stdout of the process and converts each line into a key/value 
pair, which is the output of the reducer. Although the map-reduce functions are executed by the 
Python process, for the tasktracker it is as if the map-reduce code was run by the tasktracker 
child process itself.  
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5.6.1 Weather  data  mining    
 
To better understand MapReduce and the underlying data flow, 
example. Weather sensors around the globe record changes in temperature on an hourly basis 
generating large volumes of data, which is a good candidate for analysis with MapReduce. This 

ple given in (White 2010), but here the code is re-
written to use the mrjob API. This example and the associated program in Python serve as a 
mechanism to test the environment and Hadoop configuration prior to executing the actual 
mapreduce-cccgistemp code on every machine. Only a small subset of the large volumes of 
data available on the National Climate Data Center37 (NCDC) is used in this example.  

The weather data mining example shown below returns the highest recorded monthly 
temperature from the recorded daily temperatures for the year 2008.  

F igure 8: Subset of the sample NCDC data for the year 2008 

Figure 8 shows a subset of the sample input data from NCDC. The data consists of various 

 

 

F igure 9: Data flow within the MapReduce programming model 

Figure 9 illustrates the data flow within the Map-Reduce programming model for the weather 
data mining example. The output indicates that the maximum temperature in January was 
55.9°C, February 37.4°C and December 46.4°C. 

 
                                                 
37 ftp://ftp.ncdc.noaa.gov/pub/data/gsod/ 

ftp://ftp.ncdc.noaa.gov/pub/data/gsod/
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The MapReduce framework divides the input file into fixed-sized chunks called  and 
creates one map task for each split consisting of multiple lines, as shown in Figure 10. The map 
task then executes the user-defined map function for each line in the split. The input line is 
converted into key/value pairs consisting of line offset as the key and the line itself as the value.  
The map function extracts month and the corresponding temperature as a key/value pair and 
emits it as its output.  

The number of reduce tasks can be explicitly specified in the job configuration. When there are 
multiple reducers, the map tasks partition their outputs creating one partition for each reduce 
task. It must be noted that the lines with the same key are all in the same partition. This is 
achieved by sorting and grouping the output of the map function, by the MapReduce 
framework, prior to being fed as input to the reducer.  

As a result of this operation, all readings corresponding to a particular month appear in the 
same list with month  as the key. The reduce function then iterates through this list to yield the 
maximum temperature for a month, which is the final output.  

 

 

F igure 10: MapReduce framework with multiple reduce tasks. 
[Dotted boxes indicates nodes, light arrows show data transfers within a node and the heavy 

arrows show data-transfers between nodes (White 2010)]. 
 

map (String key, String value) 

{ 

 //<key>: line offset within the input file 

 //<value>: line itself from the input file 

  

  

} 
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reduce (String key, I terator values) 

{ 

 //<key>: month 

 //<values>: Iterator over list of temperatures 

 Emit(key, Max([list of temperatures]) 

} 

 

are provided in Appendix- 
A.  API provides a simple abstraction by specifying the parameters required in 
JobConf38 and for handling the input and output file types . 

  

                                                 
38 See section 5.4.3 
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Chapter 6 

Development  Infrastructure  
 
This chapter provides a brief overview of the St. Andrews cloud infrastructure and the 
University of Edinburgh EDIM1 machine that is used extensively for the development and 
testing of mapreduce-cccgistemp. Further, project hosting and its advantages are summarised. 
Finally, the implications of agile development techniques in this project are discussed.  

 

6.1 Execution  and  Testing  Environment  
 
The code was run and tested on two available machines viz. St. Andrews cloud infrastructure 
(StACC) and the University of Edinburgh EDIM1 machine. Hadoop was installed on single 
node in pseudo-distributed mode on the StACC, where most of the testing was done when 
development phase was in progress. Much of the unit-test cases (section 7.5) were executed for 
correctness on this machine.  

After the development phase, the code was tested and benchmarked on the University of 
Edinburgh EDIM1 machine, which has the Cloudera distribution of Hadoop cluster setup 
(CDH3)39.  

6.1.1 St.  Andrews  Cloud  Infrastructure  
 

 
F igure 11: St. Andrews Cloud infrastructure 

[Source: http://www.cs.st-andrews.ac.uk/stacc] 
 

                                                 
39 https://ccp.cloudera.com/display/CDHDOC/CDH3+Documentation 
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The St. Andrews cloud infrastructure (Figure 11) was setup as a part of the St. Andrews cloud 
computing (StACC) research collaboration, with primary focus on becoming an international 
centre of excellence in research and teaching cloud computing. The procedure to setup and use 
the cloud services are provided in Appendix-D of this report.  

6.1.2 University  of  Edinburgh  EDIM1  machine  
 
EDIM140, is cluster of commodity machines jointly funded by the Edinburgh Parallel 
Computing Center (EPCC) and the School of Informatics, primarily intended for Data-
intensive research. The cluster is build from relatively inexpensive hardware with a dual core 
Intel ATOM processor on each node, which is comparatively slower to the current day high 
end processors. However, this machine has several fast disks connected directly to each of the 
120 available nodes (distributed equally across three racks), ideally suited for data-intensive 
computing and research owing to its low latency and high I/O bandwidth. Various data-
intensive research groups in the fields of Astronomy, Biology and Geosciences at the school of 
Informatics will benefit from this machine.  

The Hadoop cluster setup on EDIM1 machine is based on the Cloudera distribution (CDH3) of 
Hadoop41. Steps to install Hadoop can be found at: 

https://www.wiki.ed.ac.uk/display/daresearch/hadoop 
 
Table 1 provides details of the hardware and its configuration on the EDIM1 machine. This can 
be used as a reference when comparing performance of mapreduce-cccgistemp on other 
machines and cloud infrastructures.  
 

Category     Configuration  
Number  of  Nodes   120  (3  racks  of  40  nodes  each)  
Processors/Node   Dual-­‐Core  Intel  1.6  GHz  ATOM42  processor    
Disk  Storage/Node   1  x  256  MB  Solid  State  Drive  (SSD)  
     3  x  2TB  HDD  
Network     10  Gigabit  Ethernet    

OS  
Rocks  (Clustered  Linux  Distribution  based  on  CENTOS)43  
Linux  Kernel  Version  2.6.37  

JVM   1.6.0_16  

Hadoop  
0.20.2  
Cloudera  Distribution  version  3  (CDH3)  

Table 1: Hardware configuration of EDIM1 machine 

Performance evaluations have been done on this machine configured as a sixteen node cluster 
(one master node, one job tracker and fourteen slave nodes). 

The results of benchmarking mapreduce-cccgistemp are provided in section 8.2 of this report.   
                                                 
40 http://www.epcc.ed.ac.uk/projects/research/dataintensive 
41 http://www.cloudera.com/hadoop/ 
42 http://en.wikipedia.org/wiki/Intel_Atom 
43 http://www.rocksclusters.org/rocks-documentation/4.2/ 

https://www.wiki.ed.ac.uk/display/daresearch/hadoop
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6.2 Project  Hosting  
 
The Google Project hosting services are used to host this open source project, as it is free and 
provides important features such as version control system and wiki. Hosting the project 
enables easy access to anyone who is interested in developing this project further.  

Additionally, as the original ccc-gistemp code uses Google hosting service, it was thought to be 
advantageous to provide a similar interface for both the original and the ported code to aid 
comparison and future development. 

The revision control system enables easy maintenance of the project source files and project 
releases. Mercurial44 version control tool provided by Google Code is used for this purpose. All 
the project specific source files and project releases are maintained under this version control 
tool accessible through the project page at:  

http://code.google.com/p/mapreduce-cccgistemp/ 

This also serves as a means of backing up project files and documents. 

Project specific background information is added to the wiki pages to provide a good 
understanding of the basics to anyone interested in this project.    

6.3 Integrated  Development  Environment  
 
Eclipse45 IDE was used in the code development phase of this project. Although Eclipse is well 
known for Java development, it provides support for other language IDEs. PyDev46 is a well 
know IDE for Python development and hence used alongside Eclipse in developing code. 
PyDev was found to be simple to install and use.  

6.4 Agile  development  techniques  and  its  implications  
 
Agile is a software development methodology47 with emphasis on iterative, test-driven 
development. The principles from the Agile Manifesto48 that were particularly useful in this 
project are listed below for completeness and clarity of explanation.  

 Welcome changing requirements, even late in development 
 Working software is delivered frequently (weeks rather than months) 
 Sustainable development, able to maintain a constant pace 
 Continuous attention to technical excellence and good design 

                                                 
44 http://mercurial.selenic.com/ 
45 Eclipse is an open source community, whose projects are focused on building an extensible development 
platform for building, deploying and managing software across the entire software lifecycle. 
(http://www.eclipse.org/) 
46 http://pydev.org/ 
47 A software development methodology can be viewed as a framework to structure, plan and control the process 
of software development (http://en.wikipedia.org/wiki/Software_development_methodologies). 
48 http://www.agilemanifesto.org/principles.html 

http://code.google.com/p/mapreduce-cccgistemp/
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 Simplicity 
 Regular adaptation to changing circumstances 

 
Much of the other principles are related to team-development and are not very important in the 
current academic scenario.  

One of the prime reasons for using agile techniques in this project is because of the flexibility 
offered by this model to adapt quickly to the changing realities.  Major concerns during the 
design and development phases of the project were design deviation, as the chosen application 
was quite hard to be ported directly to MapReduce, and of not having a stable cloud 
infrastructure to test the ported code. The use of agile techniques enabled quick switching of 
tasks, and thus better time management to avoid missing deadlines from the original work plan 
(Appendix-C). As an example, when waiting on information from the open-source community 
for design related queries and from systems administrators for infrastructure related queries, 
dissertation write- n was completed. Similarly, 
after the design and development phase there was a considerable amount of waiting time for 
the Edinburgh EDIM1 machine to be setup for benchmarking. During this period, the 
dissertation write-up for the development phase was completed.  

As the primary area of focus in this work was to evaluate the applicability of MapReduce for a 
scientific application code with many stages, use of agile techniques enabled incremental 
development and testing. Porting of code to MapReduce was done in small increments, 
followed by testing of these incremental steps before making progress. Thus, by not waiting for 
the entire development phase to complete before beginning test, risks associated with the 
chosen application not being suitable for dynamic, distributed, data-intensive computing (Rank 
2), application domain being unsuitable (Rank 3) and the programming abstraction framework 
being inappropriate (Rank 4) was considerably mitigated49.  

The test-driven approach improves quality of the software, providing greater confidence in the 
software development at each stage. By successfully completing the first iteration (MapReduce 
implementation of step1), sufficient confidence was gained that the chosen application was 
indeed suitable to be evaluated with the MapReduce framework, covering many aspects of this 
model including the advantages and its limitations. Additionally, the use of agile techniques 
enabled thorough analysis of the chosen application (incremental development followed by 
testing), resulting in sufficient time towards the end for benchmarking.  

The agile methods give priority to face-to-face communication over written documents. It must 
be emphasised that weekly/bi-weekly meetings with the project supervisor to review progress 
and re-evaluate priorities ensured steady progress, considerably mitigating the overall risk 
associated with the aggressive and ambitious project plan (Rank 1).  

  

                                                 
49 Refer to the original risk plan included in Appendix-B 
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Chapter 7 

Porting  the  ccc-­gistemp  
 
This chapter provides in-depth analyses of each of the steps in the original ccc-gistemp code 
while identifying patterns that are suitable to be ported to the MapReduce programming model. 
With the help of code flow diagram, a detailed summary of mapreduce-cccgistemp  
MapReduce implementation of the original ccc-gistemp is provided.  Further, issues 
encountered while porting are discussed with possible solution for their resolution. Finally, the 
chapter concludes with a validation study by comparing results from the original and ported 
code. Additionally, tests which have been performed to ensure correctness of the ported code 
are described. 

 

7.1 mapreduce-­cccgistemp     MapReduce  implementation  of  cccgistemp  
 
The original code was profiled on the Edinburgh EDIM1 machine to benchmark its execution 
pattern and runtime.  

 

F igure 12: Profiling of the original ccc-gistemp code (seconds) 

It can be observed from Figure 12 that ccc-gistemp exhibits a sharp profile dominated by step3. 
Since this step is CPU bound, efforts must be focussed on parallelising this step in order to 
obtain significant improvement in the overall performance. Good improvement in performance 
can be obtained by parallelising step1 as well. All the ccc-gistemp steps require intermediate 
storage and retrieval of files and hence should benefit from the fast disks connected to the 
nodes, owing to its low latency and high I/O bandwidth.  

643.5

1089.3

687.73948.1

8.8 155.1

Step0 Step1 Step2 Step3 Step4 Step5
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The output and log files generated by each of these steps are copied to facilitate comparison 
with the results obtained during subsequent executions, while porting. After the initial 
profiling, the original ccc-gistemp code was analysed to understand its behaviour and execution 
pattern. 

Figure 13, implemented as part of this work, shows analysis of each of the steps from the 
original ccc-gistemp code. The code was analysed to understand its execution pattern, while 
applying the previous study of MapReduce programming model to identify areas in the code 
that could be suitable for porting. The comments  in the code (section 3.2-Merits of 
ccc-gistemp) aided in faster analysis. Various approaches to porting the code are discussed 
while identifying the pros and cons with of these techniques.   

 

F igure 13: Flow diagram of the original ccc-gistemp code 
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ccc-gistemp steps 1-5 are triggered from run.py which also co-ordinates the sequence of 
execution. Each of these steps takes a data object as its input and produces a data object as its 
output. Ordinarily the data objects are iterators, either produced from the previous step or an 
iterator that feeds from an input file.  he monthly temperature series 
for every year starting from the base year (set to 1880 by default, but can be changed to any 
value), uniquely identified by a 12-digit id is created for every station data. Multiple series can 
exist for a single station and hence a 12-digit id is chosen to uniquely identify the records, 
comprising of 11-digit station id and 1 digit series identifier. 
in step1 and step2 map/reduce functions. Step3 however has a different key/value combination.  

Figure 14  the primary data object 
used in all the aforementioned steps for computation.  

 

F igure 14: An instance of "Series" - The primary data structure containing Station id, Year and 
the monthly temperature series for all years 

1. Step0 

Step0 reads the input data sources into a dictionary which primarily consists of station 
data, land and sea surface temperatures from GHCN and USHCN, Antarctic temperature 
readings from SCAR and the Hohenpeissenberg data. In the first part of this step, the 
Hohenpeissenberg data in the GHCN is replaced with the correct values from the actual 
Hohenpeissenberg data. 

In the second part of step0, the USHCN records are adjusted for difference in monthly 
means between it and the corresponding record in GHCN. Once adjusted, the 
corresponding record in GHCN is removed. Finally, the adjusted records in USHCN, 
remaining records in GHCN and the original SCAR records are joined together and sorted 
to generate the final output of step0. 

Analysis for MapReduce Programming Model 

The first part of step0 is a mere data replacement with 
performed to obtain any meaningful information. Thinking on lines of parallelisation, this 
step seems ideal for parallel processing with the GHCN records split among the available 
nodes (or reducers) and each node having access to the complete Hohenpeissenberg data to 
ease the compare-replace operation.  
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However, it must be understood that every operation (data-intensive or compute-intensive) 
that can be parallelised may not fit well into the MapReduce programming model. mrjob 
takes as input a single file, which is converted into key/value pairs before any processing.  

mrjob 
are the GHCN records. The records in the input are converted as key/value pairs and 
yielded to the reduce stage which operates on its own local copy of the input data. Each 
instance of the reduce function should also have a copy of the Hohenpeissenberg data to 
facilitate compare and replace operation. The resulting data-set is yielded by each instance 
of the reducer, to the next stage reducer which performs the second part of step0.  

The second part of step0 operates on USHCN records using GHCN records as reference 
but in our approach the records yielded from first part of step0 are that of GHCN and not 
USHCN. This change in the input stream will need rewriting of the logic from that of the 
original code. However, in this case, rewriting does not solve the entire problem. In 
addition to adjusting the USHCN records, this step also involves removing the 
corresponding adjusted record from another data source i.e., GHCN.  

A global synchronisation across all reducer nodes will be required to combine copies of 
either GHCN or USHCN records (depending on the logic). Global synchronisation with 
compare-merge operation could be very expensive and does not fit into the MapReduce 
programming model. A workaround for this problem would be to load the contents of 
GHCN file into an external key/value store and have each reduce task concurrently access 
GHCN records from the store. Records that are adjusted can be removed from the store. 
Detailed explanation of the available key/value stores and its usage are mentioned in the 
step2 analysis. It must be noted that this is just a workaround and has serious performance 
issues. Every USHCN record processed by the reduce task will need access to the 
key/value store and this is done concurrently by all reduce tasks, severely degrading the 
performance of MapReduce job. 

Additionally, it is important to note that MapReduce programming model is designed to 
perform operations on input data stream mapped as key/value pairs. Having to 
simultaneously operate on two independent input sources does not fit well into this 
programming model. In addition, joining of independent data sources (USHCN, GHCN 
and SCAR) cannot be performed within the mrjob framework. mrjob API does not offer 
support for operations outside the MapReduce programming paradigm. Workarounds and 
code hacks significantly deteriorate performance and hence does not form part of a good 
design. Bearing these design nuances in mind, step0 was not ported to MapReduce 
framework.  
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2. Step1 

The output from step0 serves as the input to step1. In this step records from the same 
station (11 digit station id) are combined in a two stage process. In the first stage records 
are combined by offsetting based on the average difference over their common period, 
then averaged. In the second stage, the records are further combined by comparing the 
annual temperature anomalies of years in which they do overlap, and finding the ones for 
which the temperatures are on average closer together than the standard deviation of the 
combined records50. Finally, under the control of configuration files, a few station records 

 and a few station records 
are dropped from further analysis. 

The records are initially grouped together by their 11-digit station id.  The steps required to 
combine records are then applied to these groups. Algorithms designed to process data in 
groups make an ideal candidate to be ported to the MapReduce framework.  

Analysis for MapReduce Programming Model 

As the existing algorithms are written to process stations records in groups, these can be 
ported to MapReduce framework directly without much code changes. The input records 
are mapped as key/value pairs with being being the 

temperature anomaly for each year. An intermediate reduce stage is used to 
key/value pairs. This intermediate reduce stage 

yields the 11- naturally resulting in data-grouping as 
required by the combining steps described above. The algorithms for combining records 
are then ported directly to the second stage reduce function.  

An important point to note here is the ease of porting achieved when the algorithms are 
designed to use MapReduce programming model effectively. Algorithms designed to 
operate on groups of data rather than individual elements find ease of porting to 
MapReduce. These data-sets can easily be mapped into key/value pairs with values 
associated with the same key easily processed by algorithms in the reduce function. (Recall 
that the MapReduce framework assigns all values associated with the same key to a single 
reduce task). In some situations the existing logic may not be directly portable to 
MapReduce but with small changes in the data access pattern, data-intensive algorithms 
can be ported to use map-reduce. An example of such scenario is discussed in Step3.   

Another important point that is worth mentioning here is the fact that complex logic 
underlying the algorithm need not be fully understood and comprehended to be able to port 
to MapReduce. All that is required to understand is the data-access pattern within the 
algorithm to be able to effectively tweak and re-use the same algorithm within the 
MapReduce framework. This fact was effectively used in porting step1 to MapReduce. 
The final output from step1 is a  

                                                 
50 Based on the code comments by Nick Barnes and David Jones from the original ccc-gistemp code. 
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3. Step2 

Output from step1 is the input to step2. An initial cleanup of the input station records is 
done prior to performing urban adjustments. The cleanup step is data-intensive while urban 
adjustment is mostly compute-intensive.  

The input station records are cleaned by dropping records that do not have at least one 
month in a year with minimum number of data values. After the initial cleanup the 
remaining station records are classified and grouped as urban  and rural , with annotated 
objects generated for each of the records. Urban adjustment is applied to each of the urban 
stations to compensate for urban temperature effects51, while rural stations remain 
unchanged. The urban stations that cannot be adjusted are discarded.  

To perform urban adjustment, an urban station must have sufficient rural stations in its 
vicinity and that their combined record must have sufficient overlap with the urban station. 
The algorithm that performs the urban adjustment is as follows52:  

For each urban station: 
Find all rural stations in the vicinity, within a given radius.

Are there enough rural 
stations in the vicinity?

Combine the annual anomaly series for those 
rural stations, in order of valid-data count

Calculate a two-part linear fit for the difference 
between the urban annual anomalies and the 

combined rural annual anomaly

Is the fit 
satisfactory?

Does the combined rural 
record have enough overlap 

with the urban record?

Apply a linear fit

Apply the two-part 
linear fit

Yes

Yes

Stop

Is this the first 
attempt?

Increase 
radius

Yes

No

Discard urban 
station

No

Yes

No

No

 
                                                 
51 Discussed in section 2.3.2 
52 Based on code comments by Nick Barnes and David Jones from the original ccc-gistemp code. 
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Analysis for MapReduce Programming Model 

The data-cleanup step is ideally suited for the MapReduce programming paradigm where 
the input station records are grouped by their 12 digit station id and processed 
independently by the available reducers. However, the step following the cleanup 
operation would require all records processed by the individual reduce tasks to be 
combined, so as to rural urban  of records. If there is no 
global synchronisation at this point then every reduce task will have their own copy of 

This 
causes issues when performing the urban adjustment. 

From the above flowchart it is evident that each urban station will need access to complete 
rural station records in order to identify rural stations in its vicinity. This dependency 
between the records contained in each of the reduce tasks is not ideal for the MapReduce 
framework. Recollect that MapReduce is a programming model designed for processing 
large volumes of distributed data in parallel, by dividing the computational work into sets 
of independent tasks (Dean and Ghemawat 2004).  

Additionally, the use of single reduce task to achieve synchronisation can have severe 
impacts on performance and scalability. Step2 being both data and compute intensive, 
having a global synchronisation (sequential execution in the MapReduce programming 
model) is a serious design flaw and must be avoided. This was also agreed by developers 
actively participating in the mrjob user community, when a query regarding this approach 
was posted53. One other option is to split the set of tasks performed in step2 into two 
separate stages. The two stage approach is followed in this project. 

The first stage takes the input file and generates key/value pairs, with the 12-digit station 
id as the key and value The initial 
cleanup operation is also performed in this stage. The output of the first stage is a stream 

 

As the records are annotated after the initial cleanup, they are ideally suited to be 
performed by the map task. The second stage map tasks generate the 
classification of records for the input key/value pairs. These records, generated 
independently across all map tasks, are stored temporarily on some external key/value 
store. The use of external store is necessitated by the fact that MapReduce model does not 
provide any natural interface to store shared variables that are required for such an 
implementation. Additionally, it is essential to use a key/value 

lgorithm for adjusting urban stations. 

                                                 
53 http://groups.google.com/group/mrjob/browse_thread/thread/f3b6bc74f07fd2 
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Key/value stores like HBase54, PostgreSQL55, Voldemort56 and Redis57 were evaluated for 
use in this project.  

MapReduce implementations being distributed and highly scalable, the key/value store that 
is used in conjunction with MapReduce framework must also be distributed in nature. 
Also, are sufficient to implement the required 
logic. Additionally, in the original ccc-gistemp code, all the annotated objects of stations 

eems ideal to have a key/value 
 

Voldemort is an open-source distributed key/value store, but at the time of this work it did 
not have a stable off-the-shelf python client that could be used with ease in this project. 
PostgreSQL has an open-source python interface called PyGreSQL58, but the use of 
PostgreSQL in this project seemed an overkill of resources as there is no need for a heavy 
object-relational database management system (ORDBMS). Similar conclusions were 
drawn for the use of HBase as well. An alternate would be to use the Amazon Web 
Services (AWS) which has boto59 interface for Elastic MapReduce (EMR) and Simple 
Storage Services (S3). The boto interface is currently used by mrjob to set S3 keys and 
hence extending its services would not be a great challenge. Since we had already decided 
to benchmark on the EDIM1 machine, switching back to AWS was not a plausible option. 
A comprehensive study on the available SQL and NoSQL data stores can be obtained from 
(Cattell 2011).  

Redis is an advanced open-source key/value store that allows 
data-structures such as strings, hashes, lists, sets and sorted sets. Also, Redis has a python 
client60 that could be used with ease in this project. User-friendly documentation and it s 
simple to use interface strengthened its choice for this project.  

Changes to the data access pattern in the existing ccc-gistemp code were done to 
accommodate the use of key/value store. The original ccc-gistemp 
object of urban stations as the key and its annotated object as the value to represent urban 
stations internally in a dictionary. This however seemed completely inappropriate to be 
used with the key/value store. Pickling and un-
key  is very expensive and inefficient in terms of memory 

consumption. This was changed to have the 12-digit station id of urban stations as the 

classified single list on the key/value store.  

                                                 
54 http://hbase.apache.org/ 
55 http://www.postgresql.org/ 
56 http://project-voldemort.com/ 
57 http://redis.io/ 
58 http://www.pygresql.org/ 
59 http://code.google.com/p/boto/ 
60 http://pypi.python.org/pypi/redis/2.4.9 

http://hbase.apache.org/
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The output from the map tasks are grouped by the first 2 digits of the 12-digit station id. 
The use of first 2 digits results in nearly equally distributed work for each of the reduce 
tasks in the second stage. The reduce tasks performs urban adjustments on the input station 
records   

The key/value store is used with minimal changes to the existing code, commensurate with 
the ease of programming attribute of the MapReduce programming model. The use of 
distributed 
put to use. This is achieved by the Redis master-slave replication, a feature that allows 
Redis slave servers to be exact copies of master servers. On the EDIM1 machine this can 
be achieved by configuring the Hadoop Namenode to also be the Redis master and slave 
nodes as the Redis slaves. Details of Redis replication and its configuration can be found at 
http://redis.io/topics/replication. Replication avoids the need for reduce tasks executing on 

 
connect to the Redis slave server running on each of the nodes to obtain the data, 
considerably reducing the bottlenecks arising from connecting to the master every time. 
This also results in efficient utilisation of the network resources.  

Key/value stores can thus be used to share data across available reduce tasks without the 
need for global synchronisation with a single reduce task. However, in situations where the 
algorithm forces global aggregation (Zhu, et al. 2009), global synchronisation is inevitable 
with the current implementation of MapReduce.   

The University of Edinburgh EDIM1 machine was available for use only at the end of the 
benchmarking phase (original work plan in Appendix-C) and hence due to time constraint, 
the scalability tests of master-slave replication have been left as a future enhancement to 
the project. However, the two stage approach and the use of key/value store have been 
tested locally on single node and Hadoop cluster, without replication.  

Th  

 

4. Step3 

Output from step2 is the input to step3. In step3, the input station records are converted 
into gridded anomaly data-sets represented as a box obtained by dividing the global 
surface (sphere) into 80 boxes of equal area as shown in the figure below. These boxes are 
described by a 4-tuple of its boundaries (fractional degrees of latitude for northern and 
southern boundaries and longitude for western and eastern boundaries), as shown in Figure 
15.  

http://redis.io/topics/replication
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F igure 15: Global surface divided into 80 regions of equal area. 
[The box is described by its co-ordinates given as fractional degrees of latitude (for 
northern and southern boundaries) and longitude (for western and eastern boundaries). The 
year within the box describes the time when continuous coverage began for that region. 
The number on the right corner is the box identification number. Source: (Hansen and 
Lebedeff 1987)] 
 

Each of these 80 boxes is further sub-divided into 100 subboxes described by the same 4-
tuple latitude/longitude representation. The input station records are iterated and assigned 
to the box in which they belong. Within the box, the station records are further iterated to 
assign them to the subbox to which they belong. The station records that belong to a grid 
cell are called contributors. The number of contributing records varies significantly from 
one region to the other. A subbox series (simila
monthly temperature anomaly is created for all records and returned.  

However, it must be noted that the subbox series are represented as a 4-tuple of its 
boundaries when compared to the station records which were uniquely identified by their 
12-digit station id.  

Analysis for MapReduce Programming Model 

The first thought would be to map the input station records as key/value pairs to be used 
for processing in step3, as done previously in steps 1 and 2. However, this mapping has 
severe drawbacks.  
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The original code is written to parse the input station records and assign then to the correct 
box and then subbox. If the input records are split across available reducers, each of them 
would process their own subset of the original records and assign them to grids created 
within each reducer. At the end of this step every reducer will have its own copy of the 
gridded anomaly data-set. There are 2 issues with this approach. Firstly, each of the 

 created with only the partial data available within each reduce 
function and secondly, 
objects for the same station as the objects are already fully constructed within each 
reducer. Writing methods to mutate the read- a serious design 
flaw.  

The second approach would be to split the regions (boxes) across available reducers and 
have each reduce function independently read the input station records and assign records 
that belong to its region (box). The second approach is followed in this project. However, 
it is evident that this approach can be viewed more as a parallelisation strategy for 
compute-intensive step rather than data-intensive computing using MapReduce. 

-tuples (latitude/longitude representation) and the 
within that region. Each 

of available reducers will compute the contributors for the region that was assigned to 
them, identified by the 4-tuples representation and yield the gridded anomaly dataset.  

 

An important point to note here is the fact that in order to port step3 to MapReduce, the 
underlying algorithm that parses each of the station records and assign them to the 
corresponding box and then subboxes, need not be fully comprehended. This further 
strengthens the ease of porting characteristic feature of the MapReduce programming 
model. 

Although it was first observed that step3 is not ideal for porting to MapReduce, by slight 
modification of the data-access pattern, it was made possible to port step3. The 
conventional approach would have been to specify the output of step2 as an input to the 
MapReduce job which would then convert into key/value pairs. By modifying this pattern, 
no input was specified to the MapReduce job. Instead, the regions were directly read from 
within the map function and converted into key/value pairs consisting of one of the 4-

 All regions associated with a 
processed by the same reducer yielding the gridded anomaly data-sets.  

Additionally, it can be observed from Figure 15 that grouping by longitude will result in 
has just 8 unique numbers. As we 

already know that MapReduce assigns all values  associated with the same key  to a 
single reduce task, using latitude as the key will result in a maximum of 8 reduce tasks, 
severely impacting the scalability of the implementation. 
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The results of 
benchmarking with both the combinations of keys are presented in section 8.2 of this 
report.  

The final output from step3 is a land based gridded anomaly dataset of 8000 boxes.  

 
5. Step4 

Step4 converts the recent sea-surface temperature records into the sea-surface temperature 
anomaly boxed dataset. The initial steps are I/O intensive and the overall execution takes 
~1.3 seconds on the St. Andrews machine (primarily used for development and initial 
testing).  

Analysis for MapReduce Programming Model 

The Hadoop implementation of MapReduce incurs considerable start-up costs which is 
usually amortised when processing large amounts of data (key/value pairs) in parallel 
across available nodes. However, if the data-set is small, these initial start-up costs 
dominate even when executed on large number of nodes.  

As this step is neither data-intensive nor compute-intensive, it is not ported to MapReduce. 

Output from step4 is an ocean based gridded anomaly dataset of 8000 boxes.  

 
6. Step5 

Output files from step3 (land data) and 4 (ocean data) zipped together forms the input to 
this step. These input files contain Subbox metadata as the header, followed by the gridded 
anomaly dataset for the 8000 subboxes. The tasks performed by step5 can 
be enlisted as follows: 

1. Assign weights to the input tuple, consisting of land and ocean records. The weight 
is set to 1 when referring to land records and 0 when referring to ocean records. This 
process is also called masking as we are attempting to mask land based records. 

2. The masked data along with land and ocean records are output to an external file 
/work/step5mask. 

3. Simultaneously combine land and ocean series in each of the subboxes and combine 
subboxes into boxes. As a result the 8000 subboxes are combined into 80 boxes. 

4. Output the box data to result/BX.Ts.ho2.GHCN.CL.PA.1200. 
5. Combine the box data to produce average over 14 latitudinal zones including 

northern hemisphere, southern hemisphere and global. 
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Analysis for MapReduce Programming Model 

From the list above, steps 2 and 4 are I/O operations. By altering the sequence of 
operations slightly, steps 1, 3 and 5 can be grouped together to be analysed for the 
MapReduce framework. I/O steps 2 and 5 can be performed at the end but care must be 
taken to ensure storage of intermediate results.  

Splitting the input land and ocean records across the available reduce tasks has drawbacks 
as already mentioned in Step3 analysis for the MapReduce programming model. Instead, 
the regions (boxes) could be split across available reducers with each reduce function 
independently read the land and ocean records and assign records that belong to its region 
(box). Additionally, with this approach each reducer will have the Subbox metadata that is 
required for processing all gridded anomaly dataset.  

It must be noted that the input dataset will always be a tuple of land and ocean records 
consisting of 8000 lines each irrespective of the number of stations considered initially in 
step0 input. Hence, step5 output is not scalable in terms of the input dataset. The only gain 
in performance obtained is by parallelising the operations across available reduce tasks. 
This parallelisation can however be achieved in a manner similar to that of step3.  

In the final step, the 14 latitudinal zones are obtained from 8 basic bands and 6 combined 
zones made from basic bands. The 80 boxes are decomposed into 8 bands with the number 
of boxes in each band explicitly specified in a list. This decomposition of boxes into bands 
with each band having variable number of boxes makes it hard to split the box data as 
key/value pairs to be used within the MapReduce framework.  

The only gain in performance obtained is by parallelising a single step and that can be 
done in a manner to similar to step3. Since the goal of this project is not parallelising and 
optimising ccc-gistemp, and that the primary area of focus is to analyse various data 
patterns for its applicability to the MapReduce programming model, step5 was not ported. 

 

F igure 16 shows the flow diagram of the ported mapreduce-cccgistemp code with the individual map 
and reduce functions for each of the steps that were ported to the MapReduce framework.  



48 

 

 

F igure 16: Flow diagram of the ported mapreduce-cccgistemp code 
 

Overcoming challenges while porting code to the MapReduce framework require good 
understanding of the data access patterns and its usage within the algorithms. It is not however 
very essential to comprehend the entire algorithm to be able to port efficiently. In situations 
where the existing algorithm cannot be ported to MapReduce, due to dependency between 
tasks, it is advisable to rewrite the algorithm bearing MapReduce framework in mind for 
maximizing performance
the MapReduce framework.   

 

7.2 Issues  and  bottlenecks  with  porting  
 

1. Most algorithms in ccc-gistemp require the monthly temperature series sorted in the 
increasing order of year  for a particular station id. This however, is not guaranteed 
within the MapReduce framework. The values associated with a particular key can 
appear in any order within the reduce task for processing. In many data-intensive tasks, 
this is acceptable, where the sequence of operation is not very important.  
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In this project the values (monthly temperature series for every year starting from the 
base year, set as default to 1880) for a particular key (12 digit station id) was sorted in 
the increasing order of the available years before being processed by the algorithms in 
the reduce task. 

 The maximum number of records 
that would be sorted for a given station id is 131 [current year  1880], increasing by 1 
every year. This is not a significant overhead on the reduce tasks.  

 
2. As mention in Step5, the input to this step is a tuple of land records from step3 and 

ocean records from step4. It is important that a tuple is created with the same station id 
for both land and ocean records. However, the output from step3 can be in any arbitrary 
order depending on the records yielded by the reduce tasks. When these records are 
zipped together with ocean records from step4 using iterttools.izip, 

the same, leading to assertion error in step5.  

To overcome this problem, the records from step3 and 4 are independently sorted by 
their unique id (uid). Each of these steps will sort a total of 8000 records (80 boxes each 
having 100 subboxes). The overheads incurred by sorting is however not dependent on 
the initial number of  

re stations, 
generating temperature data. These input station records are converted into gridded 
anomaly datasets represented by 80 boxes (dividing the sphere into 80 boxes of equal 
area) in step3. If the input is increased to 75% of the overall global stations, the 
representation in step3 will still be 80 boxes. Hence the overheads incurred by sorting 
remains constant and become insignificant when compared to overall gain in 
performance obtained by running the MapReduce job in parallel across all available 
nodes. This observation can also be verified from the step3 benchmarking results 
presented in Appendix-E of this report.  

Sorting the data however will result in a format that is not acceptable by some functions 
in compare_results.py (script used to compare results of two executions). At this point 
of time, comparison of box data is ignored and updating the compare_script.py has 
been left as a future enhancement to the project.    

From these issues it is evident that order of output from map and reduce tasks must not be 
assumed if this is important from the algorithmic perspective. Additionally, some issues may 
not be obvious when run locally on a single node machine. It is therefore important to test for 
all possible input combination and scenarios on multiple maps and reduce tasks to ascertain the 
port to MapReduce programming model.  
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7.3 Designing  MapReduce  Jobs  
 
Based on the experiences from porting ccc-gistemp to MapReduce framework, the following 
summary can be drawn to facilitate developing and executing MapReduce jobs: 

1. Examine the data input format and the underlying data structures within the code. 
Understand the code flow and data objects required by various algorithms, i.e. the data 
access patterns within the algorithm. Verify if the data can be grouped and mapped as 
key/value pairs.  
 

2. Sample the original dataset to obtain data subsets for all testing purposes. Ensure that 
the data sampled is a good representation of the actual data to perform both black box 
and white box testing (systematic sampling in section 8.1).  
 

3. Write map-reduce functions. 
 

4. Identify dependency between data contained in each of the map/reduce tasks and verify 
if synchronisation is absolutely required to overcome this dependency. The two 
approaches discussed in this work (use of single reduce task for global aggregation and 
key/value store for sharing data between tasks) can be used to overcome dependency. 
 

5. Configure MapReduce jobs to run in Hadoop environment (Hadoop Pseudo-distributed 
or Hadoop cluster setup).  
 

6. Run job in Hadoop pseudo-distributed mode (locally) and compare output with that of 
the original code. Also, verify intermediate results (map and/or reduce outputs) to 
confirm that it is consistent with the expected output.  
 

7. After ensuring that the ported code is performing as expected when run on single and 
multiple reduce tasks, run MapReduce job on Hadoop cluster.  
 

8. Verify scalability (increase in the number of nodes and/or data). 
 

Improvements in performance can be obtained by re-writing certain compute-intensive 
algorithms bearing MapReduce programming model in mind. This however is time consuming. 
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7.4 Building  and  executing  the  Project  
 
Hadoop v0.20.2 was used in this project. The source code is available for download from the 
project website61. The installation and configuration details are provided in Appendix-D of this 
report. 

When executing in Hadoop, all source files required for execution must be archived with path 
specified in the mrjob configuration file62. An example mrjob configuration (~/.mrjob) is as 
follows: 

{"runners": { 
  "hadoop": {  
    "python_archives": [  
      "/home/s1053340/Project/ccc-gistemp/mapreduce-cccgistemp.tar.gz", 
      "/home/s1053340/UtilitySoftwares/redis-2.4.9/redis.tar.gz" 
    ] 
   } 
 } 
} 
 
It is advisable to delete .pyc files from the source tree before archiving files, to avoid the 
unwanted side effects resulting from new changes being not picked up when executing Hadoop 
streaming jobs. A build script (./build_archive.sh) is created to automate this process which in 
turn is called by default in run.sh. The script run.sh is used to launch all jobs in the mapreduce-
cccgistemp project. 

This script accepts job configuration parameters such as execution environment (local or 
Hadoop), number of mapper tasks, number of reducer tasks and the job cleanup options as 
command line arguments.  

7.5 Verification  
 
In this section the various unit tests that were performed to ensure correctness of the ported 
mapreduce-cccgistemp code are described. Similar test cases are executed for all the steps that 
were ported, in addition to verifying the final result and output google-chart.   

 

To aid comparison of intermediate results, the output from steps 1, 2 and 3 in both the original 
ccc-gistemp and the ported mapreduce-cccgistemp are sorted by their unique 12-digit station id. 
This is required as there is no guarantee of ordering of the results obtained from MapReduce in 
any particular fashion. Sorting by a common key will result in data being ordered with 
increasing values of station id.  
                                                 
61 http://code.google.com/p/mapreduce-cccgistemp/downloads/list 
62 More information of mrjob configuration can be found at: http://packages.python.org/mrjob/configs-
conf.html#module-mrjob.conf 



52 

 

A simple diff on both the output files (original ccc-gistemp and ported mapreduce-cccgistemp) 
will now compare and return lines if they are different. It was observed that the output of diff 
from comparing step1 intermediate files showed no difference in the output. 

However, the output of diff from step2 intermediate files showed slight discrepancy in the 
values for some station ids, particularly for years lesser than 1910. A brief discussion of this 
error is provided in Appendix-G of the report. However, the presence of this minor discrepancy 
does not significantly alter the behaviour of the model and our benchmarking results and 
discussions.   

Whilst mere inspection of intermediate files using diff is sufficient to check the stability of the 
ported code, a quantitative approach is required to ensure that the overall ported code has not in 
some way broken the original GISS model. Script provided in the ccc-gistemp code (section 
3.2) can be used for this purpose.  

A bug identified while using the compare script (compare_results.py) was fixed and also 
reported to the ccc-gistemp community to be incorporated in future releases.  

Figure 17 shows the graph of global annual temperature anomaly by comparing the original 
ccc-gistemp implementation with the ported mapreduce-cccgistemp. Although the trends 
appear to be identical, minor difference in the plots can be observed in years ranging from 1880 
to 1910 due to presence of discrepancy in step2 output.  

 

 

F igure 17: Graph comparing the global temperature anomaly of original ccc-gistemp code and 
ported mapreduce-cccgistemp 

[mapreduce- -  
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This difference is more obvious in Figure 18, where the plot show a difference of 0.01 for the 
same years where the plotted lines in Figure 17 are not identical. 

 

 

F igure 18: Plot indicating a difference of 0.01 for some years in the output of mapreduce-
cccgistemp.   
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Chapter 8 

Performance  Evaluation  
 
Performance and scalability analyses of the steps ported to MapReduce are discussed in this 
chapter. A brief overview of the sampling technique used to obtain data subsets for this 
analysis is also presented. Finally, the results obtained from porting and benchmarking exercise 
are summarized.  

 

8.1 Data  Sampling  
 
Although a random sampling technique could be employed to randomly select lines from the 
input file, this technique is avoided as monthly temperatures for years that do not have an entry 
in the input file is assumed 'Missing'. This adversely alters the computation of global 
temperature change for a particular station. Hence we select all data available for a particular 
station and instead sample the input file based on the station id. Such use of systematic 
sampling63 can easily be achieved as the input file to the MapReduce job is already sorted in 
Step0. Sorting of the input file in step0 is based on a compound key of station id and year, 
resulting in all available stations grouped together in ascending order of the compound key. 
Hence it is easy to pick all available data for a particular station. However, the choice of station 
id is done in random. 

sample this input file to obtain 25% of the total data which results in approximately 146543 
lines. The simplest is when the first 146543 lines are picked up as a subset of the data, but care 
must be taken to ensure that all available years for a particular station id are chosen, even if it 
exceeds or results in lesser number of lines than 146543. The best choice is when the number 
of lines is as close to 146543 with all the information for a station id sampled. 

In this project the first 25%, 50% and 75% of the total number of lines are yanked and copied 
to new file using vi commands to create the sample data sets, while ensuring that the yanked 
lines contain all information for the station id . This check is done manually prior to executing 
the vi copy/paste commands. When sampling the first 50% of the lines, it was observed that the 
above mentioned criteria would be violated and hence the first 49.996% of the lines were 
yanked instead of 50% which is a fair approximation of the required data set. Similarly, 
75.004% was chosen instead of the first 75%. 

                                                 
63 Systematic sampling relies on arranging the target population according to some ordering scheme and then 
selecting elements at regular intervals through that ordered list. 
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It must be noted that the accuracy of final output obtained is proportional to the percentage of 
input data considered, when using sample datasets. As an example, the obtained global 
temperature anomaly maybe deviated from the desired output and the extent of deviation is 
proportional to the number of stations considered. Higher the number of stations, greater is the 
accuracy of the final output. However, experimenting with sampled datasets is an important 
aspect of the scalability test to assess performance of code and the underlying infrastructure, if 
in case new stations are added in the future.  

8.2 Benchmarking  
 
The timing results obtained is an average over two consecutive executions. It was decided that 
two executions were sufficient to determine the consistency of results as the variation obtained 
during each consecutive execution was small (less than +/- 1% always). However, anomalous 
results were executed again to verify its credibility. The sixteen nodes on the EDIM1 machine 
were dedicated exclusively for this benchmarking and no other user-specific tasks were run 
when the MapReduce job was in progress.   

The timing results of step1, 2 and 3 executions are presented in Appendix-E of this report. The 
results were obtained by executing these steps on 2, 4, 8, 16, 20 and 24 cores respectively by 
varying the size of the input dataset.  

Speedup was calculated using the formula:  Speedup  =    

Efficiency was calculated using the formula: Efficiency =    

1. Step1 

Table 3, Table 4, Table 5 and Table 6 presents timing result of step1 with respect to 100%, 
75%, 50% and 25% of the dataset respectively. Figure 19 and Figure 20 present benchmarks 
of step1 to see how the ported MapReduce implementation scales with the increase in the 
number of processing units, processing cores of a node to be specific (Recall from section 
6.1.2, that each processing node contains a dual-core processor).  

It is evident from the tables that the overall execution time decreases with the increase in the 
number of processing units. The tables also show that the time required to perform IO 
operations (IO time) remains nearly constant for a given dataset, indicating that the 
influence of IO on increasing processing units is minimum. MapReduce job time, which is a 
significant component of the overall execution time, is inversely proportional to the number 
of processing units clearly indicating that the MapReduce implementation is efficient and 
scalable across processing units with data size being the only limiting factor. 

The speedups were calculated by measuring the time it takes to process the datasets on a 
single core with one Map-Reduce task. It can be observed from Figure 20 that speedup 
increases with the increase in number of cores. 
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F igure 19: Plot of overall execution time to the number of cores for input dataset 100%, 
75%, 50% and 25% respectively. 

[Timing results presented in Appendix-E, Table 3, 4, 5 and 6 respectively] 

 

 

F igure 20: Plot of Speedup to the number of cores for input dataset 100%, 75%, 50% and 
25% respectively. 

[Timing results presented in Appendix-E, Table 3, 4, 5 and 6 respectively] 
 

Additionally, it is evident from Figure 20 that for smaller datasets the speedup remains 
nearly constant beyond a certain number of processing cores. At this point the overheads 
associated with MapReduce implementation either negates or becomes nearly equivalent to 
the gain that MapReduce framework can provide with parallelisation.  

To overcome this limit on the speedup that parallelisation can provide the data size was 
increased. 
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The Hadoop implementation of MapReduce incurs considerable start-up costs which is 
usually amortised when processing large amounts of data (key/value pairs) in parallel across 
available nodes. However, if the data-set is small, these initial start-up costs dominate even 
when executed on large number of nodes. The overheads are usually associated with 
reading/writing files to/from HDFS for the MapReduce job, sorting and shuffling the 
intermediate Map/Reduce output and transformation of the output as required by subsequent 
Map/Reduce stages.  

Due to time constraints, quantitative analysis of overheads associated with every stage of the 
MapReduce job is left as a future work to this project.   

Figure 21 and Figure 22 present benchmark of step1 to see how the ported MapReduce 
implementation scales with the increase in the data size. The speedup increases with the 
increase in the data size, clearly indicating that this implementation is scalable.  

 

F igure 21: Plot of overall execution time to the % of dataset for processing units 4, 8, 16 
and 28 cores. 

[Timing results presented in Appendix-E, Table 3, 4, 5 and 6 respectively] 
 

 

F igure 22: Plot of speedup to the % of dataset for processing units 4, 8, 16 and 28 cores. 
[Timing results presented in Appendix-E, Table 3, 4, 5 and 6 respectively] 
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However, it can be observed that the improvement in speedup obtained is limited by the size 
of the original dataset (Recall that MapReduce is a programming model for processing very 
large datasets). Replicating every data point in the current implementation will definitely 
create a larger dataset but not necessarily a meaningful one that fits well with the GISS 
model. Hence, the scalability test is limited to the maximum available input data (number of 
meteorological stations currently contributing to station data) for the current GISS model.   

2. Step2 

Table 7, Table 8 and Table 9 present timing results of step2 with respect to the original ported 
code at 100% dataset, optimised code at 100% dataset and optimised code at 50% dataset 
respectively. 50% dataset is considered for scalability analysis.  

While benchmarking step2 it was observed that the overall run time of MapReduce task was 
dominated by a single reduce task as shown in Figure 23 (task 4 in this example). By 
reviewing the input dataset it was identified that grouping values (station records) associated 
the first two characters of the key (12-digit station id) created severe imbalance in the 
number of records processed by each reduce task (Recall that MapReduce assigns all values 
associated with the same key to a single reduce task). Further investigations revealed that 
the number of records associated with the station id  (USA), particularly 

####### , were very large compared to other station ids causing this imbalance. 

 

F igure 23: Distribution of reduce task runtimes on eight cores 
 

The original ported code was then modified to account for this unequal distribution of 
values associated with the key  
implementation of MapReduce scheduler does not account for number of values associated 

, which causes severe imbalance in applications with 
data skew. The assumptions of MapReduce scheduler is ideal for workloads that are evenly 
distributed. Current implementation of the MapReduce scheduler and its limitations are 
highlighted in step3 analysis, where its effects are more prominent.   
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Figure 24 and Figure 25 present benchmarks of step2 to see how the ported MapReduce 
implementation (original and optimised code) scales with the increase in the number of 
processing cores. 

 

F igure 24: Plot of overall execution time to the number of cores for the original and 
optimised code with dataset=100% and optimised code with dataset=50% 
 [Timing results presented in Appendix-E, Table 7, 8 and 9 respectively] 

 
 

 

F igure 25: Plot of speedup to the number of cores for original and optimised code with 
dataset=100% and optimised code with dataset=50%. 

[Timing results presented in Appendix-E, Table 7, 8 and 9 respectively] 
 

It can be seen that the scalability of step2 is rather poor when compared to step1 with the 
increasing number of processing units. A number of reasons can be attributed to this poor 
scaling behaviour: 
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1. The number of unique keys in step2 is limited, and hence scaling beyond the maximum 
number of reduce tasks that can be created causes significant decline in performance 
due to the presence of idle processing units. The start up costs associated with the 
MapReduce programming model can only be amortised when all the processing nodes 
are busy performing nearly the same amount of work all the time.  

2. Uneven distribution of workload due to uneven distribution of values associated with a 
key . 

3. Redis key/value store is not used with Master-Slave replication.  
4. The input dataset is not large enough to overcome the above mentioned overheads.   

However, it can be observed from Figure 25 that speedup improves with the increase in 
dataset (50% to 100%), indicating that this implementation is scalable with increase in data 
sizes. 

In addition to step-wise evaluation, we attempt to evaluate the gain in performance obtained 
by avoiding the intermediate storage and retrieval of step1 output by combining MapReduce 
steps 1 and 2. The aim of this study is to merely identify the impacts of I/O overheads at an 
intermediate stage of MapReduce job, although this attempt is a deviation from the original 
ccc-gistemp architecture. Figure 26 presents the results of this experiment.  

It can be observed that a significant gain in performance can be obtained by avoiding the 
intermediate storage and retrieval. An important point to note from this study is the fact the 
I/O operations are performance inhibitors to a scalable system like MapReduce and must be 
minimised as much as possible.  

 

 

F igure 26: Performance improvement obtained by combining steps 1 and 2 
[Timing results presented in Appendix-E, Table 10] 

 
Figure 27 shows the gain in speedup obtained by combining steps 1 and 2. Additionally, it 
can be observed that speedup increases with the increase in processing units clearly 
indicating that this implementation is efficient and scalable, with data size being the only 
limiting factor. Additionally, when the processing units are increased beyond 20, the 
improvement in speed diminishes due to the poor scaling attributes listed previously.  
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F igure 27: Plot of speedup to the number of cores with 100% dataset for combined 
MapReduce steps 1 and 2. 

[Timing results presented in Appendix-E, Table 10] 
 

3. Step3 
 
Table 11, Table 12, Table 13 and Table 14 present timing results of step3 for keys western 
and eastern longitude at 100% and 50% datasets respectively. 

Figure 28 and Figure 29 present benchmarks of step3 to see how the ported MapReduce 
implementation scales with the increase in the number of processing cores. 

It is evident from the plots that the overall execution time decreases with the increase in the 
number of cores. MapReduce Job time, which is the dominant factor of the overall 
execution time, is inversely proportional to the number of processing units clearly indicating 
that this MapReduce implementation is efficient and scalable across processing units.  

 

F igure 28: Plot of overall execution time to the number of cores for keys W. Longitude and 
E. Longitude at 100% and 50% dataset respectively. 

[Timing results presented in Appendix-E, Table 10, 11, 12 and 13 respectively] 
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The speedup increases with the increase in processing units for up to 20 cores and then 
diminishes for reasons enlisted in the summary of step3 analysis. The plots also indicate that 
MapReduce implementation of step3 is scalable with the input data size.  

 

F igure 29: Plot of speedup to the number of cores for keys W. Longitude and E. Longitude 
at 100% and 50% dataset respectively. 

[Timing results presented in Appendix-E, Table 10, 11, 12 and 13 respectively] 
 

 
It can be observed from the plots 
although not very significant but closely related to one of the assumptions made by the 
Hadoop scheduler64 within the MapReduce paradigm. As already mentioned, any of the two 
coordinates (fractional degrees of longitude for eastern or western boundaries) could be used 

by the reduce task, which in turn alters the amount of computation performed by each of the 
reduce tasks (Recollect from step3 analysis that the number of contributing stations vary 
significantly from one region to the other).    

The dynamic load balancing strategy of MapReduce distributes tasks (map or reduce) to 
nodes as and when they finish processing the task at hand (Section 5.3.3). This strategy 

with no idle time. However, the scheduler assumes that the amount of work done by each 
reduce task is roughly the same (Zaharia, et al. 2008).  This assumption sometimes causes 
unequal work load distribution which is particularly prominent in this example as the 
amount of computation required within a region depends on the number of contributing 
stations within that region. Currently, there is no way for the scheduler to obtain this piece 
of information while scheduling reduce tasks. Hence, the last set of tasks may finish at 
unequal times depending on the workload, causing an overall reduction is performance due 

 
                                                 
64 A process that handles the scheduling mechanism in Hadoop for distributing work across the cluster. 
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Figure 30 indicates the runtime distribution of reduce tasks in step3, dominated by a single 
reduce task (task 14 in this example). The plot also indicates unequal workload distribution 
across all available reduce tasks. 

 

F igure 30: Runtime distribution of reduce tasks in step3 of mapreduce-cccgistemp 
 

At this juncture, a question could be asked as to why the second load balancing strategy 
mentioned in section 5.3.3
issue. To answer this question it is important to understand how speculative execution works 
in Hadoop.  

The execution for a reduce task is divided into three phases (Zaharia, et al. 2008), as shown 
in Figure 31: 

1. The copy phase, where the outputs from the map task is fetched. 
2. The sort  
3. The reduce phase where the reduce function is applied to the list of key/value pairs.  

The reduce task progress is monitored using a progress score between 0 and 1 where each of 
the above mentioned phases contribute to 1/3 of the score. In each phase, the score is a 
fraction of the data processed and the total score is the sum of the scores for each of the 
defined phases. For example, a task quarter way through the reduce phase has a total score 
of 1/3 + 1/3 + (1/4 x 1/3) = 3/4. Based on the average progress of each reduce task, a 
threshold for speculative execution is defined. When the task has run for at least a minute 
and its progress score is less than the average minus 0.2, it is marked as a straggler (Zaharia, 
et al. 2008).  
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F igure 31: An example of reduce task execution indicating the three phases Copy, Sort and 

Reduce. 
 

It must be understood that each of the reduce task is performing a lot of computation 
independently and there is no way of predicting the depth of computation for each reduce 
task. From the reduce task completion graph and % complete field  of jobtracker it was 
noted that the task progress is high and hence not identified as a straggler. As a result of 
which the speculative execution does not kick in to solve the above problem. Thus it can be 
concluded that MapReduce is ideally suited for jobs that are large, but can be divided into 
smaller units of nearly equal size. A single large task can slow the overall performance.  

In this example, the optimum performance is determined by a combination of the choice of 
within the MapReduce framework for the 

job. If for example, a reducer task having all stations contributing in its region, will take 
longer to complete when compared to a reduce task having fewer contributing stations, even 
though the total number of regions are almost evenly distributed among the available 
reducers. 

Hence, summarizing the reasons for diminishing speedup observed in Figure 29: 

1. The number of unique keys in step3 is limited by the longitudes dividing the sphere 
(Figure 15). Thus, scaling beyond the maximum number of reduce tasks that can be 
created causes significant decline in performance due to the presence of idle processing 
units. The start up costs associated with the MapReduce programming model can only 
be amortised when all the processing nodes are busy performing nearly the same 
amount of work all the time.  

2. Uneven distribution of workload due to processing of uneven number of contributing 
stations by each reduce task.  

3. Current implementation of Hadoop load balancing strategy does not distribute workload 
based on the granularity of values  creating imbalance in the 
task execution times.  
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Kwon, Balazinska and Howe, 2011 and Gufler, et al., 2011 study the impact of variable task 
runtimes in MapReduce applications. (Gufler, et al. 2011), propose two new load balancing 
approaches that can deal with variable task runtimes while (Kwon, Balazinska and Howe 2011) 
suggest best practises to minimize the impacts of non-linear reduce tasks. Fine partitioning of 
the reduce tasks such that there are more partitions than the number of available reducers 
(currently, the number of partitions is equal to the number of reducers) can distribute chunks of 
complex reduce tasks evenly among the available reducers, significantly minimizing the impact 
of variable task runtimes. The application knowledge was however utilized in the selection of 
keys for the MapReduce programming model but redesigning a complex compute intensive 
algorithm for the MapReduce framework requires domain expertise.  

Additionally, in step 2 and 3 analyses we observed the impacts of balancing load based on key 
granularity. The overall execution time in step2 was however improved by using the 
knowledge of application and input dataset but it may not always be possible to incorporate this 
level of granularity at the coding level, for example in step3. It would have been much better to 
have a holistic load balancing strategy that automatically handled load distribution based on the 
granularity of values   as suggested in (Gufler, et al. 2011).  

Figure 32 shows the profiling of the ported mapreduce-cccgistemp, where the MapReduce 
steps 1, 2 and 3 are parallelised across 16 cores. The CPU bound steps 1 and 3 have found 
significant improvement in performance by distributing the compute-intensive tasks across 16 
cores when compared to the original ccc-gistemp profiling chart in Figure 12. Although the I/O 
intensive step 0 has not been ported to MapReduce it finds benefits executing on the EDIM1 
machine owing to its low latency and high I/O bandwidth. The improvement in performance of 
step2 is however not as significant as that of steps 1 and 3, for reasons already explained in the 
benchmarking analysis. Thus it has become a more dominant part of the entire application 
profile. 

 

F igure 32: Profiling of the ported mapreduce-cccgistemp code on 16 cores (seconds) 
  

646.1

603.7

586.2

1736.5

8.9 153.6

Step0 Step1 Step2 Step3 Step4 Step5



66 

 

8.3 Analyses  of  Results  
 
This section outlines the analysis that can be drawn from the porting exercise and 
benchmarking results.  

 

8.3.1 Impacts  on  Scalability  
 
Scalable algorithms are highly desirable in both compute-intensive and data-intensive 
applications. Lin & Dyer, 2009 define scalability along two dimensions ideally applicable for 
data-intensive computing. First in terms of data:  Given twice the amount of data, the same 
algorithm should take at most twice as long to run. Second, in terms of computing resource: 
Given a cluster twice the size, the same algorithm should take no more than half as long to run. 
In addition, such scaling characteristics must remain constant across various data ranges, from 
gigabytes to terabytes, and on clusters consisting of few tens of nodes to a few thousands.  
However, in reality, algorithms with such linear scalability are unobtainable. 

It is evident from step1 and step3 analysis that MapReduce programming model is efficient and 
scalable across processing units and data sizes. Increasing the data and/or computation negates 
the impact of overheads induced by MapReduce programming model, thereby improving the 
overall speedup.  

In Hadoop streaming jobs, the python process reads data from another running process 
(typically JVM or storage system process) through certain inter-process communication 
schemes such as TCP/IP and JDBC (Jiang, et al. 2010). The use of streaming I/O results in 
reduced performance when compared to executing the job directly on the target process (in this 
case JVM). However, for jobs written in Python programming language to use the Hadoop 
MapReduce framework, this loss in performance due to I/O overheads is unavoidable.  

Hadoop MapReduce uses block scheduling scheme for assigning input data to the available 
nodes for processing, dynamically at runtime. This runtime scheduling strategy enables 
MapReduce to offer elasticity and remain fault tolerant by dynamically adjusting resources 
(adding nodes for scalability and removing failed nodes for fault tolerance) during job 
execution. However, it introduces runtime overheads that may slow down the execution of 
MapReduce job. 

Additionally, it was observed that MapReduce implementations are ideally suited for 
processing large amounts of data, an important attribute for data intensive computing. Also, 
skewed data in compute intensive processing can have significant impact on the overall 
performance. Improved load balancing strategies can mitigate the impacts of skew, thus 
enabling MapReduce to provide an ideal programming abstraction for processing data and 
compute intensive scientific applications.   
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8.3.2 Time  and  ease  of  Porting  
 
In distributed memory architectures, parallelising sequential code with MPI would require 
significant amount of time to alter the existing code structure to use the MPI library. It is also 
very essential to have a thorough understanding of the existing logic to be able to efficiently 
port the code.  

In this work, it was observed during the porting exercise that it is not very essential to 
comprehend the entire algorithm to be able to port to MapReduce. However, it is essential to 
understand the data-access patterns within the algorithm to be able to modify the algorithm to 
operate on key/value pairs. Additionally, it was observed that algorithms designed to operate 
on groups of data find ease of porting to MapReduce. These datasets can easily be mapped as 
key/value pairs with values associated with the same key processed by algorithms ported to the 
reduce function.  

Algorithms that induce dependency between tasks while processing find it hard to be ported to 
MapReduce (Recollect that MapReduce programming model operates by dividing 
computational work into sets of independent tasks). Since MapReduce framework does not 
provide any direct interface to share data between dependent tasks, alternate techniques such as 
synchronisation with a single reduce task and use of external key/value store for shared data 
can be incorporated to overcome this limitation.  

Various limitations of MapReduce were studied and overcome in a fairly small amount of time, 
in addition to comprehending the existing ccc-gistemp architecture and data-access patterns 
within the algorithm. It is also worth mentioning the fact that MapReduce framework enabled 
the author of this work to focus on the computation at hand while the framework automatically 
handled the messy details of parallelisation, distribution of computation, load balancing, task 
management and fault tolerance.   

Thus it can be concluded from this porting exercise that the time and effort required to port the 
code when compared to the scalability obtained is quite low, when compared to other 
parallelisation techniques like MPI.  
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Chapter 9  

Conclusions  and  Scope  for  future  work  
 
This chapter presents the conclusions that have been drawn from porting a scientific 
application code to the MapReduce programming model. Also, the risks that were identified 
initially during the project preparation phase are reviewed to assess their impact on the 
satisfactory completion of this work. Finally, the scope for further work is proposed by 
outlining some suggestions to improve the performance of ported code and to continue 
evaluation of other programming abstractions to provide a comprehensive study on this topic.  

 

9.1 Conclusions  
 
The following conclusions were drawn from porting a scientific application code to the 
MapReduce programming model: 
 
MapReduce provides the necessary programming abstraction for parallelising data and 
compute intensive steps of a scientific application code. 

A scientific application code from the environmental sciences was chosen to evaluate the 
applicability of MapReduce to parallelise data and compute-intensive tasks. At the onset of this 
work, there was no evidence of any prior evaluation of this application to verify its credibility 
to use with the MapReduce programming framework. Attributes of the implementation strategy 
such as data volume and data-access patterns in the algorithm were applied to evaluate 
feasibility of parallelising data and compute intensive tasks.  

The results obtained as part of this work were encouraging for a large part of the application, 
which was either data and/or compute intensive. Porting of certain tasks was however made 
difficult with the current implementation of Hadoop MapReduce, but alternate techniques were 
employed to overcome this limitation. Additionally, the Map-Reduce framework enabled the 
author of this work to focus on the computation at hand while ignoring the underlying 
complexities pertaining to partitioning the input data-set across the clusters, scheduling, 
handling machine-failures and communication which were automatically handled by the 
framework. 

We believe the choice of application in this project was instrumental, as it provided a good 
insight into what code semantics and algorithm designs are best suited for MapReduce and 

alternative approaches and workarounds proved 
useful in overcoming some of the limitations imposed by the current implementation of 
MapReduce, while some were not suitable for MapReduce at all. 
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The MapReduce programming framework is capable of handling applications with varying 
indices along the three axes of being dynamic, distributed and data-intensive. 

Analyses of results from scalability tests combined with the ease of porting attribute of 
MapReduce proved that this model provides the necessary abstraction for handling applications 
with large volumes of distributed data. It was also observed that the input data did not have to 
conform to a well definite schema as necessitated by relational databases. This is also 
confirmed by a study conducted by Pavlo, et al. 2009.  

Application whose input dataset changes with time is said to be dynamic. We have already 
seen that MapReduce implementations are scalable with the increase in data size. However, it 
was observed from step2 analysis that a sudden increase in input data associated with a 
particular station created severe imbalance in the amount of computation performed by each of 
the available reduce tasks. This was seen as a limitation of the current Hadoop load balancing 
strategy which is based on the granularity of keys. Suggestions and alternative implementation 
techniques were discussed. Hence the current implementation of Hadoop MapReduce is not 
ideally suited for handling dynamic variation in input data that creates imbalance in grouping 
based on key/value pairs. However, if there is a sudden increase in the input such that they can 
be uniformly distributed, then MapReduce implementations are indeed ideal abstractions for 
dynamic, distributed, data-intensive computing. 

 
Implementations of MapReduce programming model on infrastructures consisting of low-
end commodity machines are cost-effective and efficient for data-intensive computing.  

The scalability tests were performed on EDIM1 machine, which is a cluster of commodity 
machines built from inexpensive hardware. Additionally, the implementation was scalable both 
in terms of data and computation.  

The MapReduce programming model can cope with system failures gracefully by executing 
the failed tasks on other available nodes. Thus it can be concluded that huge investments on 
high-end machines are indeed unjustifiable to obtain the necessary computational power for 
data-intensive computing and that MapReduce implementations perform equally well on low-
end commodity servers.  
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9.1.1 Risk  Assessment  
 
A number of risks to the successful completion of this work were identified initially during the 
project preparation phase. Some of these risks whose probability of occurrence was high are 
reviewed here to assess its final impact on the satisfactory completion of this work. 
Additionally, the unlikely risk of not having a basic infrastructure to run and test applications 
which became apparent during the course of the project is reviewed. The original risks are 
included in Appendix-B of this report. 

1. Aggressive and ambitious project plan 
 

This work was started with absolutely no prior knowledge of either the programming 
model (MapReduce), application domain (Environmental sciences) or the programming 
language (Python) and hence posed a significant risk to the overall completion of the 
project. A reasonable amount of time from the project preparation phase was allocated 
to understand the MapReduce programming model, in addition to finding a suitable 
application to be used with this model. 
 

After selecting the application, time from the  phase had to be 
dedicated to quickly comprehend the basics of Python programming language before 
actually attempting to port the code.  Instabilities in the StACC cloud infrastructure 
required reinstallation of the necessary software and application code many a times 
before actually deciding to develop code locally and transfer it to the cloud 
infrastructure only for testing. The use of Google project hosting aided in this, while 
ensuring backup of the code.  Additionally, the use of agile development techniques 
mitigated much of the risks associated with aggressive and ambitious project plan 
(section 6.4). 
 

2. Absence of basic infrastructure to execute and test scalability of ported 
MapReduce application. 
 

The impact of this risk became apparent during the course of the project. The single 
node setup on the StACC was sufficient for code development and basic testing. Much 
of the scalability tests were planned on the EDIM1 machine. However, this machine 
was not available until the first week of August, 2011, two weeks later than expected 
(Original work plan in Appendix-C). Numerous issues with the machine setup and 
availability of system administrators caused the delay. The remaining time was just 
sufficient to perform all the required scalability tests and analyse their results, in 
addition to concluding the dissertation with these results. Thus, much of the work such 
as benchmarking the EDIM1 machine for its suitability to run MapReduce jobs, fine 
tuning the infrastructure to make it suitable for the ported MapReduce application and 
evaluating the impacts of various individual contributors in a MapReduce job 
(input/output, sort and shuffle) had to be suspended and added as a future enhancement 
to this work.  
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The impact of this risk could have been severe if the waiting time had not been utilized 
fully to write and complete other sections of the dissertation. However, it was quite 
hard to conclude on certain aspects of the project without the result from scalability 
analysis. Additionally, some parts of the dissertation had to be rewritten based the 
results obtained and optimisation performed.  
 

3. Chosen application not suitable for Dynamic, distr ibuted, data-intensive 
computing and incorrect choice of programming abstraction framework 
 

GISTEMP, a model for estimating the global temperature change from the 
environmental sciences, consisted of steps that were both data and compute intensive, 
ideally suiting our requirement for evaluation with the MapReduce programming 
model. The impact of this risk was mitigated after completing the first iteration (agile 
implementation). Sufficient confidence was gained that the chosen application was 
indeed suitable to be evaluated with the MapReduce framework, encompassing many 
aspects of this model including the advantages and its limitations. 
 

4. Incorrect software development paradigm 
 

The use of agile software development techniques proved very useful in the satisfactory 
completion of this work. Many of the above mentioned risks were mitigated by the 
incremental development followed by testing  approach attributed by the agile 

software development methodology. Efficient time management and constant review of 
progress helped mitigate the overall risk associated with the aggressive and ambitious 
project plan.  
 

5. Design deviation 
 

Thorough evaluation before implementation prevented any negative impacts of design 
deviation. Optimisations were performed based on the results from scalability analysis. 
 

6. Poor schedule 
 

The original work plan (Appendix-C) was followed as closely as possible but 
inconsistencies in the development and testing infrastructure had significant impacts on 
the time available for benchmarking and optimising the mapreduce-cccgistemp code.   
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9.2 Scope  for  Future  work  
 
The scope for future enhancement in presented in this section. 

 
The main area of focus in this project has been to evaluate the applicability of data and 
compute intensive tasks of ccc-gistemp to MapReduce programming model. Various 
approaches and techniques to efficiently parallelise these tasks have been discussed. Although 
most steps have been parallelised to use MapReduce efficiently, they are not fully optimised.  

It is essential to perform quantitative analysis of the overheads associated with MapReduce 
framework to ascertain with confidence that a particular implementation is scalable. Certain 
overheads have significant impact on the overall performance and hence must be studied in 
detail to negate their effects. Due to unavailability of EDIM1 machine in time to perform a 
quantitative analysis of the overheads, this has been left as a future work to the project.  

Porting of ccc-gistemp to other scalable systems intended for data-intensive computing such as 
Dryad (Isard, et al. 2007), All-Pairs (Moretti, et al. 2010) and Pregel (Malewicz, et al. 2009) 
will provide a comparative study of the various programming abstractions that are suitable for 
dynamic, distributed and data-intensive computing. The advantages and limitations of each of 
these abstractions will provide a comprehensive study on the subject which will aid in 
classification of applications that are particularly suitable for a class of programming 
abstraction.  

Benchmarking the EDIM1 machine to ascertain the various system properties such as CPU 
consistency, disk throughput, memory bandwidth, network bandwidth and latency will aid in 
better comparison of the execution environment and cost-model of machines intended for cost-
effective data-intensive computing.  

Further investigations into the minor discrepancy observed in step2 output can be carried out in 
conjunction with other ccc-gistemp developers, to find a stable solution to this problem. 

Distributed key/value stores like Voldemort, HBase, PostgreSQL and Redis were evaluated for 
use in this project. However, their performance with respect to the execution environment was 
not compared prior to making the selection. As previously stated, MapReduce being a highly 
scalable system, the key/value store using in conjunction with MapReduce must also be 
scalable. The choice of Redis in this project was thoroughly based on the simplicity of its 
interface which satisfied the requirements of its usage in step2. A comparative study of all the 
applicable key/value stores based on its performance on the EDIM1 machine would have 
further strengthened the choice, in addition to simplicity and ease of use. Additionally, a high 
throughput low-latency key/value store would improve the overall efficiency of the system.  

The University of Edinburgh EDIM1 machine was available for use only at the end of the 
benchmarking phase and hence due to time constraint, the scalability tests of master-slave 
replication have been left as a future enhancement to the project.  
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(Ogawa, et al. 2010), implemented a key-value store based MapReduce framework to 
overcome some of the limitations imposed by the current implementation of MapReduce. This 
new implementation is particularly aimed at improving the performance of HPC applications 
intended to use the MapReduce framework. One of the limitations that this new 
implementation aims to address is associated with the sharing of data between map and reduce 
tasks during execution of MapReduce jobs. Dynamic applications whose input data stream 
changes in real-time can also benefit from such implementation.  As a future enhancement to 
this work, it is advisable to explore alternate implementations to ascertain the ideal 
programming abstraction suitable for dynamic, distributed and data-intensive computing.  
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Appendix   A   -­   Implementation   of   the   weather   data  
mining  example  
 
The mrjob MaxTemperature class, containing the map and reduce functions, is called from 
max_temperature_wrapper.py. It is not always necessary to call the Map/Reduce job from 
another external script, but here it is implemented intentionally in that fashion in order to test 
the behaviour of code when called from an external script.  

This test proved useful when porting the original cccgistemp code, where the mrjob could 
only be invoked from an external script due to architectural dependence. The original code is 
written as a series of five steps, each being called from an external script (tool/run.py). The 
aforementioned approach was followed to remain consistent with the implementation of the 
original code. Additionally, this improves readability and maintainability of the code and 
does not pose any performance issues. 

max_temperature.py contains the definitions of the map and reduce functions. The logic and 
behaviour is as explained in 6.1.1. 

max_temperature_wrapper.py 

#!/usr/bin/python 
 
import sys 
 
#http://packages.python.org/mrjob/ 
from mrjob.job import MRJob 
 
from max_temperature import MaxTemperature 
 
def main(): 
 
   # Input from a specified location 
   argsArray = ['2008_NOAA.dat'] 
 
   # Provide input arguments to MRJob (e.g. '-r hadoop') 
   argsArray.extend(sys.argv[1:]) 
 
   mr_job = MaxTemperature(args=argsArray) 
 
   with mr_job.make_runner() as runner: 
        # Call MapReduce task 
        runner.run() 
        for line in runner.stream_output(): 
             # Extract key/value pairs from reducer output and print 
             key, value = mr_job.parse_output_line(line) 
             print key, value 
 
if __name__ == '__main__': 
 sys.exit(main()) 
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max_temperature.py 
 
#!/usr/bin/python 
 
#Implementing Max_temperature based on NCDC data (year='2008'), using MRJob 
 
import sys 
 
#http://packages.python.org/mrjob/ 
from mrjob.job import MRJob 
 
class MaxTemperature(MRJob): 
 
      DEFAULT_PROTOCOL = 'json' 
 
      # Mapper function 
      def max_temperature_map(self, _, line): 
          token = line.strip() 
          (month, temp) = (token[18:20], token[26:30]) 
          if (temp != "9999.9"): 
             yield month, temp 
 
      # Reducer function 
      def max_temperature_reduce(self, month, temp): 
          yield month, max(temp) 
 
      # Map/Reduce job steps 
      def steps(self): 
          return [ 
             self.mr( 
                 mapper=self.max_temperature_map, 
                 reducer=self.max_temperature_reduce 
             ) 
          ] 
 
      def __init__(self, **kwargs): 
   super(MaxTemperature, self).__init__(**kwargs) 
 
 
if __name__ == '__main__': 
   MaxTemperature.run() 
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Appendix  B  -­  Original  Risk  Assessment  
 

Table 2: Risks identified initially during the project preparation phase. 
 
Rank Risk L ikelihood Impact Risk mitigation 

1 Aggressive and ambitious project plan Certain High 
Reduce by re-planning and 
planning early. 

2 

Chosen application not suitable for 
Dynamic, Distributed, Data-intensive (3D) 
computing. 

Highly 
Probable Moderate 

Avoid by thoroughly 
evaluating the chosen 
application. 

3 Application domain unsuitable Probable High 
Reduce by evaluating other 
suitable domains as options. 

4 
Incorrect choice of programming 
abstraction framework. Probable Moderate 

Avoid by choosing applications 
suitable for MapReduce. 

5 Incorrect software development paradigm Unlikely High 

Reduce the number of 
iterations if agile techniques 
fail. 

6 Design deviation Probable Moderate 

Avoid by evaluating 
thoroughly before making a 
decision. 

7 Poor schedule Probable Moderate 
Reduce by re-adjusting time 
(Agile). 

8 Nothing working Unlikely Critical Reduce by planning early. 

9 Data loss Unlikely Critical 
Avoid by taking regular 
backups of assets. 

10 Unable to find open-source software Unlikely Severe 

Reduce by evaluating early in 
project and change application 
domain to where open-source 
software is available. 

11 
Programming model did not improve 
throughput of the application on the cloud. 

Highly 
Probable High 

Reduce by thoroughly 
analysing application model 
and code structure. 

12 
Available benchmarking unsuitable for 3D 
computing Probable High 

Assume. Benchmarking models 
for clouds are relatively new 
and experimental. 

13 Backtracking if dead-ends. Probable Moderate 
Reduce by planning in advance 
and reviewing progress. 

14 
Absence of basic infrastructure on cloud 
platforms to run applications Unlikely High 

Avoid by allocating sufficient 
time during term break to get 
the infrastructure up and 
running. 

15 Porting application code to cloud platform 
Highly 

Probable High 

Reduce by choosing right 
application domain and well 
written code. 

 

 

Figure 33 shows the risk assessment diagram for the above mentioned risks. 
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F igure 33: Original risk assessment diagram indicating the significance attributed to each of 

the identified risks. 
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Appendix  C  -­  Original  Work  Plan  
 
Figure 34 shows the original work plan identified during the project preparation phase. 
 

 

F igure 34: Original project work plan identifying the major milestones along with sub-tasks 
that are required to be completed for each Milestone 
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Appendix  D   -­  Hadoop   in  Pseudo-­distributed  mode  on  
St.  Andrews  cloud  infrastructure  (StACC)  
 

The following steps enlist the procedure to setup Hadoop in Pseudo-distributed mode on the 
St. Andrews cloud infrastructure. It must be noted that most steps are independent of the 
cloud service provider and can be executed on any machine with similar architecture.  

1. Create a user account at https://cloud.cs.st-andrews.ac.uk:8443 to obtain the login 
credentials.  
 

2. Setup the Hybridfox Firefox plugin to access the StACC cloud. The procedure for the 
same is provided at: http://stacc.trac.cs.st-andrews.ac.uk/wiki/HybridfoxStacc 
[Note: Instance of any operating system can be selected from the Images tab. However, in 
this project Ubuntu-10.10 was selected and hence the commands in the following steps are 
specific to Ubuntu. If any other distribution is selected, please change the commands 
accordingly.] 
 

3. Once logged into the running instance, create a username with the following command: 
useradd m s /bin/bash <username> 
Change password with the command: passwd <command> 
 

4. Add the username to the sudoers list with the command: 
su  

u  
 

5. The creation of userid is not mandatory. However, it is recommended to prevent accidental 
damage to system files while code and testing the application.  
 

6. JavaTM is required for Hadoop setup. The latest version can be downloaded and installed 
from: http://www.oracle.com/technetwork/java/javase/downloads/index.html 
 

7. The detailed procedure for downloading and configuring Hadoop in pseudo-distributed 
mode can be found here: 
http://hadoop.apache.org/common/docs/current/single_node_setup.html 
Some of the issues identified during installation can be solved by following the procedure 
described in http://wiki.apache.org/hadoop/HowToSetupYourDevelopmentEnvironment 
 

8. Most releases of Ubuntu have Python preinstalled. Check for the correct version of Python 
the command prompt. If the required version (2.6+) is not found, 

then download and install the latest release of python from:  
http://www.python.org/getit/ 

https://cloud.cs.st-andrews.ac.uk:8443/
http://stacc.trac.cs.st-andrews.ac.uk/wiki/HybridfoxStacc
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://hadoop.apache.org/common/docs/current/single_node_setup.html
http://wiki.apache.org/hadoop/HowToSetupYourDevelopmentEnvironment
http://www.python.org/getit/
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9. Latest releases of mrjob can be found at: http://pypi.python.org/pypi/mrjob/. 

Download and install mrjob. Version 0.2.6 was used in this project.  
 

10. Download and install redis by following the procedure given in http://redis.io/download 
Latest releases of redis python client can be found at: http://pypi.python.org/pypi/redis/ 
Version 2.4.9 was used in this project. 
 

11. After downloading the redis python client, required redis packages found in 
<REDIS_HOME>/redis must be archived to be used by the Hadoop streaming job. The 
path for this archive must be specified correctly in .mrjob configuration file.  
 

12. Start Redis server by executing ./redis-server from REDIS_HOME/src directory.  
 

13. Once all the required software packages are installed, download the latest version of 
mapreduce-cccgistemp and follow the execution instructions provided in the release 
notes. 
http://code.google.com/p/mapreduce-cccgistemp/downloads/list 

 

  

http://pypi.python.org/pypi/mrjob/
http://redis.io/download
http://pypi.python.org/pypi/redis/
http://code.google.com/p/mapreduce-cccgistemp/downloads/list
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Appendix  E     Timing  Results  
 
Step1 Analysis 

Local  MapReduce  Execution  (1  Map,  1  Reduce  Task):   1727.3  
              

Number  
of  Cores  

Stage  1   Stage  2   Total  
MapReduce  
Job  Time  

Total  
IO  
Time  

Overall  
Execution  
Time   Speedup   Efficiency  Map   Reduce  

MapReduce  
Job  Time   Map   Reduce  

MapReduce  
Job  Time  

2   39   157   207   67   471   531   738   394.5   1132.5   1.53   76%  
4   24   90   125   58   244   312   437   409.2   846.2   2.04   51%  
8   16   56   83   32   137   179   262   386.6   648.6   2.66   33%  

16   18   47   76   24   89   123   199   404.7   603.7   2.86   18%  
20   18   43   69   21   78   108   177   405.9   582.9   2.96   15%  
24   17   41   68   19   69   98   166   403.6   569.6   3.03   13%  
28   16   39   65   18   62   91   156   396.6   552.6   3.13   11%  

Table 3: Timing results of step1 analysis with dataset=100% 

 
Local  MapReduce  Execution  (1  Map,  1  Reduce  Task):   1254.9  

              
Number  
of  Cores  

Stage  1   Stage  2   Total  
MapReduce  
Job  Time  

Total  
IO  
Time  

Overall  
Execution  
Time   Speedup   Efficiency  Map   Reduce  

MapReduce  
Job  Time   Map   Reduce  

MapReduce  
Job  Time  

2   32   120   162   67   374   405   567   312.7   879.7   1.43   71%  

4   20   71   102   44   185   237   339   310.6   649.6   1.93   48%  
8   18   46   71   25   106   140   211   301.2   512.2   2.45   31%  

16   18   43   69   24   70   92   161   306.6   467.6   2.68   17%  
20   16   39   65   19   64   91   156   307.1   463.1   2.71   14%  
24   16   38   64   18   58   86   150   307.1   457.1   2.75   11%  
28   15   37   62   17   54   79   141   310.5   451.5   2.78   10%  

Table 4: Timing results of step1 analysis with dataset=75% 

 
Local  MapReduce  Execution  (1  Map,  1  Reduce  Task):   927.7  

              
Number  
of  Cores  

Stage  1   Stage  2   Total  
MapReduce  
Job  Time  

Total  
IO  
Time  

Overall  
Execution  
Time   Speedup   Efficiency  Map   Reduce  

MapReduce  
Job  Time   Map   Reduce  

MapReduce  
Job  Time  

2   23   93   127   64   276   349   476   220.6   696.6   1.33   67%  
4   16   56   83   34   146   190   273   220.5   493.5   1.88   47%  
8   14   38   60   23   86   117   177   219.6   396.6   2.34   29%  

16   15   36   61   21   63   84   145   216.4   361.4   2.57   16%  
20   16   36   61   16   55   79   140   221.2   361.2   2.57   13%  
24   15   36   60   20   53   74   134   221.2   355.2   2.61   11%  
28   15   34   59   16   47   72   131   222.2   353.2   2.63   9%  

Table 5: Timing results of step1 analysis with dataset=50% 

 
Local  MapReduce  Execution  (1  Map,  1  Reduce  Task):   492.4  

              
Number  
of  Cores  

Stage  1   Stage  2   Total  
MapReduce  
Job  Time  

Total  
IO  
Time  

Overall  
Execution  
Time   Speedup   Efficiency  Map   Reduce  

MapReduce  
Job  Time   Map   Reduce  

MapReduce  
Job  Time  

2   16   58   85   37   155   204   289   137.3   426.3   1.16   58%  
4   12   40   62   23   88   118   180   137.5   317.5   1.55   39%  
8   11   30   50   16   54   77   127   138.4   265.4   1.86   23%  

16   14   30   56   16   43   65   121   138.5   259.5   1.90   12%  
20   14   32   54   16   41   64   118   133.2   251.2   1.96   10%  
24   13   32   54   16   41   61   115   139.4   254.4   1.94   8%  
28   14   30   53   13   38   60   113   139.6   252.6   1.95   7%  

Table 6: Timing results of step1 analysis with dataset=25% 



85 

 

Step2 Analysis 

Local  MapReduce  Execution  (1  Map,  1  Reduce  Task):   1373.8  
           

Number  
of  Cores  

Stage  1   Stage  2   Total  
MapReduce  
Job  Time  

Overall  
Execution  
Time   Speedup   Efficiency  Map   Reduce  

MapReduce  
Job  Time   Map   Reduce  

MapReduce  
Job  Time  

2   46   201   243   58   455   524   767   1124.0   1.22   61%  
4   24   110   141   33   317   361   502   839.1   1.64   41%  
8   16   65   90   21   303   333   423   779.0   1.76   22%  

16   15   58   85   18   297   324   409   759.5   1.81   11%  
20   15   32   76   15   220   267   343   696.8   1.97   10%  
24   14   28   73   18   206   243   316   659.4   2.08   9%  
28   13   26   70   13   218   263   333   681.7   2.02   7%  

Table 7: Timing results of step2 analysis with Dataset=100% (Original Code) 

 
Local  MapReduce  Execution  (1  Map,  1  Reduce  Task):   1413.3  

           
Number  
of  Cores  

Stage  1   Stage  2   Total  
MapReduce  
Job  Time  

Overall  
Execution  
Time   Speedup   Efficiency  Map   Reduce  

MapReduce  
Job  Time   Map   Reduce  

MapReduce  
Job  Time  

2   31   188   230   58   380   449   679   1015   1.39   70%  
4   20   112   142   34   204   142   284   723.1   1.95   49%  
8   15   66   90   21   138   169   259   599.1   2.36   29%  

16   18   58   84   18   138   165   249   586.2   2.41   15%  
20   16   50   76   16   114   140   216   560.8   2.52   13%  
24   15   48   73   15   100   125   198   549.4   2.57   11%  
28   15   46   70   14   118   143   213   566.4   2.50   9%  

Table 8: Timing results of step2 analysis with Dataset=100% (Optimised Code) 

 
Local  MapReduce  Execution  (1  Map,  1  Reduce  Task):   544.4  

           
Number  
of  Cores  

Stage  1   Stage  2   Total  
MapReduce  
Job  Time  

Overall  
Execution  
Time   Speedup   Efficiency  Map   Reduce  

MapReduce  
Job  Time   Map   Reduce  

MapReduce  
Job  Time  

2   19   44   132   32   144   186   318   498.9   1.09   55%  
4   14   62   86   20   103   132   218   402.2   1.35   34%  
8   12   41   61   15   63   85   146   325.5   1.67   21%  

16   14   40   65   15   72   92   157   339.1   1.61   10%  
20   14   39   63   14   65   87   150   334.9   1.63   8%  
24   14   37   60   12   56   78   138   321   1.70   7%  
28   14   36   59   19   61   83   142   321.7   1.69   6%  

Table 9: Timing results of step2 analysis with Dataset=50% (Optimised Code) 

 
Local  MapReduce  Execution  (1  Map,  1  Reduce  Task):   2894.3  

              

Number  
of  Cores  

Stage  1  
MapReduce  
Job  Time  

Stage  2  
MapReduce  
Job  Time  

Stage  3  
MapReduce  
Job  Time  

Stage  4  
MapReduce  
Job  Time  

Total  
MapReduce  
Job  Time  

Total  
IO  
Time  

Overall  
Execution  
Time  

Speed
up   Efficiency  

Original  
Step1+  
Step2  
Execution  
Time  

2   204   528   226   527   1485   379.4   1864.4   1.55   78%   2147.5  
4   124   310   145   284   863   361.5   1224.5   2.36   59%   1569.3  
8   81   175   90   168   514   373.0   887   3.26   41%   1247.7  

16   73   117   79   166   435   354.3   789.3   3.67   23%   1189.9  
20   70   111   72   139   392   362.4   754.4   3.84   19%   1143.7  
24   68   98   69   130   365   376.0   741   3.91   16%   1119.0  
28   66   89   66   142   363   373.6   736.6   3.93   14%   1119.0  

Table 10: Timing results of combined step1 and step2 execution with dataset=100% 
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Step3 Analysis 

Local  MapReduce  Execution  (1  Map,  1  Reduce  Task):   5842.30  
  Number  

of  Cores  
MapReduce  
Job  Time  

Sorting  and  
Writing  Output    

Overall  
Execution  Time   Speedup   Efficiency  

2   2889   427.9   3419.4   1.71   85%  
4   2149   433.1   2686.2   2.17   54%  
8   1830   432.1   2367.5   2.47   31%  

16   1370   433.4   1905.9   3.07   19%  
24   1416   340.5   1860.2   3.14   13%  
28   1340   431.0   1887.6   3.10   11%  

Table 11: Timing results of step3 analysis with Dataset=100% and Key=Eastern Longitude 
 
 
Local  MapReduce  Execution  (1  Map,  1  Reduce  Task):   5787.90  

  Number  
of  Cores  

MapReduce  
Job  Time  

Sorting  and  
Writing  Output    

Overall  Execution  
Time   Speedup   Efficiency  

2   3502   433.2   4039.9   1.43   72%  
4   2878   431.6   3413.2   1.70   42%  
8   1946   432.9   2480.7   2.33   29%  

16   1196   437.7   1736.5   3.33   21%  

24   1074   435.4   1613.1   3.59   15%  
28   1662   433.4   2198.7   2.63   9%  

Table 12: Timing results of step3 analysis with Dataset=100% and Key=Western Longitude 
 
 
Local  MapReduce  Execution  (1  Map,  1  Reduce  Task):   2682.50  

  Number  
of  Cores  

MapReduce  
Job  Time  

Sorting  and  
Writing  Output    

Overall  Execution  
Time   Speedup   Efficiency  

2   1189   344.5   1636.4   1.64   82%  
4   863   348.4   1312.5   2.04   51%  
8   693   344.3   1140.2   2.35   29%  

16   489   350.0   941.7   2.85   18%  

24   546   344.5   993   2.70   11%  
28   605   345.7   1052.8   2.55   9%  

Table 13: Timing results of step3 analysis with Dataset=50% and Key=Eastern Longitude. 
 

Local  MapReduce  Execution  (1  Map,  1  Reduce  Task):   2674.20  
  Number  

of  Cores  
MapReduce  
Job  Time  

Sorting  and  
Writing  Output    

Overall  Execution  
Time   Speedup   Efficiency  

2   1383   343.5   1826.7   1.46   73%  
4   1037   348.2   1486.6   1.80   45%  
8   730   347.2   1178.2   2.27   28%  

16   525   347.6   975.5   2.74   17%  
24   417   344.7   864.5   3.09   13%  
28   612   342.1   1055.8   2.53   9%  

Table 14: Timing results of step3 analysis with Dataset=50% and Key=Western Longitude. 
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Appendix   F      Code   overview   of   the   ported  
mapreduce-­cccgistemp  
 
mapreduce-cccgistemp has the following directory structure65: 

/code/    Source code for the GISTEMP algorithm only 
/config/    Configuration files 
/doc/        Internal ccc-gistemp developer documentation 
/input/     Input data files 
/log/         Log files (Used only by non-MapReduce steps) 
/tool/       Tools - sources other than the GISTEMP algorithm 
/work/     Intermediate data files 
/result/    Final result files 
 
ccc-gistemp & mapreduce-cccgistemp uses input data in the subdirectory input/ which 
includes files of temperature records from GHCN, USHCN and sea surface data, small files 
of additional temperature records and station tables from GISS.  The code /tool/preflight.py is 
used to fetch this data over the internet. 

Steps 1, 2 and 3 of the original ccc-gistemp are ported to MapReduce. Primary code changes 
for the porting exercise impact the following files: 

/code/step1.py 
/code/step2.py 
/code/step3.py 
/code/read_config.py 
/tool/run.py 
/tool/giss_io.py 
 
/code/Mapreduce.py was added as part of this project for verifying the impacts of I/O by 
combining steps 1 and 2. 
 
All the GISS MapReduce class definitions begin 
to the ported ccc-gistemp step and contains the definitions of map and reduce functions. The 
required GISS algorithms are invoked from within the map/reduce function. Step2 however 
has modifications within the GISS algorithm to incorporate the use of Redis key/value store. 
The records are added to the store in function annotate_records and retrieved for use in 
urban_adjustments. Both the definitions are in /code/step2.py.  

The function definitions that initially read input files for steps 1, 2 and 3 are now commented 
out in /tool/giss_io.py as these files are now fed directly to the map function by specifying 
their path while creating the mrjob class. V2MapReduceMeanReader, the modified 

 

                                                 
65 Identical to the original ccc-gistemp code structure 
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/tool/run.py, the code that initiates the execution, has significant changes to incorporate the 
calling of mrjob class for the corresponding MapReduce step(s). The definitions however 
follow a similar pattern. First, the input file is specified in the arguments array followed by all 
the supporting GISS configuration files. Secondly, the Hadoop MapReduce job configuration 
parameters are specified. Next, mrjob is invoked with the following statement: 

    with mr_job.make_runner() as runner: 
       runner.run() 
 
Finally, the output of MapReduce job is retrieved and written to the specified output file. 
 
The following command can be executed to verify the complete execution on Hadoop cluster: 
 
    ./run.sh -r hadoop -mt <No. of map tasks> -rt <No. of reduce tasks> -bin <Python_binary> 
 
To execute only a specified step on the Hadoop cluster: 

    ./run.sh -s 1 -r hadoop -mt <No. of map tasks> -rt <No. of reduce tasks> -bin 
<Python_binary> 

This command executes step1, assuming that step0 has already been run and the output is 
available for use by this step.  

 
After executing all the six steps (steps 0 to 5), the resulting GISTEMP outputs are all in the 
/result/ directory.  A simple graphical chart66 created using the Google Chart API, showing 
the global mean surface temperature anomaly is available for verification at /result/google-
chart.url  

  

                                                 
66 Chart created as part of the original ccc-gistemp code. 
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Appendix  G     Brief  review  of  the  rounding  error  
observed  in  Step2  verification  
 

Excerpt from the output of diff  showing variation in the temperature anomaly of last month 
(December) for certain years. This discrepancy then creeps into the subsequent years up until 
November. Similar trend is observed for all stations that exhibit this discrepancy.   

< 6510324200101947   27   -8    21   79    120  146  164  175  143  108   61   50 
< 6510324200101948   41   45   77   85    99    124  151  139  130   97    66   46 
< 6510324200101949   47   53   50   100  107  139  164  161  155  111   63   53 
--- 
> 6510324200101947   27   -8    21   79    120  146  164  175  143  108   61   51 
> 6510324200101948   42   46   78   86    100  125  152  140  131   98    67   47 
> 6510324200101949   48   54   51   101  108  140  165  162  156  112   64   53 
391287,391288c391298,391299 
< 6510324200101960   34   30   51   86    114  151  143  142  126   98   59   35 
< 6510324200101961   29   60   82   85    99    136  140  145  141   98   54   12 
--- 
> 6510324200101960   34   30   51   86    114  151  143  142  126   98   59   36 
> 6510324200101961   30   61   83   86    100  137  141  146  142   99   55   12 
 
Analogous rounding error was also observed by developers of ccc-gistemp when porting the 
original GISS Gistemp code to Python and they have discussed its behaviour at the ccc-
gistemp discussion groups67.  

This issue is obvious when run on multiple cores and was observed during the benchmarking 
phase of the project. Investigations into this issue revealed that the error was most likely 
creeping in the function annual_anomaly, which is called from annotate_record. Here the 
month December of final year is neglected followed by taking the average of the monthly 
means of global temperature series. The seasonal anomalies and annual anomalies are then 
computed from the monthly means.  An error induced in the monthly mean computation is 
most likely to affect results of seasonal and annual anomalies and hence the observed 
cumulative error across years.   

As this issue was observed during the benchmarking phase when EDIM1machine was finally 
available for testing, very less time was available to fix this bug and run sufficient test cases 
to ensure its correctness and impacts on other areas of the code. Hence, it was thought of as 
best to report this issue and not make code fixes at the final stages of the project. The issue 
has also been reported to ccc-gistemp developers, as this has been prevailing in the base code 
that was used for porting.  

                                                 
67http://groups.google.com/group/ccc-gistemp-
discuss/browse_thread/thread/3386c3c814584e0/9bf7dcbba12b4ebb?lnk=gst&q=annual_anomaly#9bf7dcbba12
b4ebb 


