

Programming Abstractions for Dynamic,
Distributed, Data-­intensive Computing

Vinay Sudhakaran

August 19, 2011

MSc. in High Performance Computing

The University of Edinburgh

Year of Presentation: 2011

i

Abstract

Processing large volumes of scientific data requires an efficient and scalable parallel
computing framework to obtain meaningful information quickly. MapReduce is a
programming model and an execution framework introduced by Google Inc. to facilitate
processing of large datasets (Dean and Ghemawat 2004). Since its inception, MapReduce has
found widespread adoption for processing massive amounts of textual data such as web
pages, web request logs and crawled documents but only recently has it gained significant
attention from various scientific disciplines for analyzing large volumes of scientific data.

In many cases, scientific applications may have characteristics which make it harder to apply
programming models like MapReduce. The data to be analysed may come from many
different sources, may be unevenly distributed or may be updated or superseded by new data.
The application itself may display signs of being I/O bound or memory-bound as well as
being CPU-bound.

In this dissertation, we evaluate a scientific application from the environmental sciences (ccc-
gistemp Python reimplementation of the original NASA GISS model for estimating the
global temperature change) for its applicability to use the MapReduce framework,
specifically the Hadoop implementation of MapReduce. The application consists of several
stages, each of which display differing dynamic, distributed and data-intensive
characteristics, and we examine the code to determine how to parallelise data and compute
intensive tasks efficiently.

Three stages of the ccc-gistemp code have been ported using Hadoop and mrjob library
(Python interface for Hadoop streaming jobs). Step1 is trivially data-parallel and well suited
to MapReduce; Step2 is both data and compute intensive and appears suited to MapReduce
but reveals issues due to uneven distribution of input data; and step3 does not initially appear
to suit MapReduce but can be successfully ported by slight modification of the data access
pattern. Performance bottlenecks encountered while porting and possible solutions for their
resolution are highlighted, with benchmarking carried out on two commodity clusters: the St.
Andrews cloud infrastructure and the University of Edinburgh EDIM1 data-intensive
research machine.

This work has shown that:

1. MapReduce provides the necessary programming abstraction for parallelising data
and compute intensive steps of a scientific application code.

2. The MapReduce programming framework is capable of handling applications with
varying indices along the three axes of being dynamic, distributed and data-intensive.

3. Implementations of MapReduce programming model on infrastructures consisting of
low-end commodity machines are cost-effective and efficient for data-intensive
computing.

ii

Contents

Introduction .. 1

1.1 Motivation and Context ... 1
1.2 Related Work... 2
1.3 Organisation of the Dissertation .. 3

Background .. 5

2.1 Dynamic, Distributed, Data-intensive ... 5
2.2 Earth and Environmental Sciences .. 5
2.3 GISS Surface Temperature Analysis (GISTEMP) .. 6

2.1.1 Data Sources .. 7
2.3.2 Urban effects on Global temperature ... 7

Clear C limate Code (C C C) Project .. 11

3.1 ccc-gistemp.. 11
3.1.1 A brief comparative study .. 11

3.2 Merits of ccc-gistemp .. 12

Cloud Infrastructure ... 13

4.1 The Definition ... 13
4.2 Utility Computing ... 13
4.3 Levels of Abstraction ... 14
4.4 Cloud Computing and MapReduce ... 15

Programming Paradigm .. 16

5.1 Introduction ... 16
5.2 Programming Abstraction The Basics ... 16
5.3 Map-Reduce Framework ... 18

5.3.1 Map-Reduce Programming Model .. 18
5.3.2 Fault Tolerance .. 20
5.3.3 Load Balancing .. 20
5.3.4 Data locality ... 21

5.4 Hadoop overview .. 21
5.4.1 Hadoop Distributed File System (HDFS) .. 21
5.4.2 Hadoop Cluster .. 22
5.4.3 MapReduce Job Configuration .. 23

5.5 Python programming language and mrjob API... 24
5.5.1 Dumbo and mrjob .. 24
5.5.2 JSON and Pickle communication protocols .. 25

5.6 An Example of Map/Reduce Programming Model... 26
5.6.1 Weather data mining .. 28

iii

Development Infrastructure ... 31

6.1 Execution and Testing Environment ... 31
6.1.1 St. Andrews Cloud Infrastructure .. 31
6.1.2 University of Edinburgh EDIM1 machine ... 32

6.2 Project Hosting .. 33
6.3 Integrated Development Environment .. 33
6.4 Agile development techniques and its implications .. 33

Porting the ccc-gistemp ... 35

7.1 mapreduce-cccgistemp MapReduce implementation of cccgistemp 35
7.2 Issues and bottlenecks with porting .. 48
7.3 Designing MapReduce Jobs .. 50
7.4 Building and executing the Project ... 51
7.5 Verification.. 51

Performance Evaluation .. 54

8.1 Data Sampling ... 54
8.2 Benchmarking ... 55
8.3 Analyses of Results ... 66

8.3.1 Impacts on Scalability .. 66
8.3.2 Time and ease of Porting ... 67

Conclusions and Scope for future work ... 68

9.1 Conclusions ... 68
9.1.1 Risk Assessment .. 70

9.2 Scope for Future work ... 72

Bibliography ... 74

Appendix A - Implementation of the weather data mining example 77

Appendix B - O riginal Risk Assessment .. 79

Appendix C - O riginal Work Plan ... 81

Appendix D - Hadoop in Pseudo-distr ibuted mode on St. Andrews cloud infrastructure
(StA C C) ... 82

Appendix E T iming Results ... 84

Appendix F Code overview of the ported mapreduce-cccgistemp 87

Appendix G Brief review of the rounding er ror observed in Step2 verification 89

iv

List of Figures

F igure 1: Satellite observed night light radiances at a spatial resolution of 0.5o x 0.5o............ 8

F igure 2: Decadal surface temperature anomalies relative to 1951 - 1980 base periods 9

F igure 3: 12 month running mean of global temperature anomalies using data through June
2010.. 9

F igure 4: Map-Reduce execution overview .. 19

F igure 5: Architecture of HDFS. .. 22

F igure 6: Hadoop Cluster .. 23

F igure 7: Block diagram showing the interaction between Python MapReduce user program,
mrjob API & Hadoop streaming. ... 27

F igure 8: Subset of the sample NCDC data for the year 2008 ... 28

F igure 9: Data flow within the MapReduce programming model .. 28

F igure 10: MapReduce framework with multiple reduce tasks. ... 29

F igure 11: St. Andrews Cloud infrastructure .. 31

F igure 12: Profiling of the original ccc-gistemp code (seconds) .. 35

F igure 13: Flow diagram of the original ccc-gistemp code .. 36

F igure 14: An instance of "Series" - The primary data structure containing Station id, Year
and the monthly temperature series for all years ... 37

F igure 15: Global surface divided into 80 regions of equal area. ... 44

F igure 16: Flow diagram of the ported mapreduce-cccgistemp code 48

F igure 17: Graph comparing the global temperature anomaly of original ccc-gistemp code
and ported mapreduce-cccgistemp ... 52

F igure 18: Plot indicating a difference of 0.01 for some years in the output of mapreduce-
cccgistemp.. 53

F igure 19: Plot of overall execution time to the number of cores for input dataset 100%,
75%, 50% and 25% respectively. .. 56

F igure 20: Plot of Speedup to the number of cores for input dataset 100%, 75%, 50% and
25% respectively. ... 56

F igure 21: Plot of overall execution time to the % of dataset for processing units 4, 8, 16 and
28 cores. ... 57

F igure 22: Plot of speedup to the % of dataset for processing units 4, 8, 16 and 28 cores. ... 57

v

F igure 23: Distribution of reduce task runtimes on eight cores .. 58

F igure 24: Plot of overall execution time to the number of cores for the original and
optimised code with dataset=100% and optimised code with dataset=50% 59

F igure 25: Plot of speedup to the number of cores for original and optimised code with
dataset=100% and optimised code with dataset=50%. .. 59

F igure 26: Performance improvement obtained by combining steps 1 and 2 60

F igure 27: Plot of speedup to the number of cores with 100% dataset for combined
MapReduce steps 1 and 2. ... 61

F igure 28: Plot of overall execution time to the number of cores for keys W. Longitude and
E. Longitude at 100% and 50% dataset respectively. .. 61

F igure 29: Plot of speedup to the number of cores for keys W. Longitude and E. Longitude at
100% and 50% dataset respectively. .. 62

F igure 30: Runtime distribution of reduce tasks in step3 of mapreduce-cccgistemp 63

F igure 31: An example of reduce task execution indicating the three phases Copy, Sort and
Reduce.. 64

F igure 32: Profiling of the ported mapreduce-cccgistemp code on 16 cores (seconds) 65

F igure 33: Original risk assessment diagram indicating the significance attributed to each of
the identified risks. ... 80

F igure 34: Original project work plan identifying the major milestones along with sub-tasks
that are required to be completed for each Milestone .. 81

vi

List of Tables

Table 1: Hardware configuration of EDIM1 machine .. 32

Table 2: Risks identified initially during the project preparation phase. 79

Table 3: Timing results of step1 analysis with dataset=100% .. 84

Table 4: Timing results of step1 analysis with dataset=75% .. 84

Table 5: Timing results of step1 analysis with dataset=50% .. 84

Table 6: Timing results of step1 analysis with dataset=25% .. 84

Table 7: Timing results of step2 analysis with Dataset=100% (Original Code) 85

Table 8: Timing results of step2 analysis with Dataset=100% (Optimised Code) 85

Table 9: Timing results of step2 analysis with Dataset=50% (Optimised Code) 85

Table 10: Timing results of combined step1 and step2 execution with dataset=100% 85

Table 11: Timing results of step3 analysis with Dataset=100% and Key=Eastern Longitude
.. 86

Table 12: Timing results of step3 analysis with Dataset=100% and Key=Western Longitude
.. 86

Table 13: Timing results of step3 analysis with Dataset=50% and Key=Eastern Longitude. 86

Table 14: Timing results of step3 analysis with Dataset=50% and Key=Western Longitude.
.. 86

vii

Acknowledgements

I would like to thank my project supervisor Mr. Neil Chue Hong for his advice and
supervision during the project.

I would also like to extend my gratitude to Mr. Gareth Francis (EPCC) and Dr. Paolo Besana
(School of Informatics, University of Edinburgh) for their assistance in setting up the Hadoop
cluster on EDIM1 machine. Furthermore, I would like to thank Dr. Yuanzhi (Derek) Wang
and Dr. Adam Barker at the University of St. Andrews for their willingness and support in
using the St. Andrews cloud infrastructure during development and initial testing phases of
this project.

I am also indebted to my family and friends who have always stood by me in every choice I
make.

1

Chapter 1

Introduction

The ability to create rich, detailed models of natural and artificial phenomena and to process
large volumes of experimental data created by new generation of scientific instruments that are
themselves powered by computing, highlights the importance of computational science as a
critical enabler of scientific discovery (Hey, Tansley and Tolle 2009).

1.1 Motivation and Context

Advancing the state-of-the-art research in computational science require analyses of large
volumes of data collected from numerous scientific instruments and experiments conducted
around the globe. Petabyte data sets are already becoming increasingly common in many High
End Computing (HEC) applications from a diverse range of scientific disciplines (Mackey, et
al. 2008), and this is only expected to grow in the near future. An exemplar to this is the Large
Hadron Collider (LHC) which is estimated to produce roughly 15 petabytes of data a year
when it is fully operational1. This necessitates the need for providing abstraction2 at multiple
levels for acquiring, managing and processing of data (Hey, Tansley and Tolle 2009), thus
enabling the scientific commun
complexities involved in setting up and maintaining the cyber-infrastructure required to
facilitate data intensive computing.

Processing the large volumes of data quickly requires efficient parallel programming models
that meet the performance requirements entailed by these scientific applications. Several
attributes need be considered before selecting a suitable methodology for parallelising data-
intensive applications which include data volumes, data access patterns in the algorithm,
computational requirements, task sharing and global synchronisation constraints, scalability,
ease of programming and the underlying execution infrastructure. The main focus of this work
is to evaluate if MapReduce, specifically Hadoop implementation of MapReduce, can provide
the necessary high level parallel programming framework that is required for parallelising data
and compute intensive tasks of a scientific application from the environmental sciences.

GISS Surface Temperature Analysis (GISTEMP)3 is an open-source model from the
environmental sciences for estimating the global temperature change, implemented by NASA
Goddard Institute of Space Studies (GISS). GISTEMP was originally written in FORTRAN.

1 http://public.web.cern.ch/public/en/LHC/Computing-en.html
2 Abstraction commonly refers to the way of representing data or computation at a higher-level, hiding the
underlying complexity.
3 http://www.giss.nasa.gov

http://www.giss.nasa.gov/

2

ccc-gistemp is a part of the Clear Climate Code (CCC) project from Climate Code Foundation
to re-implement the NASA GISS Gistemp algorithm in Python. In this project, ccc-gistemp is
ported to the MapReduce framework using mrjob API to provide the python interface for
Hadoop streaming jobs.

The St. Andrews cloud infrastructure (StACC) and the University of Edinburgh EDIM1
machine are used extensively for development and testing of the ported code. EDIM14 is a
cluster of commodity machines jointly funded by the Edinburgh Parallel Computing Center
(EPCC) and the School of Informatics, primarily intended for Data-intensive research.
Performance evaluations have been done on this machine configured as a sixteen node cluster
(one master node, one job tracker and fourteen slave nodes).

Map-Reduce is a programming model introduced by Google Inc. to support distributed
computing on large volumes of data, using clusters of commodity machines (Dean and
Ghemawat 2004). Firstly, this parallel data-processing model is understood as a means of
providing abstraction for distributed, data-intensive computing. Secondly, from an architectural
perspective, the existing ccc-gistemp application code is reviewed to verify its applicability to
be ported to the MapReduce framework. Data and compute-intensive steps within the code that
are likely to improve the overall performance when ported are identified. Thirdly, the identified
steps are ported to the MapReduce programming model in small increments using iterative
technique (agile development practises), while noting performance and verifying the
correctness of the algorithm. Lastly, the ported code is benchmarked to evaluate performance
and scalability.

1.2 Related Work

MapReduce is extensively used within Google for processing large volumes of raw data such
as crawled documents and web request logs (Dean and Ghemawat 2004). With its widespread
adoption via an open source implementation called Hadoop5 (Lin and Dyer 2009), primarily for
data-intensive computing, there have been many evaluations of this programming model using
large volumes of web and textual data. However, there have been only a few evaluations with
scientific data (Ekanayake, Pallickara and Fox 2008).

(Zhu, et al. 2009), evaluated the feasibility of porting two applications (Water Spatial6 and
Radix Sort7) from the Stanford SPLASH-28 suite to the Hadoop implementation of
MapReduce. Performance bottlenecks with porting were identified and suggestions provided
for enhancing the MapReduce framework to suite these applications.

4 http://www.epcc.ed.ac.uk/projects/research/dataintensive
5 (Apache Hadoop framework 2008)
6 Water Spatial is an N-body molecular dynamics application that evaluates the forces and potentials over time in
a cluster of water molecules in liquid state (Zhu, et al. 2009).
7 Integer sorting technique implemented as an iterative algorithm.
8 The Splash-2 Suite consists of a set of complete applications and computational kernels specifically designed to
facilitate the study of centralized and distributed shared-address space multi-processors (Zhu, et al. 2009).

3

The main attributes of the implementation strategy that were considered in porting these
applications were the data access patterns and computational steps. It was identified that most
scientific applications require shared data and hence synchronisation was a major source of
overhead. Additionally, the probability of scientific applications using matrices and multi-
dimensional arrays for their processing was much higher than simple data-structures.

Global synchronisation across all reduce tasks in a MapReduce job was achieved with a single
reduce task. Suggestions to provide better support for distributing array and matrices within the
HDFS to reduce communication overheads were made. Also, the advantages of directly
dumping the output of first stage to the second in a multi-stage job, without the need for
intermediate HDFS store were highlighted to reduce I/O overheads.

(Ekanayake, Pallickara and Fox 2008), evaluated Hadoop implementation of MapReduce with
High Energy Physics data analysis. The analyses was conducted on a collection of data files
produced by high-energy physics experiments, which is both data and compute intensive. As an
outcome of this porting, it was observed that scientific data analyses that has some form of
SPMD9 (Single-Program Multiple Data) algorithms are more likely to benefit from MapReduce
when compared to others. Additionally, MapReduce implemenations were scalable with the
increase in data volume and computational nodes, minimizing the impact of overheads.

However, the use of iterative algorithms required by many scientific applications were seen as
limitation to the existing MapReduce implementations. It was suggested that support for
directly accessing data in binary format could benefit many scientific applications which would
otherwise need some form of data transformation, reducing performance.

In this work, we study an application code from the environmental sciences to evaluate its
applicability to be used with the MapReduce framwork. Implementation stratregies such as
data access patterns in the algorithm, task sharing and global synchronisation constraints,
scalabilty and ease of programming are considered for evaluation. Programming abstractions at
various levels of execution are introduced and studied.

1.3 Organisation of the Dissertation

The rest of the dissertation work is organised as follows:

Chapter 2: A brief overview of the application domain and GISS surface temperature analysis
is provided.

Chapter 3: ccc-gistemp is introduced along with a discussion on the merits of using this code
for programmers.

Chapter 4: Cloud computing and the use of cloud based resources to support data-intensive
computing are discussed.

9 SPMD is a technique employed to achieve parallelism where the tasks are split and run simultaneously on
multiple processors with different input data (http://en.wikipedia.org/wiki/SPMD).

4

Chapter 5: MapReduce framework and the Hadoop implementation of MapReduce are
discussed in detail. mrjob, the Python interface for Hadoop streaming job is introduced along
with discussion on the merits of using it in this work. An example of MapReduce programming
model is provided to assist in better understanding of the overall framework.

Chapter 6: The development infrastructure which includes the execution and test environment,
project hosting and the software development methodology is introduced.

Chapter 7: - ccc-gistemp code are
provided while identifying patterns that are suitable to be ported to the MapReduce
programming model. Issues encountered while porting are discussed with possible solution for
its resolution. Test cases that are executed to ensure correctness of the ported code are
summarised.

Chapter 8: Performance analyses carried out on the ported mapreduce-cccgistemp code is
reported in this chapter.

Chapter 9: The dissertation concludes by outlining some suggestions for future work. Risks
that were initially identified are reviewed to assess its final impact on the completion of this
work.

5

Chapter 2

Background

This chapter provides an overview of the three commonly used terms in this work Dynamic,
Distributed and Data-intensive. Additionally, the application from environmental sciences
(GISTEMP) that is considered for porting is introduced along with its significance for
estimating long term global temperature changes.

2.1 Dynamic, Distributed, Data-­intensive

Technology - encompassing computers as single entity capable of efficiently storing, managing
and processing data; high-speed network infrastructure supporting the Internet; software
platforms and applications, has played an important role in supporting collaboration, sharing of
information across geography and data management within the context of a research project.

An application can be classified along the three axes of being dynamic, distributed and data-
intensive (3D). When the processing -
application is said to be data-intensive (E.g. the European Bioinformatics Institute (EBI)10
holds a central repository of DNA sequence data, amounting to nearly 5 petabytes which is
accessible by scientists and researchers around the globe). Much of this data arises from many
different biomedical research centres scattered across the globe, and hence the genome
processing involves distributed data. New DNA sequences are added frequently for improved
genome analysis. Coping with this variability in the input data-stream constitutes the
dynamicity of the application and hence dynamic.

An application may have varying indices along these three axes. For example, an application
may process large volumes of data but the input data-set may be relatively static. An ideal
programming abstraction should provide capability to handle varying indices along these three
axes of being Dynamic, Distributed and Data-intensive.

2.2 Earth and Environmental Sciences

Earth and environmental sciences offer tremendous opportunities and challenges for data-
intensive computing. Sensors and scientific instruments monitoring our planet from deep
within the ocean to space based high resolution satellite imaging system, generate large
volumes of data that require quick analysis to help better understand the changing environment
around us. The results from these analyses could aid scientists, researchers, policy makers and
general public make informed decision (Hey, Tansley and Tolle 2009).

10 http://www.ebi.ac.uk/

6

Global temperature change is one of the active environmental sciences issues gaining sufficient
interest from government organisations, researchers in pedagogy and industry and the general
public alike. It has become increasingly important to monitor changes in global weather
patterns in order to avert catastrophic loss of lives and property.

In this work we analyse GISTEMP, a model for estimating the global temperature change.
GISTEMP is analysed for its applicability to use the MapReduce framework for parallelising
data and compute intensive tasks. Parallelising execution could result in a model that generates
the required meaningful information from large volumes of temperature data gathered across
various weather stations around the globe quickly and thus make informed decisions faster.

2.3 GISS Surface Temperature Analysis (GISTEMP)

Analyses of surface air temperature and ocean surface temperature changes are carried out by
several groups, including the Goddard institute of space studies (GISS) (Hansen, Ruedy and
Glascoe, et al. 1999) and the National Climatic Data Center (Peterson, et al. 1998) based on the
data available from a large number of land based weather stations and ship data, which forms
the instrumental source of measurement of global climate change. Uncertainties in the collected
data from both land and ocean, with respect to their quality and uniformity, force analysis of
both the land based station data and the combined data to estimate the global temperature
change. Another valuable source of global temperature data through the troposphere and lower
stratosphere is provided by the radiosonde11 stations (Hansen and Lebedeff 1987).

Estimating long term global temperature change has significant advantages over restricting the
temperature analysis to regions with dense station coverage, providing a much better ability to
identify phenomenon that influence the global climate change, such as increasing atmospheric
CO2. This has been the primary goal of GISS analysis.

Non climatic influence on the measured temperature change, such as urbanisation, are
minimised by applying a homogeneity adjustment. The homogeneity adjustment procedure
(Hansen, Ruedy and Glascoe, et al. 1999) changes long-term temperature trend of an urban
station to make it agree with the mean trend of nearby rural stations. The current analysis uses
satellite observed nightlights (Hansen, Ruedy and Sato, et al. 2010) to identify land based
weather stations in extreme darkness and perform urban adjustments for non-climatic factors,
such that urban effects on the analysed global temperature change are small. The GISS
temperature analyses which include maps, graphs and tables of the results are available for
download on the GISS website (http://www.giss.nasa.gov).

11 A radiosonde is a unit for use in weather balloons that measure various atmospheric parameters and transmits
them to a fixed receiver.

http://www.giss.nasa.gov/

7

2.1.1 Data Sources

The current GISS analysis obtains the monthly mean station temperatures from the Global
Historical Climatology Network (GHCN), available for download from the NCDC website12.
GHCN maintains data from about 7000 stations out of which only those stations that have a
period of overlap with neighbouring stations (within 1200 km) of at least 20 years are
considered (Hansen, Ruedy and Sato, et al. 2010). Effectively, only 6300 stations are available
for GISS analysis after this reduction. No data adjustments are done on the original GHCN data
for clarity.

The data from United States Historical Climatology Network (USHCN), which is a subset of
the GHCN, is however adjusted via homogenisation intended to remove effects of urbanisation
and other artefacts. Bad data from GHCN are minimised at NCDC via checks for all monthly
mean outliers that differ from their climatology by more than 2.5 standard deviations. About
15% of these outliers are eliminated for being incompatible with neighbouring stations, with
the remaining 85% being retained. (Hansen, Ruedy and Sato, et al. 2010).

The GHCN land based temperature records would be incomplete without measurements from
the Antarctic region. Credible data over long continuous period was not available until the
International Geophysical year 1957 (Hansen, Ruedy and Sato, et al. 2010). Current GISS
analysis uses monthly data from Scientific Committee on Antarctic Research (SCAR).
Specifically, the data are from the SCAR Reference Antarctic Data for Environmental
Research project (http://www.antarctica.ac.uk/met/READER/).

The ocean surface temperature measurement is an integration of the data from Met Office
Hadley Centre analysis of sea surface temperatures (HadISST1) for the period 1880-1981,
which was ship based during that interval, and satellite measurements of sea surface
temperature for 1982 to the present (Optimum Interpolation Sea Surface Temperature version 2
(OISST.v2) [(Hansen, Ruedy and Sato, et al. 2010)]. The satellite measurements are calibrated
with the help of ship and buoy data (Reynolds, et al. 2002). Uncertainties in the pre-satellite era
aroused due to homogeneity issues where the temperature measurements were dependent on
ships, and each had their own techniques and units of measurement. Lately, due to availability
of satellite temperature measurement systems, ocean coverage has improved to a large extent
providing a much better quality of sea-surface temperature. However, satellite data also have
their own sources of uncertainties, despite their high spatial resolution and broad geographical
coverage (Hansen, Ruedy and Sato, et al. 2010).

2.3.2 Urban effects on Global temperature

Urbanisation, which includes human-made structures and energy sources, can significantly
impact the accuracy of temperature measured by stations located in or near urban areas. This
has been a major concern in the analysis of global temperature change.

12 http://www.ncdc.noaa.gov/oa/ncdc.html

http://www.antarctica.ac.uk/met/READER/

8

Current analyses either omit urban stations or perform urban adjustments to eliminate or
minimise the urban effect. A detailed study on this topic is provided by (Parker 2010). Global
satellite measurements of night lights allow the possibility for an additional check on the
magnitude of the urban influence on global temperature analyses (Hansen, Ruedy and Sato, et
al. 2010). It has been shown in (Imhoff, et al. 1997) that all stations located in areas with night
light brightness exceeding a value (32 µWm-2 sr-1 µm-1) approximately divides the station into
two categories, rural and urban or peri-urban. Current GISS global temperature analysis
perform urban adjustments on temperature data for stations located in regions with night light
brightness exceeding this limit to agree with the temperature data of nearby rural stations. If
there are no sufficient numbers
the analysis. Also, it has been shown that urban warming has little effect on standard global
temperature analysis (Hansen, Ruedy and Sato, et al. 2010).

Figure 1 shows the satellite observed night light radiance (µWm-2 sr-1 µm-1) at a spatial
resolution of 0.5o x 0.5o that aid in the categorization of stations as rural and urban or peri-
urban.

F igure 1: Satellite observed night light radiances at a spatial resolution of 0.5o x 0.5o
[Source: (Hansen, Ruedy and Sato, et al. 2010)]

Figure 2 shows the global surface temperature anomalies for the past 4 decades, relative to the
1951 1980 base periods. In can be seen that on an average, the successive decades warmed by
0.170C. In addition, it is shown in (Hansen, Ruedy and Sato, et al. 2010) that warming in the
recent decades is larger over land than over ocean because the ocean responds more slowly to

s large thermal inertia.

9

Warming during the past decade is enhanced, relative to the global mean warming, by about
50% in the United States, a factor of 2-3 in Eurasia, and a factor of 3-4 in the Arctic and
Antarctic Peninsula. Warming of the ocean surface has been largest over the Arctic Ocean,
second largest over the Indian and western Pacific oceans, and third largest over most of the
Atlantic Ocean (Hansen, Ruedy and Sato, et al. 2010).

F igure 2: Decadal surface temperature anomalies relative to 1951 - 1980 base periods
[Source: (Hansen, Ruedy and Sato, et al. 2010)]

F igure 3: 12 month running mean of
global temperature anomalies using data
through June 2010
[Source: (Hansen, Ruedy and Sato, et al.
2010)]

Figure 3 shows a simple graph of 12 month running mean global temperature using data
through June 2010.

10

Modifications to the GISS analysis method, if any, are available at GISS site:
http://data.giss.nasa.gov/gistemp/updates/.

To summarise, Graphs, tables and maps are constructed by modifying the current GHCN,
USHCN and SCAR files in two stages. In the first stage, redundant multiple records are
combined into one and in the second stage the urban adjustments are performed so that their
long-term trend matches that of the mean of neighbouring rural stations. Urban stations without
sufficient number of rural stations in its vicinity are dropped from further analysis.

FORTRAN programs used in GISTEMP analysis along with the documentation on their use
are open source and are available for download at http://data.giss.nasa.gov/gistemp/sources/.

http://data.giss.nasa.gov/gistemp/updates/
http://data.giss.nasa.gov/gistemp/sources/

11

Chapter 3

Clear Climate Code (CCC) Project

This chapter provides an overview of the ccc-gistemp project and outlines the merits of using
this code for programmers. Stable release of ccc-gistemp is ported to the MapReduce
programming model.

3.1 ccc-­gistemp

The Climate Code Foundation (http://www.climatecode.org/) is a non-profit organisation to
promote the public understanding of climate sciences. The Clear Climate Code project is a part
of the Climate Code Foundation to re-implement NASA GISS Gistemp algorithm in Python for
improved clarity called ccc-gistemp (http://code.google.com/p/ccc-gistemp/). ccc-gistemp
release 0.6.1 is the current stable release available for download from
http://code.google.com/p/ccc-gistemp/downloads/list which is used in the code development
phase of this project.

3.1.1 A brief comparative study13

The combination of FORTRAN code and shell scripts in the original GISS software, for both
core GISS algorithms and supporting libraries, makes it hard to perceive the code flow and the
underlying algorithm. An all- -to-
execution further exemplifies the essence of ccc-gistemp. The ccc-gistemp execution can be
started from a single call to run.py by specifying the required step(s). Besides, by isolating the
core GISS algorithms from the supporting functions (algorithms for reading input and writing
output), ccc-gistemp has efficient code packaging further improving the readability and
maintainability of the software.

has differing representations in different parts of the code making it hard for new users to
comprehend the code easily. This has been modified in ccc-gistemp to have a single
representation throughout the code. Additionally, the exhaustive use of intermediate files to
store and manipulate temporary data has been modified to make efficient use of Python data
structures and iterators, significantly reducing the I/O overheads.

13 Much of this is compiled by reading blogs and discussions among ccc-gistemp developers and users, at the ccc-
gistemp Google groups.

http://www.climatecode.org/
http://code.google.com/p/ccc-gistemp/downloads/list

12

To perform urban adjustments, all rural stations in the vicinity of a given urban station are
identified (section 2.3.2). In the original GISS code, the station latitudes (northern and
southern) and longitudes (western and eastern) used to compute the distances were rounded to
the nearest tenths for ease of storage in intermediate files. Additionally, in the same step, the
annual anomaly series that is used in the computation of adjustment to apply to an urban station
were also rounded to the nearest tenths of degree Celsius (originally in hundredths of a degree).
In the ccc-gistemp
(floating-point) providing a much better representation of the data.

Although there has been significant amount of modifications to the structure of the original
code, ccc-gistemp developers have ensured that the ported algorithms are identical to the
original by constant comparison of the output at every stage with the expected results.

3.2 Merits of ccc-­gistemp

1. Lack of well defined coding standards and documentation made the original GISTEMP
code hard to perceive. This was overcome in ccc-gistemp which has well defined
coding standards (http://code.google.com/p/ccc-gistemp/wiki/CodingStandard) that aid
programmers to quickly read and understand the code, while improving the
maintainability of the code.

2. ccc-gistemp provides code comments for most function definitions making it easy to
understand the GISTEMP algorithms and code flow.

3. The results produced by ccc-gistemp are almost identical to that that produced by the
GISS code.

4. A script to compare the results of two executions is provided (tool/compare_results.py)
to aid comparison of results obtained after code modification, without the need for any
manual comparison.

5. The use of high level programming language like Python makes future code
developments simpler and quicker.

6. The CCC GISTEMP discussion (http://groups.google.com/group/ccc-gistemp-discuss)
group make it easier for developers to clarify doubts and share ideas.

http://code.google.com/p/ccc-gistemp/wiki/CodingStandard
http://groups.google.com/group/ccc-gistemp-discuss

13

Chapter 4

Cloud Infrastructure

This chapter provides a brief overview of Cloud computing and the use of Cloud based
resources (infrastructure) to support data-intensive computing. The advantages of utility
computing and pay-per-use model for the scientific community are discussed. Finally, the
chapter concludes by establishing a relationship between MapReduce programming model and
cloud for providing cost-effective data-intensive computing.

4.1 The Definition

Numerous definitions have been coined for the term by researchers,
developers and commercial hardware and software service providers. Vaquero, Rodero-
Merino, Caceres, & Lindner, 2009 define Clouds as a large pool of easily usable and
accessible virtual resources (such as hardware, development platforms and/or services) which
can be configured and used as and when required by a pay-per-use model. W most
important to understand here is how the concept of cloud computing and the use of cloud
infrastructure could shape scientific research, by making hardware and software resources
available to innovative ideas, without the need for large capital investment.

4.2 Utility Computing

The pay-per-use model has led to the use of computing resources as a metered service, like
electricity and natural gas, in what is called as utility computing

and only pay for what is consumed (Lin and Dyer 2009). In practical terms, the cloud user is
provided access to an instance of the operating system such as Linux, called a virtual machine.
The choice and configuration of the operating system depends upon the user and the
availability of such system with the cloud provider. Provisioning of the requested physical
resources is handled by the cloud provider by use of Virtualization technology, ensuring
security and isolation between multiple users sharing the same hardware. Virtual machines that
are no longer required are deleted, freeing up system resources that can be used by other users.

With utility computing, the cloud users with innovative ideas for a new Internet service or with
significant amount of computation do not have to invest upfront in building large data centres
or in manpower to maintain them. Operational costs, dominated by cost of electricity and
cooling can also be avoided.

14

Additionally, by subscribing to a the users gain an important advantage by the
property of elasticity (Armbrust, et al. 2009) where the demand for computing resources can be
varied depending on the requirements of the cloud based application. If there is an unpredicted
increase in computation, for example due to increase in customers for web based applications
and due to increase in problem size for scientific computation, more physical resources can be
requested from the cloud without interrupting the service. As demand falls, provisioned
resources can be released.

There are a number of cloud service providers around the globe, with Amazon Web Services
(AWS)14 being a dominant player. It offers various products and services that support the cloud
computing paradigm, which are billed on usage.

Eucalyptus15 offers an open source cloud computing platform that is gaining significant
popularity. In this work we use the eucalyptus platform supporting the cloud infrastructure
provided by University of St. Andrews, United Kingdom. (http://www.cs.st-
andrews.ac.uk/stacc).

4.3 Levels of Abstraction

Current taxonomy classifies clouds based on the type of services being offered:

Infrastructure as a Service

The cloud provider offering computing resources such as storage and processing capacity to
users by providing access to virtual machine instances through virtualization is infrastructure
as a service (IaaS) scenario.

Platform as a Service

At the next higher level, the cloud systems offering computing platforms on which the user
application can run, is platform as a service (PaaS). PaaS offerings may include facilities for
application design, application development, testing, deployment and hosting (Armbrust, et al.
2009). A well known example is the Google App Engine which provides the backend data-
store and APIs for anyone interested to build highly scalable web applications.

Software as a Service

At an even higher level, software applications that are of interest to a wide variety of users can
be hosted on the cloud system, which is software a service (SaaS). An example of this is the
Google Docs which allows online editing and sharing of documents, spreadsheets and
presentations.

14 http://aws.amazon.com/
15 http://www.eucalyptus.com/

http://www.cs.st-andrews.ac.uk/stacc
http://www.cs.st-andrews.ac.uk/stacc

15

These levels of abstraction provided by the cloud services play a significant role in the
scalability and elasticity of operations, thereby avoiding under-utilisation (idle resources) or
over utilisation (repeated failures) of computing resources. It is therefore important to study
and understand cloud infrastructure to identify appropriate levels of abstraction required for
any data-intensive computing, that may as well be dynamic.

The infrastructure provisioned by the St. Andrews cloud for this work exemplifies the

predetermined. With just a few mouse clicks, new instances with greater computational
capacity and disk space were created for increased computational needs.

4.4 Cloud Computing and MapReduce

Cloud computing and the use of cloud infrastructure is related to MapReduce and data-
intensive computing, which is one of the main areas of focus in this work. This relationship is
more obvious than what it seems, as processing large volumes of distributed data with
MapReduce require access to clusters with sufficient capacity and not everyone with large-data
problems can afford to purchase and maintain clusters (Armbrust, et al. 2009). With utility
computing, resources can be provisioned depending on the user requirements and paid for only
as much as is required to solve the problem. This close coupling between MapReduce
programming model and utility computing provide an ideal platform to developers in the
industry and academia for data-intensive computing and research.

Barroso & Hölzle, 2009 conducted a comparative study between the communication costs
associated with high-end symmetric multiprocessing (SMP) machine and low-end network-
based cluster under similar workloads. It was observed that cluster of low-end servers approach
the performance of the equivalent cluster of high-end servers and that the small gap was
insufficient to justify the price premium of high-end servers. In addition, the cost associated
with high-end SMP machine does not scale linearly with the increase in computing power (i.e.,
a machine with twice as many processors is often significantly more than twice as expensive).
The Google implementation of MapReduce runs on a large cluster of commodity machines
connected together with switched Ethernet, processing many terabytes of data on thousands of
machines (Dean and Ghemawat 2004). Such systems are scalable and elastic. It appears from
these observations that huge capital investment on high-end machines is unjustifiable in order
to obtain the required computational power and performance for data-intensive computing.
Thus many implementations of MapReduce programming model are designed around clusters
of low- (Lin and Dyer 2009).

System failures are a commonplace across large cluster and hence the computing platform must
be resilient and fault tolerant. MapReduce is designed to cope up with system failures
gracefully (detailed description in section 5.3.2). This further strengthens the point made
earlier that implementations of MapReduce programming model on cloud infrastructure
consisting of low-end commodity machines (Utility Computing) is cost-effective and efficient
for data-intensive computing.

16

Chapter 5

Programming Paradigm

This chapter introduces the MapReduce programming model as a means of providing
abstraction for distributed, data-intensive computing. The challenges associated with task
parallelisation and data distribution are discussed along with the characteristic features of
MapReduce framework that facilitate overcoming these complexities. Brief overview of the
Hadoop implementation of MapReduce and Hadoop Distributed File System (HDFS) is
provided.

mrjob API and its advantages as a simple abstraction for writing MapReduce jobs in Python are
summarized. Finally, the chapter concludes with a weather data mining example from the
environmental sciences to provide a better understanding of the MapReduce concepts.

5.1 Introduction

The challenges associated with Distributed computing16 are greatly compounded when
compared to sequential programming. In addition to algorithmic issues, language syntax and
semantics, the developer has to deal with concurrency issues such as race conditions17 and
deadlocks18 as the code executes in parallel across several machines, accessing data in
unpredictable patterns. Hence, it is imperative to provide a layer of abstraction to separate the
algorithmic details (implementation) from the parallelisation chores (execution). MapReduce
addresses the challenges of distributed computing by providing an abstraction that isolate the
developer from system-level details such as handling concurrent data access, scheduling and
load balancing.

5.2 Programming Abstraction The Basics

Within a programming system, programming abstraction may be viewed as a way of
supporting or implementing commonly occurring modes of computation, composition and/or
resource usage at a high-level (Jha, et al. 2009). In other words, abstractions hide underlying
complexity and expose only the simple and well-defined interface to users of the abstraction.
The novel idea behind this work is an attempt to verify if MapReduce provides an ideal
programming abstraction for dynamic, distributed, data-intensive (3D) computing for real-
world problems.

16 Distributed computing refers to the use of distributed systems to solve computational problems. In general, the
problem is divided into many tasks, each of which is solved by one or more computers.
17 A race condition occurs when multiple threads access a shared memory location at the same time.
18 Deadlock is a situation when two or more threads are waiting for the other to release a resource and none do so
leading to the program being stalled.

17

Before delving into the details of the project, at first, it is essential to understand the nuances of
MapReduce programming model and its characteristic features that make it suitable for data-
intensive computing.

In computer science, the divide and conquer19 approach is conventionally used to solve large
problems by breaking down the problem into two or more sub-problems. The solutions to the
sub-problems are then combined to give a solution to the original problem. This technique has
found applicability in a wide range of problems across multiple domains and is also the basis
for writing data-intensive applications (large-data problems). However, the complexities in
applying the divide and conquer technique such as task parallelisation, work distribution and
load-balancing, synchronisation and communication issues must be addressed for a particular
problem in order to obtain optimum results.

Application programming interfaces (APIs) such as OpenMP20 for shared-memory
architectures and MPI21 for distributed-memory architectures provide abstractions that facilitate
parallel programming on these architectures. In shared-memory programming, the developer
needs to explicitly take care of access to shared data structures using locks, barriers or critical
sections which has the risk of accidentally introducing synchronisation bugs and race-
conditions. With MPI, the developer is burdened with load balancing issues and minimising
communication overheads. Additionally, these frameworks are ideal for compute-intensive
applications and large-scale simulations but have minimal support for dealing with data-
intensive problems (Lin and Dyer 2009). MapReduce framework provides a simple abstraction
to the developer by automatically handling task management, concurrent data access and
communication primitives.

In addition to the above mentioned issues, data-intensive computing has yet another important
challenge of data locality bringing data and code together for computation to occur (Lin and
Dyer 2009). Data locality minimises network overheads resulting in improved performance and
better resource utilisation. The MapReduce framework takes the location information of the
input data and attempts to schedule task on the node that contains the data or at least on a node
as close as possible to the input data. This is where MapReduce finds its biggest advantage,
making it ideally suitable for data-intensive computation.

19 For more information, see: Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest, Introduction to
Algorithms (MIT Press, 2000)
20 http://www.openmp.org/
21 http://www.mcs.anl.gov/mpi/

18

5.3 Map-­Reduce Framework

Map-Reduce is a programming model introduced by Google Inc. to support distributed
computing on large datasets (Dean and Ghemawat 2004). The application is implemented as a
sequence of Map-Reduce operations, each consisting of a Map phase and a Reduce phase. In its
basic form, the user specifies a function that processes a key/value pair to generate a set
of intermediate key/value pairs, and a function that merges all intermediate values
associated with the same intermediate key (Dean and Ghemawat 2004).

At Google, the need for such a programming abstraction arose due to the large amount of
distributed data that was required to be processed in order to obtain meaningful information in
a reasonably short period of time. Examples of such data-intensive operations are processing
the web request logs to identify the most frequent search query for a given day and to generate
summaries of the number of pages crawled per host. Although these operations were
computationally straightforward, processing large amount of distributed data brought in
additional complexities pertaining to task parallelisation, data partitioning and fault tolerance.

The Map-Reduce framework enables the programmer to focus on the computation at hand
while the system automatically takes care of the messy details such as parallelisation,
distribution of computation, load balancing, task management and fault tolerance.

5.3.1 Map-­Reduce Programming Model

To use the Map-Reduce framework, programmer specifies a function and a
function. Multiple instances of these functions are run in parallel. The input data set is split into
independent chunks which are then processed by these multiple instances in a completely
parallel manner. The function processes the input key/value pair to generate another
key/value pair. The multiple instances of function running in parallel, on the data
partitioned across the cluster produce a set of intermediate key/value pairs which are passed to
the function.

The function then merges all intermediate values associated with the same
intermediate key to produce the next set of key/value pair. Output key/value pairs from each
reduce task are written back onto the distributed file-system. The intermediate key/value pairs
serve only as input to the function and are not preserved.

map (k1, v1) list(k2, v2)

reduce (k2, list (v2)) list(k3, v3)

The framework takes care of scheduling the various and tasks to run in parallel,
monitoring them and re-executing the failed task. Such programming abstraction provided by
the Map-Reduce framework allows programmers without any prior experience with parallel
and distributed computing to easily utilize the resources of a large distributed system.

19

F igure 4: Map-Reduce execution overview
 [Source: (Dean and Ghemawat 2004)]

Figure 4 shows the sequence of operations that occur when the user program calls the Map-
Reduce function. The figure and the text below are reproduced here from (Dean and Ghemawat
2004) for completeness, with a few modifications. Also, the numbered labels in Figure 4
correspond to the numbers in the list below.

1. The Map-Reduce library in the user program first splits the input files into M pieces of
typically 16 megabytes to 64 megabytes (MB) per piece which is controllable by the
user via an optional parameter. It then starts up multiple copies of the program on a
cluster of machines.

2. One of the copies of the program is the Master which assigns work to the rest of the
copies, called workers. There are M tasks and R tasks to assign. R is
either decided by the configuration specified with the user program or by the cluster
wide default configuration. The master picks idle workers and assigns each one a map
task or a reduce task.

3. A worker who is assigned a map task reads the contents of the corresponding input split
which is parsed to obtain the key/value pairs from the input data. The key/value pairs
are passed to the user-defined map function to generate the intermediate key/value
pairs which are buffered in memory.

4. The buffered pairs are periodically written to local disk and partitioned into R regions
by the partitioning function. The partitioning function is provided as default by the
framework. However, the programmers have the flexibility to override this default
function to provide custom partitioning. The locations of the buffered pairs on local
disk are passed back to the master who in turn is responsible for forwarding these
locations to the reduce workers.

20

5. When a reduce worker is notified by the master about these locations, it uses remote
procedure calls to read the buffered data from the local disks of the map workers. When
a reduce worker has read all intermediate data, it sorts it by the intermediate keys so
that all occurrences of the same key are grouped together. The sorting is needed
because typically many different keys map to the same reduce task.

6. The reduce worker iterates over the sorted intermediate data and for each unique
intermediate key encountered, it passes the key and the corresponding set of
intermediate values to the users reduce function. The output of the reduce function
is appended to a final output file, for this reduce partition.

7. When all map tasks and reduce tasks have been completed, the master wakes up the
user program. At this point, the Map-Reduce call in the user program returns back to
the user code.

5.3.2 Fault Tolerance

The Map-Reduce library provides a robust fault tolerance mechanism to handle machine
failures gracefully while processing large amounts of distributed data on hundreds or thousands
of machines. This is an essential feature as MapReduce was explicitly designed to operate on
low-end commodity machines where failures are inevitable.

In its simplest form, the master pings every worker periodically. If no response is received
from a worker in certain amount of time, the master marks the worker as failed and the task is
rescheduled for execution on other available workers (Dean and Ghemawat 2004).

On failure, the completed map tasks are re-executed as their output is stored on the local disk(s)
of the failed machine and is therefore inaccessible. However, this is not the case with reduce
tasks as they have their output stored in a global file system (Dean and Ghemawat 2004).

However, if the master task fails then the current implementation aborts the Map-Reduce
computation. This condition can be checked by the user-program and reinitialize the operation
if required.

5.3.3 Load Balancing

MapReduce employs two strategies for load balancing:

1. Dynamic load balancing is achieved when the worker nodes are assigned map and
reduce tasks by the master, as and when they finish processing the current task. Slower
nodes are assigned less work when compared to the faster ones.

2. 22 is minimized by re-executing tasks on
other available nodes. The task is marked as complete whenever either the primary or
the backup execution completes.

22 Degenerately slow workers taking unusually long time to complete one of the last few map or reduce tasks in
the computation (Dean and Ghemawat 2004).

21

5.3.4 Data locality

Data locality collocation of data and the node that performs computation, is a characteristic
feature of MapReduce that facilitates data-intensive computing. The MapReduce master
acquires information of the location of the input file from the distributed file-system and
attempts to assign processing on the machine that actually contains the data. If this results in a
failure, then the master reassigns the processing on a machine that is as close as possible to the
input data. This has the effect of moving code to the data, improving the overall network
utilisation by avoiding unnecessary data transfers.

(Butt, et al. 2009), conducted a series of experiments to evaluate the impact of data locality on
application performance. It was observed that having to retrieve data over the network from
remote racks significantly deteriorated the performance when compared to having the data on
the same compute nodes or at least on a node within the same rack of compute nodes.

Observations in (Xie, et al. 2010) indicate that data locality is a determining factor for
MapReduce performance and ignoring it can have noticeable reduction in performance,
especially in heterogeneous environment such as virtualized data centres (Cloud infrastructure).

5.4 Hadoop overview

Hadoop (Apache Hadoop framework 2008) is the Apache Software Foundation open-source
implementation of the Map-Reduce framework in Java. It provides tools for processing vast
amounts of data using the Map-Reduce framework and, additionally, implements a distributed

 called Hadoop Distributed File System or HDFS.
Hadoop can be used to process vast amounts of data in parallel on large clusters in a reliable
and fault-tolerant fashion. Today, a significant amount of software development activity
surrounds Hadoop with many distributed, data-intensive applications taking advantage of the
open-source implementation in both industry and academia.

Although the Hadoop framework is implemented in Java, it is not required that Map-Reduce
functions be written in Java. Hadoop streaming is a utility that allows programmers to create
and run Map-Reduce jobs with executables (map and/or reduce function) written in any
programming language that can read standard input and write to standard output. It uses UNIX
standard streams as an interface between Hadoop framework in Java and the user program.

5.4.1 Hadoop Distributed File System (HDFS)

The fundamental idea of having a distributed file system is to divide user data (usually of the
order of few gigabytes to a few terabytes) into blocks and replicate those blocks across the
local disks of nodes in the cluster (Lin and Dyer 2009) such that it is easier to assign Map-
Reduce job locally23. HDFS is designed based on this principle.

23 See section 5.3.3 on Data locality

22

Additionally, data-intensive computing using MapReduce is dominated by long streaming
reads and large sequential writes (batch operation involving large proportion, if not all, of the
dataset). As a result, the time to read the whole dataset is important than the latency in reading
the first record (White 2010).

F igure 5: Architecture of HDFS.

[The namenode is responsible for maintaining the file namespace and directing clients to
datanodes that actually hold blocks of user data. Source: (Lin and Dyer 2009)]

HDFS adopts master-slave architecture as shown in Figure 5. The Namenode (master)
maintains the file namespace (metadata, directory structure, location of data blocks and file
access permissions) and Datanode (slave) manages the actual data blocks (Lin and Dyer 2009).
The Namenode is the first point of contact for any application wanting to read a file in order to
obtain the physical location of the data (file metadata). In response to this request, Namenode
returns the block id and the block location (Datanode) where the file is stored. The application
then contacts the relevant Datanode to fetch the data. All data transfer occurs directly between
the application and Datanodes, thereby improving reliability and robustness of the system
(Namenode is rarely the bottleneck).

5.4.2 Hadoop Cluster

Figure 6 shows the architecture of Hadoop cluster which primarily consists of the following
components, all of which are implemented as JVM daemons24.

1. Namenode - Primarily responsible for controlling the HDFS and maintaining the
overall health of the file system. Namenode runs the namenode daemon. Additionally,
it maintains the file namespace as discussed in section 5.4.1., and hence is responsible
for serving any file access requests made by the application client.

2. Jobtracker - Master node primarily responsible for scheduling, coordinating and
monitoring the execution of MapReduce jobs25 on various tasktracker nodes. It is the
single point of contact for an application client wishing to execute a MapReduce job.

24 A daemon is program that runs in the background, rather than under the direct control of a user.
25 The MapReduce job consists of the input data, the MapReduce program (map and reduce function) and the
configuration information.

23

As a fault-tolerant mechanism it periodically pings the slave nodes to check status. In
case of a node failure, the jobtracker reschedules the failed job on another node.

F igure 6: Hadoop Cluster
[(Lin and Dyer 2009)]

3. Tasktracker - Responsible for actually running the user code. It periodically sends

updates back to the jobtracker.

4. Datanode - Runs the datanode daemon for serving HDFS data. The data blocks are
actually stored on standard single-machine file system, like Linux and HDFS is
designed to lie on top of the standard operating system stack (Lin and Dyer 2009).

5.4.3 MapReduce Job Configuration

A JobConf configuration file must be specified by the user application program in order to run
MapReduce jobs on Hadoop cluster. It provides a primary interface for a user to describe
MapReduce jobs to the Hadoop framework for execution.

JobConf is typically used for specifying:

1. The Mapper, Combiner and Reducer classes.
Eg: JobConf.setMapperClass(), JobConf.setReducerClass().

2. The number of Reducer tasks within the user program.
Eg: JobConf.setNumReduceTasks().

3. Input and output files required for the MapReduce job.
Eg: F ileInputFormat.setInputPaths(conf, inputpaths), addInputPath(conf, path) and
setInputPaths(conf, commaSeperatedPaths).

http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/mapred/FileInputFormat.html#setInputPaths%28org.apache.hadoop.mapred.JobConf,%20org.apache.hadoop.fs.Path%5B%5D%29
http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/mapred/FileInputFormat.html#addInputPath%28org.apache.hadoop.mapred.JobConf,%20org.apache.hadoop.fs.Path%29
http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/mapred/FileInputFormat.html#setInputPaths%28org.apache.hadoop.mapred.JobConf,%20java.lang.String%29

24

5.5 Python programming language and mrjob API

 26 is a Python package that aids in the development and execution of Hadoop
streaming jobs on Amazon Elastic MapReduce (EMR) or Hadoop cluster. Version 0.2.627 was
used in the development of this project. Some of the features of mrjob that were particularly
useful in this project are:

1. Run jobs on EMR, Hadoop cluster and locally (for testing).
2. Write multi-step jobs (one map-reduce step feeds into the next).
3. Custom switches can be added to the map-reduce jobs, including file options.
4. Setup of map-reduce job handled transparently by mrjob.conf config file28.
5.
6. Easy installation and mrjob configuration.

mrjob provides a simple abstraction for writing MapReduce jobs in Python by defining steps
for specifying and functions, input and output file format (protocol) and
paths. Additionally, it provides APIs for setting necessary parameters in the Hadoop
MapReduce JobConf configuration file.

5.5.1 Dumbo and mrjob

Dumbo29 is another open-source MapReduce python module which provides similar
programming abstraction like mrjob to develop and execute Hadoop streaming jobs. mrjob,
however being newer provides some additional functionality that makes it an ideal choice for
this project.

At the onset of this work, it was not very obvious which cloud infrastructure would be used to
test the map-reduce implementation of the original ccc-gistemp code. Various cloud
infrastructures and cloud computing platforms were evaluated, including the Eucalyptus
platform supporting the cloud infrastructure provided by the National Grid Service on
campuses at the University of Edinburgh, University of Oxford and the Imperial College at
London, cloud services offered by the University of St. Andrews30 and the Amazon Elastic
MapReduce31 on Amazon Elastic Compute Cloud (Amazon EC2). Reading blogs32 from
developers and users of dumbo and mrjob, it was concluded that map-reduce jobs developed
using mrjob integrates easily with Amazon Elastic MapReduce with little or no manual
intervention. mrjob also provided an easy interface to launch jobs locally and on Hadoop
cluster setup on any cloud infrastructure. As the choice of cloud infrastructure was not very
clear at the beginning of this work, mrjob proved to be a better pick of the two.

26 http://pypi.python.org/pypi/mrjob/0.2.6
27 http://packages.python.org/mrjob/index.html
28 More information about mrjob configuration can be found at: http://packages.python.org/mrjob/configs-
conf.html#module-mrjob.conf
29 http://klbostee.github.com/dumbo/
30 http://www.cs.st-andrews.ac.uk/stacc
31 http://aws.amazon.com/elasticmapreduce/
32 Example of one of the blogs at https://github.com/Yelp/mrjob/issues/11

25

In addition, ccc-gistemp code has complex data-structures which are to be passed between the
map and reduce functions. mrjob provides JSON and other communication protocols like
P 33 which enables easy serialisation and de-serialisation of data when passed between

map and reduce functions. Although dumbo provides similar implementation of these
protocols, mrjob documentation and examples strengthened its choice.

Testing individual steps of code (map and reduce functions) is made possible with custom
switches that can be specified as command line arguments. These switches enable easy testing
of individual map and reduce functions without having to run the complete MapReduce job.

Further investigation and comparison of dumbo and mrjob to provide the necessary abstraction
was not performed in greater detail. However, many experiments with the code and
functionalities provided by mrjob were investigated further and in detail.

5.5.2 JSON and Pickle communication protocols

mrjob uses communication protocols to allow arbitrary values as input and output rather than
just strings. JSON34 (JavaScript Object Notation) format being simple and lightweight, is the
most commonly used protocol to exchange information. JSON is also the default
communication protocol within the mrjob framework. It is primarily used to transfer simple
objects such as lists, structures and nested dictionaries. However, it does not support complex
data objects such as class instances and function definitions.

When using the JSON protocol, the key/value pairs are encoded as two JSONs separated by a
tab within the mrjob.

To facilitate transfer of complex data structures, python provides a powerful interface called
Pickle35 module. It is primarily used for serialising and de-serialising python object structure.
Pickling results in data objects being converted into byte stream so that they can be transferred
easily through a data pipe such as a network. Un-pickling results in the reverse operation where
a byte stream is converted back into a data object. An extended version of the Pickle module is
cPickle which is much faster and efficient than its predecessor. This improved performance is
attributed to its language of development which is C, hence cPickle.

mrjob implements the cPickle module to provide the communication protocol. The key/value
pairs are represented as two string-escaped pickles separated by a tab.

In this project we extensively use the cPickle protocol for transferring data objects to, and
receiving data objects from Hadoop streaming job. The use of heavier pickle protocol is
necessitated by the fact that primary data object in the original ccc-gistemp code are instances

7.1) and this object is transferred from the map
task to reduce task for most computations.

33 Refer to section 5.5.2 for more information
34 http://www.json.org/
35 http://docs.python.org/library/pickle.html

26

In addition to the above mentioned protocols, mrjob API provides support for two other
protocols ca in
between the simple JSON to a more complex Pickle module.

The use of these protocols can be verified by checking the intermediate and final output files
generated by mrjob, while processing the Hadoop MapReduce tasks. The input to and output
from map-reduce tasks (including multi-stage reducers) can be checked for correctness by
verifying these files.

The output from the reducer tasks is written in a common output directory specified by the
F ileOutput Format in the Hadoop job configuration. This can also be specified from the mrjob
as a command line argument using the switch --output-dir. The output files are typically named

- , where xxxx is the partition id associated with the reduce task. If the execution of
the job succeeds then these part files are automatically cleaned by the mrjob. These files, if
required, can be retained for testing purposes by specifying --cleanup NONE before running
the job.

The NullOutputFormat generates no output (consume all outputs and put them in /dev/null).
This can be specified from the mrjob using the switch --no-output.

5.6 An Example of Map/Reduce Programming Model

In this section, an example from the environmental sciences is considered to provide a better
understanding of all the topics discussed so far. The program is written in Python and interacts
with the Hadoop MapReduce using Hadoop streaming. The code is tested on the St. Andrews
cloud infrastructure where Hadoop is run on single node in a pseudo-distributed mode36. In this
mode each Hadoop daemon runs as a separate Java process on a single node.

Hadoop streaming is a utility that allows programmers to create and run Map-Reduce jobs with
executables (map and/or reduce function) written in any programming language. This
flexibility has led to a widespread adoption of the Hadoop MapReduce for development as well
as porting of exiting data-intensive applications.

Figure 7 shows the interaction between MapReduce programs written using Python
programming language and Hadoop streaming. Standard input and output streams are used in
the communication between the Python process running the user program and streaming task.
The input key-value pairs are read from standard input (stdin) or from the user-specified file
stored in HDFS. The python process runs the input key-value pairs through the user specified
map or reduce function and passes the output key-value pairs back to the Java process. The
actual number of map and/or reduce task run depends on the target machine (available number
of cores and the amount of memory).

36 Detailed explanation is provided in section 6.1.1

27

F igure 7: Block diagram showing the interaction between Python MapReduce user program,
mrjob API & Hadoop streaming.

[Hadoop streaming reproduced from (White 2010)]

When a function is specified as a map/reduce, each mapper/reducer task will execute it as a
separate process. The mapper task converts the input stream into lines and feeds these lines to
the stdin of the process. The map function collects these lines from the stdout of the process
and converts each line into key/value pair. By default, the prefix of a line up to the first tab
character is the key and the rest of the line is the value (Apache Hadoop framework 2008).

The output of the mapper is given as input to the reducer task which converts the input
key/value pairs into lines and feeds these lines to the stdin of the process. The reduce function
then collects these lines from the stdout of the process and converts each line into a key/value
pair, which is the output of the reducer. Although the map-reduce functions are executed by the
Python process, for the tasktracker it is as if the map-reduce code was run by the tasktracker
child process itself.

28

5.6.1 Weather data mining

To better understand MapReduce and the underlying data flow,
example. Weather sensors around the globe record changes in temperature on an hourly basis
generating large volumes of data, which is a good candidate for analysis with MapReduce. This

ple given in (White 2010), but here the code is re-
written to use the mrjob API. This example and the associated program in Python serve as a
mechanism to test the environment and Hadoop configuration prior to executing the actual
mapreduce-cccgistemp code on every machine. Only a small subset of the large volumes of
data available on the National Climate Data Center37 (NCDC) is used in this example.

The weather data mining example shown below returns the highest recorded monthly
temperature from the recorded daily temperatures for the year 2008.

F igure 8: Subset of the sample NCDC data for the year 2008

Figure 8 shows a subset of the sample input data from NCDC. The data consists of various

F igure 9: Data flow within the MapReduce programming model

Figure 9 illustrates the data flow within the Map-Reduce programming model for the weather
data mining example. The output indicates that the maximum temperature in January was
55.9°C, February 37.4°C and December 46.4°C.

37 ftp://ftp.ncdc.noaa.gov/pub/data/gsod/

ftp://ftp.ncdc.noaa.gov/pub/data/gsod/

29

The MapReduce framework divides the input file into fixed-sized chunks called and
creates one map task for each split consisting of multiple lines, as shown in Figure 10. The map
task then executes the user-defined map function for each line in the split. The input line is
converted into key/value pairs consisting of line offset as the key and the line itself as the value.
The map function extracts month and the corresponding temperature as a key/value pair and
emits it as its output.

The number of reduce tasks can be explicitly specified in the job configuration. When there are
multiple reducers, the map tasks partition their outputs creating one partition for each reduce
task. It must be noted that the lines with the same key are all in the same partition. This is
achieved by sorting and grouping the output of the map function, by the MapReduce
framework, prior to being fed as input to the reducer.

As a result of this operation, all readings corresponding to a particular month appear in the
same list with month as the key. The reduce function then iterates through this list to yield the
maximum temperature for a month, which is the final output.

F igure 10: MapReduce framework with multiple reduce tasks.
[Dotted boxes indicates nodes, light arrows show data transfers within a node and the heavy

arrows show data-transfers between nodes (White 2010)].

map (String key, String value)

{

 //<key>: line offset within the input file

 //<value>: line itself from the input file

}

30

reduce (String key, I terator values)

{

 //<key>: month

 //<values>: Iterator over list of temperatures

 Emit(key, Max([list of temperatures])

}

are provided in Appendix-
A. API provides a simple abstraction by specifying the parameters required in
JobConf38 and for handling the input and output file types .

38 See section 5.4.3

31

Chapter 6

Development Infrastructure

This chapter provides a brief overview of the St. Andrews cloud infrastructure and the
University of Edinburgh EDIM1 machine that is used extensively for the development and
testing of mapreduce-cccgistemp. Further, project hosting and its advantages are summarised.
Finally, the implications of agile development techniques in this project are discussed.

6.1 Execution and Testing Environment

The code was run and tested on two available machines viz. St. Andrews cloud infrastructure
(StACC) and the University of Edinburgh EDIM1 machine. Hadoop was installed on single
node in pseudo-distributed mode on the StACC, where most of the testing was done when
development phase was in progress. Much of the unit-test cases (section 7.5) were executed for
correctness on this machine.

After the development phase, the code was tested and benchmarked on the University of
Edinburgh EDIM1 machine, which has the Cloudera distribution of Hadoop cluster setup
(CDH3)39.

6.1.1 St. Andrews Cloud Infrastructure

F igure 11: St. Andrews Cloud infrastructure

[Source: http://www.cs.st-andrews.ac.uk/stacc]

39 https://ccp.cloudera.com/display/CDHDOC/CDH3+Documentation

32

The St. Andrews cloud infrastructure (Figure 11) was setup as a part of the St. Andrews cloud
computing (StACC) research collaboration, with primary focus on becoming an international
centre of excellence in research and teaching cloud computing. The procedure to setup and use
the cloud services are provided in Appendix-D of this report.

6.1.2 University of Edinburgh EDIM1 machine

EDIM140, is cluster of commodity machines jointly funded by the Edinburgh Parallel
Computing Center (EPCC) and the School of Informatics, primarily intended for Data-
intensive research. The cluster is build from relatively inexpensive hardware with a dual core
Intel ATOM processor on each node, which is comparatively slower to the current day high
end processors. However, this machine has several fast disks connected directly to each of the
120 available nodes (distributed equally across three racks), ideally suited for data-intensive
computing and research owing to its low latency and high I/O bandwidth. Various data-
intensive research groups in the fields of Astronomy, Biology and Geosciences at the school of
Informatics will benefit from this machine.

The Hadoop cluster setup on EDIM1 machine is based on the Cloudera distribution (CDH3) of
Hadoop41. Steps to install Hadoop can be found at:

https://www.wiki.ed.ac.uk/display/daresearch/hadoop

Table 1 provides details of the hardware and its configuration on the EDIM1 machine. This can
be used as a reference when comparing performance of mapreduce-cccgistemp on other
machines and cloud infrastructures.

Category Configuration
Number of Nodes 120 (3 racks of 40 nodes each)
Processors/Node Dual-­‐Core Intel 1.6 GHz ATOM42 processor
Disk Storage/Node 1 x 256 MB Solid State Drive (SSD)
 3 x 2TB HDD
Network 10 Gigabit Ethernet

OS
Rocks (Clustered Linux Distribution based on CENTOS)43
Linux Kernel Version 2.6.37

JVM 1.6.0_16

Hadoop
0.20.2
Cloudera Distribution version 3 (CDH3)

Table 1: Hardware configuration of EDIM1 machine

Performance evaluations have been done on this machine configured as a sixteen node cluster
(one master node, one job tracker and fourteen slave nodes).

The results of benchmarking mapreduce-cccgistemp are provided in section 8.2 of this report.

40 http://www.epcc.ed.ac.uk/projects/research/dataintensive
41 http://www.cloudera.com/hadoop/
42 http://en.wikipedia.org/wiki/Intel_Atom
43 http://www.rocksclusters.org/rocks-documentation/4.2/

https://www.wiki.ed.ac.uk/display/daresearch/hadoop

33

6.2 Project Hosting

The Google Project hosting services are used to host this open source project, as it is free and
provides important features such as version control system and wiki. Hosting the project
enables easy access to anyone who is interested in developing this project further.

Additionally, as the original ccc-gistemp code uses Google hosting service, it was thought to be
advantageous to provide a similar interface for both the original and the ported code to aid
comparison and future development.

The revision control system enables easy maintenance of the project source files and project
releases. Mercurial44 version control tool provided by Google Code is used for this purpose. All
the project specific source files and project releases are maintained under this version control
tool accessible through the project page at:

http://code.google.com/p/mapreduce-cccgistemp/

This also serves as a means of backing up project files and documents.

Project specific background information is added to the wiki pages to provide a good
understanding of the basics to anyone interested in this project.

6.3 Integrated Development Environment

Eclipse45 IDE was used in the code development phase of this project. Although Eclipse is well
known for Java development, it provides support for other language IDEs. PyDev46 is a well
know IDE for Python development and hence used alongside Eclipse in developing code.
PyDev was found to be simple to install and use.

6.4 Agile development techniques and its implications

Agile is a software development methodology47 with emphasis on iterative, test-driven
development. The principles from the Agile Manifesto48 that were particularly useful in this
project are listed below for completeness and clarity of explanation.

 Welcome changing requirements, even late in development
 Working software is delivered frequently (weeks rather than months)
 Sustainable development, able to maintain a constant pace
 Continuous attention to technical excellence and good design

44 http://mercurial.selenic.com/
45 Eclipse is an open source community, whose projects are focused on building an extensible development
platform for building, deploying and managing software across the entire software lifecycle.
(http://www.eclipse.org/)
46 http://pydev.org/
47 A software development methodology can be viewed as a framework to structure, plan and control the process
of software development (http://en.wikipedia.org/wiki/Software_development_methodologies).
48 http://www.agilemanifesto.org/principles.html

http://code.google.com/p/mapreduce-cccgistemp/

34

 Simplicity
 Regular adaptation to changing circumstances

Much of the other principles are related to team-development and are not very important in the
current academic scenario.

One of the prime reasons for using agile techniques in this project is because of the flexibility
offered by this model to adapt quickly to the changing realities. Major concerns during the
design and development phases of the project were design deviation, as the chosen application
was quite hard to be ported directly to MapReduce, and of not having a stable cloud
infrastructure to test the ported code. The use of agile techniques enabled quick switching of
tasks, and thus better time management to avoid missing deadlines from the original work plan
(Appendix-C). As an example, when waiting on information from the open-source community
for design related queries and from systems administrators for infrastructure related queries,
dissertation write- n was completed. Similarly,
after the design and development phase there was a considerable amount of waiting time for
the Edinburgh EDIM1 machine to be setup for benchmarking. During this period, the
dissertation write-up for the development phase was completed.

As the primary area of focus in this work was to evaluate the applicability of MapReduce for a
scientific application code with many stages, use of agile techniques enabled incremental
development and testing. Porting of code to MapReduce was done in small increments,
followed by testing of these incremental steps before making progress. Thus, by not waiting for
the entire development phase to complete before beginning test, risks associated with the
chosen application not being suitable for dynamic, distributed, data-intensive computing (Rank
2), application domain being unsuitable (Rank 3) and the programming abstraction framework
being inappropriate (Rank 4) was considerably mitigated49.

The test-driven approach improves quality of the software, providing greater confidence in the
software development at each stage. By successfully completing the first iteration (MapReduce
implementation of step1), sufficient confidence was gained that the chosen application was
indeed suitable to be evaluated with the MapReduce framework, covering many aspects of this
model including the advantages and its limitations. Additionally, the use of agile techniques
enabled thorough analysis of the chosen application (incremental development followed by
testing), resulting in sufficient time towards the end for benchmarking.

The agile methods give priority to face-to-face communication over written documents. It must
be emphasised that weekly/bi-weekly meetings with the project supervisor to review progress
and re-evaluate priorities ensured steady progress, considerably mitigating the overall risk
associated with the aggressive and ambitious project plan (Rank 1).

49 Refer to the original risk plan included in Appendix-B

35

Chapter 7

Porting the ccc-­gistemp

This chapter provides in-depth analyses of each of the steps in the original ccc-gistemp code
while identifying patterns that are suitable to be ported to the MapReduce programming model.
With the help of code flow diagram, a detailed summary of mapreduce-cccgistemp
MapReduce implementation of the original ccc-gistemp is provided. Further, issues
encountered while porting are discussed with possible solution for their resolution. Finally, the
chapter concludes with a validation study by comparing results from the original and ported
code. Additionally, tests which have been performed to ensure correctness of the ported code
are described.

7.1 mapreduce-­cccgistemp MapReduce implementation of cccgistemp

The original code was profiled on the Edinburgh EDIM1 machine to benchmark its execution
pattern and runtime.

F igure 12: Profiling of the original ccc-gistemp code (seconds)

It can be observed from Figure 12 that ccc-gistemp exhibits a sharp profile dominated by step3.
Since this step is CPU bound, efforts must be focussed on parallelising this step in order to
obtain significant improvement in the overall performance. Good improvement in performance
can be obtained by parallelising step1 as well. All the ccc-gistemp steps require intermediate
storage and retrieval of files and hence should benefit from the fast disks connected to the
nodes, owing to its low latency and high I/O bandwidth.

643.5

1089.3

687.73948.1

8.8 155.1

Step0 Step1 Step2 Step3 Step4 Step5

36

The output and log files generated by each of these steps are copied to facilitate comparison
with the results obtained during subsequent executions, while porting. After the initial
profiling, the original ccc-gistemp code was analysed to understand its behaviour and execution
pattern.

Figure 13, implemented as part of this work, shows analysis of each of the steps from the
original ccc-gistemp code. The code was analysed to understand its execution pattern, while
applying the previous study of MapReduce programming model to identify areas in the code
that could be suitable for porting. The comments in the code (section 3.2-Merits of
ccc-gistemp) aided in faster analysis. Various approaches to porting the code are discussed
while identifying the pros and cons with of these techniques.

F igure 13: Flow diagram of the original ccc-gistemp code

37

ccc-gistemp steps 1-5 are triggered from run.py which also co-ordinates the sequence of
execution. Each of these steps takes a data object as its input and produces a data object as its
output. Ordinarily the data objects are iterators, either produced from the previous step or an
iterator that feeds from an input file. he monthly temperature series
for every year starting from the base year (set to 1880 by default, but can be changed to any
value), uniquely identified by a 12-digit id is created for every station data. Multiple series can
exist for a single station and hence a 12-digit id is chosen to uniquely identify the records,
comprising of 11-digit station id and 1 digit series identifier.
in step1 and step2 map/reduce functions. Step3 however has a different key/value combination.

Figure 14 the primary data object
used in all the aforementioned steps for computation.

F igure 14: An instance of "Series" - The primary data structure containing Station id, Year and
the monthly temperature series for all years

1. Step0

Step0 reads the input data sources into a dictionary which primarily consists of station
data, land and sea surface temperatures from GHCN and USHCN, Antarctic temperature
readings from SCAR and the Hohenpeissenberg data. In the first part of this step, the
Hohenpeissenberg data in the GHCN is replaced with the correct values from the actual
Hohenpeissenberg data.

In the second part of step0, the USHCN records are adjusted for difference in monthly
means between it and the corresponding record in GHCN. Once adjusted, the
corresponding record in GHCN is removed. Finally, the adjusted records in USHCN,
remaining records in GHCN and the original SCAR records are joined together and sorted
to generate the final output of step0.

Analysis for MapReduce Programming Model

The first part of step0 is a mere data replacement with
performed to obtain any meaningful information. Thinking on lines of parallelisation, this
step seems ideal for parallel processing with the GHCN records split among the available
nodes (or reducers) and each node having access to the complete Hohenpeissenberg data to
ease the compare-replace operation.

38

However, it must be understood that every operation (data-intensive or compute-intensive)
that can be parallelised may not fit well into the MapReduce programming model. mrjob
takes as input a single file, which is converted into key/value pairs before any processing.

mrjob
are the GHCN records. The records in the input are converted as key/value pairs and
yielded to the reduce stage which operates on its own local copy of the input data. Each
instance of the reduce function should also have a copy of the Hohenpeissenberg data to
facilitate compare and replace operation. The resulting data-set is yielded by each instance
of the reducer, to the next stage reducer which performs the second part of step0.

The second part of step0 operates on USHCN records using GHCN records as reference
but in our approach the records yielded from first part of step0 are that of GHCN and not
USHCN. This change in the input stream will need rewriting of the logic from that of the
original code. However, in this case, rewriting does not solve the entire problem. In
addition to adjusting the USHCN records, this step also involves removing the
corresponding adjusted record from another data source i.e., GHCN.

A global synchronisation across all reducer nodes will be required to combine copies of
either GHCN or USHCN records (depending on the logic). Global synchronisation with
compare-merge operation could be very expensive and does not fit into the MapReduce
programming model. A workaround for this problem would be to load the contents of
GHCN file into an external key/value store and have each reduce task concurrently access
GHCN records from the store. Records that are adjusted can be removed from the store.
Detailed explanation of the available key/value stores and its usage are mentioned in the
step2 analysis. It must be noted that this is just a workaround and has serious performance
issues. Every USHCN record processed by the reduce task will need access to the
key/value store and this is done concurrently by all reduce tasks, severely degrading the
performance of MapReduce job.

Additionally, it is important to note that MapReduce programming model is designed to
perform operations on input data stream mapped as key/value pairs. Having to
simultaneously operate on two independent input sources does not fit well into this
programming model. In addition, joining of independent data sources (USHCN, GHCN
and SCAR) cannot be performed within the mrjob framework. mrjob API does not offer
support for operations outside the MapReduce programming paradigm. Workarounds and
code hacks significantly deteriorate performance and hence does not form part of a good
design. Bearing these design nuances in mind, step0 was not ported to MapReduce
framework.

39

2. Step1

The output from step0 serves as the input to step1. In this step records from the same
station (11 digit station id) are combined in a two stage process. In the first stage records
are combined by offsetting based on the average difference over their common period,
then averaged. In the second stage, the records are further combined by comparing the
annual temperature anomalies of years in which they do overlap, and finding the ones for
which the temperatures are on average closer together than the standard deviation of the
combined records50. Finally, under the control of configuration files, a few station records

 and a few station records
are dropped from further analysis.

The records are initially grouped together by their 11-digit station id. The steps required to
combine records are then applied to these groups. Algorithms designed to process data in
groups make an ideal candidate to be ported to the MapReduce framework.

Analysis for MapReduce Programming Model

As the existing algorithms are written to process stations records in groups, these can be
ported to MapReduce framework directly without much code changes. The input records
are mapped as key/value pairs with being being the

temperature anomaly for each year. An intermediate reduce stage is used to
key/value pairs. This intermediate reduce stage

yields the 11- naturally resulting in data-grouping as
required by the combining steps described above. The algorithms for combining records
are then ported directly to the second stage reduce function.

An important point to note here is the ease of porting achieved when the algorithms are
designed to use MapReduce programming model effectively. Algorithms designed to
operate on groups of data rather than individual elements find ease of porting to
MapReduce. These data-sets can easily be mapped into key/value pairs with values
associated with the same key easily processed by algorithms in the reduce function. (Recall
that the MapReduce framework assigns all values associated with the same key to a single
reduce task). In some situations the existing logic may not be directly portable to
MapReduce but with small changes in the data access pattern, data-intensive algorithms
can be ported to use map-reduce. An example of such scenario is discussed in Step3.

Another important point that is worth mentioning here is the fact that complex logic
underlying the algorithm need not be fully understood and comprehended to be able to port
to MapReduce. All that is required to understand is the data-access pattern within the
algorithm to be able to effectively tweak and re-use the same algorithm within the
MapReduce framework. This fact was effectively used in porting step1 to MapReduce.
The final output from step1 is a

50 Based on the code comments by Nick Barnes and David Jones from the original ccc-gistemp code.

40

3. Step2

Output from step1 is the input to step2. An initial cleanup of the input station records is
done prior to performing urban adjustments. The cleanup step is data-intensive while urban
adjustment is mostly compute-intensive.

The input station records are cleaned by dropping records that do not have at least one
month in a year with minimum number of data values. After the initial cleanup the
remaining station records are classified and grouped as urban and rural , with annotated
objects generated for each of the records. Urban adjustment is applied to each of the urban
stations to compensate for urban temperature effects51, while rural stations remain
unchanged. The urban stations that cannot be adjusted are discarded.

To perform urban adjustment, an urban station must have sufficient rural stations in its
vicinity and that their combined record must have sufficient overlap with the urban station.
The algorithm that performs the urban adjustment is as follows52:

For each urban station:
Find all rural stations in the vicinity, within a given radius.

Are there enough rural
stations in the vicinity?

Combine the annual anomaly series for those
rural stations, in order of valid-data count

Calculate a two-part linear fit for the difference
between the urban annual anomalies and the

combined rural annual anomaly

Is the fit
satisfactory?

Does the combined rural
record have enough overlap

with the urban record?

Apply a linear fit

Apply the two-part
linear fit

Yes

Yes

Stop

Is this the first
attempt?

Increase
radius

Yes

No

Discard urban
station

No

Yes

No

No

51 Discussed in section 2.3.2
52 Based on code comments by Nick Barnes and David Jones from the original ccc-gistemp code.

41

Analysis for MapReduce Programming Model

The data-cleanup step is ideally suited for the MapReduce programming paradigm where
the input station records are grouped by their 12 digit station id and processed
independently by the available reducers. However, the step following the cleanup
operation would require all records processed by the individual reduce tasks to be
combined, so as to rural urban of records. If there is no
global synchronisation at this point then every reduce task will have their own copy of

This
causes issues when performing the urban adjustment.

From the above flowchart it is evident that each urban station will need access to complete
rural station records in order to identify rural stations in its vicinity. This dependency
between the records contained in each of the reduce tasks is not ideal for the MapReduce
framework. Recollect that MapReduce is a programming model designed for processing
large volumes of distributed data in parallel, by dividing the computational work into sets
of independent tasks (Dean and Ghemawat 2004).

Additionally, the use of single reduce task to achieve synchronisation can have severe
impacts on performance and scalability. Step2 being both data and compute intensive,
having a global synchronisation (sequential execution in the MapReduce programming
model) is a serious design flaw and must be avoided. This was also agreed by developers
actively participating in the mrjob user community, when a query regarding this approach
was posted53. One other option is to split the set of tasks performed in step2 into two
separate stages. The two stage approach is followed in this project.

The first stage takes the input file and generates key/value pairs, with the 12-digit station
id as the key and value The initial
cleanup operation is also performed in this stage. The output of the first stage is a stream

As the records are annotated after the initial cleanup, they are ideally suited to be
performed by the map task. The second stage map tasks generate the
classification of records for the input key/value pairs. These records, generated
independently across all map tasks, are stored temporarily on some external key/value
store. The use of external store is necessitated by the fact that MapReduce model does not
provide any natural interface to store shared variables that are required for such an
implementation. Additionally, it is essential to use a key/value

lgorithm for adjusting urban stations.

53 http://groups.google.com/group/mrjob/browse_thread/thread/f3b6bc74f07fd2

42

Key/value stores like HBase54, PostgreSQL55, Voldemort56 and Redis57 were evaluated for
use in this project.

MapReduce implementations being distributed and highly scalable, the key/value store that
is used in conjunction with MapReduce framework must also be distributed in nature.
Also, are sufficient to implement the required
logic. Additionally, in the original ccc-gistemp code, all the annotated objects of stations

eems ideal to have a key/value

Voldemort is an open-source distributed key/value store, but at the time of this work it did
not have a stable off-the-shelf python client that could be used with ease in this project.
PostgreSQL has an open-source python interface called PyGreSQL58, but the use of
PostgreSQL in this project seemed an overkill of resources as there is no need for a heavy
object-relational database management system (ORDBMS). Similar conclusions were
drawn for the use of HBase as well. An alternate would be to use the Amazon Web
Services (AWS) which has boto59 interface for Elastic MapReduce (EMR) and Simple
Storage Services (S3). The boto interface is currently used by mrjob to set S3 keys and
hence extending its services would not be a great challenge. Since we had already decided
to benchmark on the EDIM1 machine, switching back to AWS was not a plausible option.
A comprehensive study on the available SQL and NoSQL data stores can be obtained from
(Cattell 2011).

Redis is an advanced open-source key/value store that allows
data-structures such as strings, hashes, lists, sets and sorted sets. Also, Redis has a python
client60 that could be used with ease in this project. User-friendly documentation and it s
simple to use interface strengthened its choice for this project.

Changes to the data access pattern in the existing ccc-gistemp code were done to
accommodate the use of key/value store. The original ccc-gistemp
object of urban stations as the key and its annotated object as the value to represent urban
stations internally in a dictionary. This however seemed completely inappropriate to be
used with the key/value store. Pickling and un-
key is very expensive and inefficient in terms of memory

consumption. This was changed to have the 12-digit station id of urban stations as the

classified single list on the key/value store.

54 http://hbase.apache.org/
55 http://www.postgresql.org/
56 http://project-voldemort.com/
57 http://redis.io/
58 http://www.pygresql.org/
59 http://code.google.com/p/boto/
60 http://pypi.python.org/pypi/redis/2.4.9

http://hbase.apache.org/

43

The output from the map tasks are grouped by the first 2 digits of the 12-digit station id.
The use of first 2 digits results in nearly equally distributed work for each of the reduce
tasks in the second stage. The reduce tasks performs urban adjustments on the input station
records

The key/value store is used with minimal changes to the existing code, commensurate with
the ease of programming attribute of the MapReduce programming model. The use of
distributed
put to use. This is achieved by the Redis master-slave replication, a feature that allows
Redis slave servers to be exact copies of master servers. On the EDIM1 machine this can
be achieved by configuring the Hadoop Namenode to also be the Redis master and slave
nodes as the Redis slaves. Details of Redis replication and its configuration can be found at
http://redis.io/topics/replication. Replication avoids the need for reduce tasks executing on

connect to the Redis slave server running on each of the nodes to obtain the data,
considerably reducing the bottlenecks arising from connecting to the master every time.
This also results in efficient utilisation of the network resources.

Key/value stores can thus be used to share data across available reduce tasks without the
need for global synchronisation with a single reduce task. However, in situations where the
algorithm forces global aggregation (Zhu, et al. 2009), global synchronisation is inevitable
with the current implementation of MapReduce.

The University of Edinburgh EDIM1 machine was available for use only at the end of the
benchmarking phase (original work plan in Appendix-C) and hence due to time constraint,
the scalability tests of master-slave replication have been left as a future enhancement to
the project. However, the two stage approach and the use of key/value store have been
tested locally on single node and Hadoop cluster, without replication.

Th

4. Step3

Output from step2 is the input to step3. In step3, the input station records are converted
into gridded anomaly data-sets represented as a box obtained by dividing the global
surface (sphere) into 80 boxes of equal area as shown in the figure below. These boxes are
described by a 4-tuple of its boundaries (fractional degrees of latitude for northern and
southern boundaries and longitude for western and eastern boundaries), as shown in Figure
15.

http://redis.io/topics/replication

44

F igure 15: Global surface divided into 80 regions of equal area.
[The box is described by its co-ordinates given as fractional degrees of latitude (for
northern and southern boundaries) and longitude (for western and eastern boundaries). The
year within the box describes the time when continuous coverage began for that region.
The number on the right corner is the box identification number. Source: (Hansen and
Lebedeff 1987)]

Each of these 80 boxes is further sub-divided into 100 subboxes described by the same 4-
tuple latitude/longitude representation. The input station records are iterated and assigned
to the box in which they belong. Within the box, the station records are further iterated to
assign them to the subbox to which they belong. The station records that belong to a grid
cell are called contributors. The number of contributing records varies significantly from
one region to the other. A subbox series (simila
monthly temperature anomaly is created for all records and returned.

However, it must be noted that the subbox series are represented as a 4-tuple of its
boundaries when compared to the station records which were uniquely identified by their
12-digit station id.

Analysis for MapReduce Programming Model

The first thought would be to map the input station records as key/value pairs to be used
for processing in step3, as done previously in steps 1 and 2. However, this mapping has
severe drawbacks.

45

The original code is written to parse the input station records and assign then to the correct
box and then subbox. If the input records are split across available reducers, each of them
would process their own subset of the original records and assign them to grids created
within each reducer. At the end of this step every reducer will have its own copy of the
gridded anomaly data-set. There are 2 issues with this approach. Firstly, each of the

 created with only the partial data available within each reduce
function and secondly,
objects for the same station as the objects are already fully constructed within each
reducer. Writing methods to mutate the read- a serious design
flaw.

The second approach would be to split the regions (boxes) across available reducers and
have each reduce function independently read the input station records and assign records
that belong to its region (box). The second approach is followed in this project. However,
it is evident that this approach can be viewed more as a parallelisation strategy for
compute-intensive step rather than data-intensive computing using MapReduce.

-tuples (latitude/longitude representation) and the
within that region. Each

of available reducers will compute the contributors for the region that was assigned to
them, identified by the 4-tuples representation and yield the gridded anomaly dataset.

An important point to note here is the fact that in order to port step3 to MapReduce, the
underlying algorithm that parses each of the station records and assign them to the
corresponding box and then subboxes, need not be fully comprehended. This further
strengthens the ease of porting characteristic feature of the MapReduce programming
model.

Although it was first observed that step3 is not ideal for porting to MapReduce, by slight
modification of the data-access pattern, it was made possible to port step3. The
conventional approach would have been to specify the output of step2 as an input to the
MapReduce job which would then convert into key/value pairs. By modifying this pattern,
no input was specified to the MapReduce job. Instead, the regions were directly read from
within the map function and converted into key/value pairs consisting of one of the 4-

 All regions associated with a
processed by the same reducer yielding the gridded anomaly data-sets.

Additionally, it can be observed from Figure 15 that grouping by longitude will result in
has just 8 unique numbers. As we

already know that MapReduce assigns all values associated with the same key to a
single reduce task, using latitude as the key will result in a maximum of 8 reduce tasks,
severely impacting the scalability of the implementation.

46

The results of
benchmarking with both the combinations of keys are presented in section 8.2 of this
report.

The final output from step3 is a land based gridded anomaly dataset of 8000 boxes.

5. Step4

Step4 converts the recent sea-surface temperature records into the sea-surface temperature
anomaly boxed dataset. The initial steps are I/O intensive and the overall execution takes
~1.3 seconds on the St. Andrews machine (primarily used for development and initial
testing).

Analysis for MapReduce Programming Model

The Hadoop implementation of MapReduce incurs considerable start-up costs which is
usually amortised when processing large amounts of data (key/value pairs) in parallel
across available nodes. However, if the data-set is small, these initial start-up costs
dominate even when executed on large number of nodes.

As this step is neither data-intensive nor compute-intensive, it is not ported to MapReduce.

Output from step4 is an ocean based gridded anomaly dataset of 8000 boxes.

6. Step5

Output files from step3 (land data) and 4 (ocean data) zipped together forms the input to
this step. These input files contain Subbox metadata as the header, followed by the gridded
anomaly dataset for the 8000 subboxes. The tasks performed by step5 can
be enlisted as follows:

1. Assign weights to the input tuple, consisting of land and ocean records. The weight
is set to 1 when referring to land records and 0 when referring to ocean records. This
process is also called masking as we are attempting to mask land based records.

2. The masked data along with land and ocean records are output to an external file
/work/step5mask.

3. Simultaneously combine land and ocean series in each of the subboxes and combine
subboxes into boxes. As a result the 8000 subboxes are combined into 80 boxes.

4. Output the box data to result/BX.Ts.ho2.GHCN.CL.PA.1200.
5. Combine the box data to produce average over 14 latitudinal zones including

northern hemisphere, southern hemisphere and global.

47

Analysis for MapReduce Programming Model

From the list above, steps 2 and 4 are I/O operations. By altering the sequence of
operations slightly, steps 1, 3 and 5 can be grouped together to be analysed for the
MapReduce framework. I/O steps 2 and 5 can be performed at the end but care must be
taken to ensure storage of intermediate results.

Splitting the input land and ocean records across the available reduce tasks has drawbacks
as already mentioned in Step3 analysis for the MapReduce programming model. Instead,
the regions (boxes) could be split across available reducers with each reduce function
independently read the land and ocean records and assign records that belong to its region
(box). Additionally, with this approach each reducer will have the Subbox metadata that is
required for processing all gridded anomaly dataset.

It must be noted that the input dataset will always be a tuple of land and ocean records
consisting of 8000 lines each irrespective of the number of stations considered initially in
step0 input. Hence, step5 output is not scalable in terms of the input dataset. The only gain
in performance obtained is by parallelising the operations across available reduce tasks.
This parallelisation can however be achieved in a manner similar to that of step3.

In the final step, the 14 latitudinal zones are obtained from 8 basic bands and 6 combined
zones made from basic bands. The 80 boxes are decomposed into 8 bands with the number
of boxes in each band explicitly specified in a list. This decomposition of boxes into bands
with each band having variable number of boxes makes it hard to split the box data as
key/value pairs to be used within the MapReduce framework.

The only gain in performance obtained is by parallelising a single step and that can be
done in a manner to similar to step3. Since the goal of this project is not parallelising and
optimising ccc-gistemp, and that the primary area of focus is to analyse various data
patterns for its applicability to the MapReduce programming model, step5 was not ported.

F igure 16 shows the flow diagram of the ported mapreduce-cccgistemp code with the individual map
and reduce functions for each of the steps that were ported to the MapReduce framework.

48

F igure 16: Flow diagram of the ported mapreduce-cccgistemp code

Overcoming challenges while porting code to the MapReduce framework require good
understanding of the data access patterns and its usage within the algorithms. It is not however
very essential to comprehend the entire algorithm to be able to port efficiently. In situations
where the existing algorithm cannot be ported to MapReduce, due to dependency between
tasks, it is advisable to rewrite the algorithm bearing MapReduce framework in mind for
maximizing performance
the MapReduce framework.

7.2 Issues and bottlenecks with porting

1. Most algorithms in ccc-gistemp require the monthly temperature series sorted in the
increasing order of year for a particular station id. This however, is not guaranteed
within the MapReduce framework. The values associated with a particular key can
appear in any order within the reduce task for processing. In many data-intensive tasks,
this is acceptable, where the sequence of operation is not very important.

49

In this project the values (monthly temperature series for every year starting from the
base year, set as default to 1880) for a particular key (12 digit station id) was sorted in
the increasing order of the available years before being processed by the algorithms in
the reduce task.

 The maximum number of records
that would be sorted for a given station id is 131 [current year 1880], increasing by 1
every year. This is not a significant overhead on the reduce tasks.

2. As mention in Step5, the input to this step is a tuple of land records from step3 and

ocean records from step4. It is important that a tuple is created with the same station id
for both land and ocean records. However, the output from step3 can be in any arbitrary
order depending on the records yielded by the reduce tasks. When these records are
zipped together with ocean records from step4 using iterttools.izip,

the same, leading to assertion error in step5.

To overcome this problem, the records from step3 and 4 are independently sorted by
their unique id (uid). Each of these steps will sort a total of 8000 records (80 boxes each
having 100 subboxes). The overheads incurred by sorting is however not dependent on
the initial number of

re stations,
generating temperature data. These input station records are converted into gridded
anomaly datasets represented by 80 boxes (dividing the sphere into 80 boxes of equal
area) in step3. If the input is increased to 75% of the overall global stations, the
representation in step3 will still be 80 boxes. Hence the overheads incurred by sorting
remains constant and become insignificant when compared to overall gain in
performance obtained by running the MapReduce job in parallel across all available
nodes. This observation can also be verified from the step3 benchmarking results
presented in Appendix-E of this report.

Sorting the data however will result in a format that is not acceptable by some functions
in compare_results.py (script used to compare results of two executions). At this point
of time, comparison of box data is ignored and updating the compare_script.py has
been left as a future enhancement to the project.

From these issues it is evident that order of output from map and reduce tasks must not be
assumed if this is important from the algorithmic perspective. Additionally, some issues may
not be obvious when run locally on a single node machine. It is therefore important to test for
all possible input combination and scenarios on multiple maps and reduce tasks to ascertain the
port to MapReduce programming model.

50

7.3 Designing MapReduce Jobs

Based on the experiences from porting ccc-gistemp to MapReduce framework, the following
summary can be drawn to facilitate developing and executing MapReduce jobs:

1. Examine the data input format and the underlying data structures within the code.
Understand the code flow and data objects required by various algorithms, i.e. the data
access patterns within the algorithm. Verify if the data can be grouped and mapped as
key/value pairs.

2. Sample the original dataset to obtain data subsets for all testing purposes. Ensure that
the data sampled is a good representation of the actual data to perform both black box
and white box testing (systematic sampling in section 8.1).

3. Write map-reduce functions.

4. Identify dependency between data contained in each of the map/reduce tasks and verify
if synchronisation is absolutely required to overcome this dependency. The two
approaches discussed in this work (use of single reduce task for global aggregation and
key/value store for sharing data between tasks) can be used to overcome dependency.

5. Configure MapReduce jobs to run in Hadoop environment (Hadoop Pseudo-distributed
or Hadoop cluster setup).

6. Run job in Hadoop pseudo-distributed mode (locally) and compare output with that of
the original code. Also, verify intermediate results (map and/or reduce outputs) to
confirm that it is consistent with the expected output.

7. After ensuring that the ported code is performing as expected when run on single and
multiple reduce tasks, run MapReduce job on Hadoop cluster.

8. Verify scalability (increase in the number of nodes and/or data).

Improvements in performance can be obtained by re-writing certain compute-intensive
algorithms bearing MapReduce programming model in mind. This however is time consuming.

51

7.4 Building and executing the Project

Hadoop v0.20.2 was used in this project. The source code is available for download from the
project website61. The installation and configuration details are provided in Appendix-D of this
report.

When executing in Hadoop, all source files required for execution must be archived with path
specified in the mrjob configuration file62. An example mrjob configuration (~/.mrjob) is as
follows:

{"runners": {
 "hadoop": {
 "python_archives": [
 "/home/s1053340/Project/ccc-gistemp/mapreduce-cccgistemp.tar.gz",
 "/home/s1053340/UtilitySoftwares/redis-2.4.9/redis.tar.gz"
]
 }
 }
}

It is advisable to delete .pyc files from the source tree before archiving files, to avoid the
unwanted side effects resulting from new changes being not picked up when executing Hadoop
streaming jobs. A build script (./build_archive.sh) is created to automate this process which in
turn is called by default in run.sh. The script run.sh is used to launch all jobs in the mapreduce-
cccgistemp project.

This script accepts job configuration parameters such as execution environment (local or
Hadoop), number of mapper tasks, number of reducer tasks and the job cleanup options as
command line arguments.

7.5 Verification

In this section the various unit tests that were performed to ensure correctness of the ported
mapreduce-cccgistemp code are described. Similar test cases are executed for all the steps that
were ported, in addition to verifying the final result and output google-chart.

To aid comparison of intermediate results, the output from steps 1, 2 and 3 in both the original
ccc-gistemp and the ported mapreduce-cccgistemp are sorted by their unique 12-digit station id.
This is required as there is no guarantee of ordering of the results obtained from MapReduce in
any particular fashion. Sorting by a common key will result in data being ordered with
increasing values of station id.

61 http://code.google.com/p/mapreduce-cccgistemp/downloads/list
62 More information of mrjob configuration can be found at: http://packages.python.org/mrjob/configs-
conf.html#module-mrjob.conf

52

A simple diff on both the output files (original ccc-gistemp and ported mapreduce-cccgistemp)
will now compare and return lines if they are different. It was observed that the output of diff
from comparing step1 intermediate files showed no difference in the output.

However, the output of diff from step2 intermediate files showed slight discrepancy in the
values for some station ids, particularly for years lesser than 1910. A brief discussion of this
error is provided in Appendix-G of the report. However, the presence of this minor discrepancy
does not significantly alter the behaviour of the model and our benchmarking results and
discussions.

Whilst mere inspection of intermediate files using diff is sufficient to check the stability of the
ported code, a quantitative approach is required to ensure that the overall ported code has not in
some way broken the original GISS model. Script provided in the ccc-gistemp code (section
3.2) can be used for this purpose.

A bug identified while using the compare script (compare_results.py) was fixed and also
reported to the ccc-gistemp community to be incorporated in future releases.

Figure 17 shows the graph of global annual temperature anomaly by comparing the original
ccc-gistemp implementation with the ported mapreduce-cccgistemp. Although the trends
appear to be identical, minor difference in the plots can be observed in years ranging from 1880
to 1910 due to presence of discrepancy in step2 output.

F igure 17: Graph comparing the global temperature anomaly of original ccc-gistemp code and
ported mapreduce-cccgistemp

[mapreduce- -

53

This difference is more obvious in Figure 18, where the plot show a difference of 0.01 for the
same years where the plotted lines in Figure 17 are not identical.

F igure 18: Plot indicating a difference of 0.01 for some years in the output of mapreduce-
cccgistemp.

54

Chapter 8

Performance Evaluation

Performance and scalability analyses of the steps ported to MapReduce are discussed in this
chapter. A brief overview of the sampling technique used to obtain data subsets for this
analysis is also presented. Finally, the results obtained from porting and benchmarking exercise
are summarized.

8.1 Data Sampling

Although a random sampling technique could be employed to randomly select lines from the
input file, this technique is avoided as monthly temperatures for years that do not have an entry
in the input file is assumed 'Missing'. This adversely alters the computation of global
temperature change for a particular station. Hence we select all data available for a particular
station and instead sample the input file based on the station id. Such use of systematic
sampling63 can easily be achieved as the input file to the MapReduce job is already sorted in
Step0. Sorting of the input file in step0 is based on a compound key of station id and year,
resulting in all available stations grouped together in ascending order of the compound key.
Hence it is easy to pick all available data for a particular station. However, the choice of station
id is done in random.

sample this input file to obtain 25% of the total data which results in approximately 146543
lines. The simplest is when the first 146543 lines are picked up as a subset of the data, but care
must be taken to ensure that all available years for a particular station id are chosen, even if it
exceeds or results in lesser number of lines than 146543. The best choice is when the number
of lines is as close to 146543 with all the information for a station id sampled.

In this project the first 25%, 50% and 75% of the total number of lines are yanked and copied
to new file using vi commands to create the sample data sets, while ensuring that the yanked
lines contain all information for the station id . This check is done manually prior to executing
the vi copy/paste commands. When sampling the first 50% of the lines, it was observed that the
above mentioned criteria would be violated and hence the first 49.996% of the lines were
yanked instead of 50% which is a fair approximation of the required data set. Similarly,
75.004% was chosen instead of the first 75%.

63 Systematic sampling relies on arranging the target population according to some ordering scheme and then
selecting elements at regular intervals through that ordered list.

55

It must be noted that the accuracy of final output obtained is proportional to the percentage of
input data considered, when using sample datasets. As an example, the obtained global
temperature anomaly maybe deviated from the desired output and the extent of deviation is
proportional to the number of stations considered. Higher the number of stations, greater is the
accuracy of the final output. However, experimenting with sampled datasets is an important
aspect of the scalability test to assess performance of code and the underlying infrastructure, if
in case new stations are added in the future.

8.2 Benchmarking

The timing results obtained is an average over two consecutive executions. It was decided that
two executions were sufficient to determine the consistency of results as the variation obtained
during each consecutive execution was small (less than +/- 1% always). However, anomalous
results were executed again to verify its credibility. The sixteen nodes on the EDIM1 machine
were dedicated exclusively for this benchmarking and no other user-specific tasks were run
when the MapReduce job was in progress.

The timing results of step1, 2 and 3 executions are presented in Appendix-E of this report. The
results were obtained by executing these steps on 2, 4, 8, 16, 20 and 24 cores respectively by
varying the size of the input dataset.

Speedup was calculated using the formula: Speedup =

Efficiency was calculated using the formula: Efficiency =

1. Step1

Table 3, Table 4, Table 5 and Table 6 presents timing result of step1 with respect to 100%,
75%, 50% and 25% of the dataset respectively. Figure 19 and Figure 20 present benchmarks
of step1 to see how the ported MapReduce implementation scales with the increase in the
number of processing units, processing cores of a node to be specific (Recall from section
6.1.2, that each processing node contains a dual-core processor).

It is evident from the tables that the overall execution time decreases with the increase in the
number of processing units. The tables also show that the time required to perform IO
operations (IO time) remains nearly constant for a given dataset, indicating that the
influence of IO on increasing processing units is minimum. MapReduce job time, which is a
significant component of the overall execution time, is inversely proportional to the number
of processing units clearly indicating that the MapReduce implementation is efficient and
scalable across processing units with data size being the only limiting factor.

The speedups were calculated by measuring the time it takes to process the datasets on a
single core with one Map-Reduce task. It can be observed from Figure 20 that speedup
increases with the increase in number of cores.

56

F igure 19: Plot of overall execution time to the number of cores for input dataset 100%,
75%, 50% and 25% respectively.

[Timing results presented in Appendix-E, Table 3, 4, 5 and 6 respectively]

F igure 20: Plot of Speedup to the number of cores for input dataset 100%, 75%, 50% and
25% respectively.

[Timing results presented in Appendix-E, Table 3, 4, 5 and 6 respectively]

Additionally, it is evident from Figure 20 that for smaller datasets the speedup remains
nearly constant beyond a certain number of processing cores. At this point the overheads
associated with MapReduce implementation either negates or becomes nearly equivalent to
the gain that MapReduce framework can provide with parallelisation.

To overcome this limit on the speedup that parallelisation can provide the data size was
increased.

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30

O
ve
ra
ll
Ex
ec
ut
io
n
Ti
m
e
(s
ec
on

ds
)

Number of Cores

Dataset = 25% Dataset = 50% Dataset = 75% Dataset = 100%

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

0 5 10 15 20 25 30

Sp
ee
du

p

Number of Cores

Dataset = 25% Dataset = 50% Dataset = 75% Dataset = 100%

57

The Hadoop implementation of MapReduce incurs considerable start-up costs which is
usually amortised when processing large amounts of data (key/value pairs) in parallel across
available nodes. However, if the data-set is small, these initial start-up costs dominate even
when executed on large number of nodes. The overheads are usually associated with
reading/writing files to/from HDFS for the MapReduce job, sorting and shuffling the
intermediate Map/Reduce output and transformation of the output as required by subsequent
Map/Reduce stages.

Due to time constraints, quantitative analysis of overheads associated with every stage of the
MapReduce job is left as a future work to this project.

Figure 21 and Figure 22 present benchmark of step1 to see how the ported MapReduce
implementation scales with the increase in the data size. The speedup increases with the
increase in the data size, clearly indicating that this implementation is scalable.

F igure 21: Plot of overall execution time to the % of dataset for processing units 4, 8, 16
and 28 cores.

[Timing results presented in Appendix-E, Table 3, 4, 5 and 6 respectively]

F igure 22: Plot of speedup to the % of dataset for processing units 4, 8, 16 and 28 cores.
[Timing results presented in Appendix-E, Table 3, 4, 5 and 6 respectively]

0

100

200

300

400

500

600

700

800

900

25% 50% 75% 100%

O
ve
ra
ll
Ex
ec
ut
io
n
TI
m
e
(s
ec
on

ds
)

% of Data Set

Cores = 4 Cores = 8 Cores = 16 Cores = 28

0

0.5

1

1.5

2

2.5

3

3.5

25% 50% 75% 100%

Sp
ee
du

p

% of Data Set

Cores = 4 Cores = 8 Cores = 16 Cores = 28

58

However, it can be observed that the improvement in speedup obtained is limited by the size
of the original dataset (Recall that MapReduce is a programming model for processing very
large datasets). Replicating every data point in the current implementation will definitely
create a larger dataset but not necessarily a meaningful one that fits well with the GISS
model. Hence, the scalability test is limited to the maximum available input data (number of
meteorological stations currently contributing to station data) for the current GISS model.

2. Step2

Table 7, Table 8 and Table 9 present timing results of step2 with respect to the original ported
code at 100% dataset, optimised code at 100% dataset and optimised code at 50% dataset
respectively. 50% dataset is considered for scalability analysis.

While benchmarking step2 it was observed that the overall run time of MapReduce task was
dominated by a single reduce task as shown in Figure 23 (task 4 in this example). By
reviewing the input dataset it was identified that grouping values (station records) associated
the first two characters of the key (12-digit station id) created severe imbalance in the
number of records processed by each reduce task (Recall that MapReduce assigns all values
associated with the same key to a single reduce task). Further investigations revealed that
the number of records associated with the station id (USA), particularly

####### , were very large compared to other station ids causing this imbalance.

F igure 23: Distribution of reduce task runtimes on eight cores

The original ported code was then modified to account for this unequal distribution of
values associated with the key
implementation of MapReduce scheduler does not account for number of values associated

, which causes severe imbalance in applications with
data skew. The assumptions of MapReduce scheduler is ideal for workloads that are evenly
distributed. Current implementation of the MapReduce scheduler and its limitations are
highlighted in step3 analysis, where its effects are more prominent.

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8

Ex
ec
ut
io
n
Ti
m
e
(s
ec
on

ds
)

Reduce Tasks

Original Code Modified Code

59

Figure 24 and Figure 25 present benchmarks of step2 to see how the ported MapReduce
implementation (original and optimised code) scales with the increase in the number of
processing cores.

F igure 24: Plot of overall execution time to the number of cores for the original and
optimised code with dataset=100% and optimised code with dataset=50%
 [Timing results presented in Appendix-E, Table 7, 8 and 9 respectively]

F igure 25: Plot of speedup to the number of cores for original and optimised code with
dataset=100% and optimised code with dataset=50%.

[Timing results presented in Appendix-E, Table 7, 8 and 9 respectively]

It can be seen that the scalability of step2 is rather poor when compared to step1 with the
increasing number of processing units. A number of reasons can be attributed to this poor
scaling behaviour:

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

0 5 10 15 20 25 30

O
ve
ra
ll
Ex
ec
ut
io
n
Ti
m
e
(s
ec
on

ds
)

Number of cores

Original Code (Dataset=100%) Optimized Code (Dataset=100%) Optimized Code (Dataset=50%)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 5 10 15 20 25 30

Sp
ee
du

p

Number of Cores

Original Code (Dataset = 100%) Optimized Code (Dataset = 100%) Optimized Code (Dataset = 50%)

60

1. The number of unique keys in step2 is limited, and hence scaling beyond the maximum
number of reduce tasks that can be created causes significant decline in performance
due to the presence of idle processing units. The start up costs associated with the
MapReduce programming model can only be amortised when all the processing nodes
are busy performing nearly the same amount of work all the time.

2. Uneven distribution of workload due to uneven distribution of values associated with a
key .

3. Redis key/value store is not used with Master-Slave replication.
4. The input dataset is not large enough to overcome the above mentioned overheads.

However, it can be observed from Figure 25 that speedup improves with the increase in
dataset (50% to 100%), indicating that this implementation is scalable with increase in data
sizes.

In addition to step-wise evaluation, we attempt to evaluate the gain in performance obtained
by avoiding the intermediate storage and retrieval of step1 output by combining MapReduce
steps 1 and 2. The aim of this study is to merely identify the impacts of I/O overheads at an
intermediate stage of MapReduce job, although this attempt is a deviation from the original
ccc-gistemp architecture. Figure 26 presents the results of this experiment.

It can be observed that a significant gain in performance can be obtained by avoiding the
intermediate storage and retrieval. An important point to note from this study is the fact the
I/O operations are performance inhibitors to a scalable system like MapReduce and must be
minimised as much as possible.

F igure 26: Performance improvement obtained by combining steps 1 and 2
[Timing results presented in Appendix-E, Table 10]

Figure 27 shows the gain in speedup obtained by combining steps 1 and 2. Additionally, it
can be observed that speedup increases with the increase in processing units clearly
indicating that this implementation is efficient and scalable, with data size being the only
limiting factor. Additionally, when the processing units are increased beyond 20, the
improvement in speed diminishes due to the poor scaling attributes listed previously.

0.0

500.0

1000.0

1500.0

2000.0

2500.0

2 4 8 16 20 24 28

O
ve
ra
ll
Ex
ec
ut
io
n
Ti
m
e
(s
ec
on

ds
)

Number of cores

Original Step1+Step2 Combined Step1 and Step2

61

F igure 27: Plot of speedup to the number of cores with 100% dataset for combined
MapReduce steps 1 and 2.

[Timing results presented in Appendix-E, Table 10]

3. Step3

Table 11, Table 12, Table 13 and Table 14 present timing results of step3 for keys western
and eastern longitude at 100% and 50% datasets respectively.

Figure 28 and Figure 29 present benchmarks of step3 to see how the ported MapReduce
implementation scales with the increase in the number of processing cores.

It is evident from the plots that the overall execution time decreases with the increase in the
number of cores. MapReduce Job time, which is the dominant factor of the overall
execution time, is inversely proportional to the number of processing units clearly indicating
that this MapReduce implementation is efficient and scalable across processing units.

F igure 28: Plot of overall execution time to the number of cores for keys W. Longitude and
E. Longitude at 100% and 50% dataset respectively.

[Timing results presented in Appendix-E, Table 10, 11, 12 and 13 respectively]

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

0 5 10 15 20 25 30

Sp
ee
du

p

Number of Cores

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5 10 15 20 25 30

O
ve
ra
ll
Ex
ec
ut
io
n
Ti
m
e
(s
ec
on

ds
)

Number of cores

Dataset=100%, Key=W.Longitude Dataset=100%, Key=E.Longitude
Dataset=50%, Key=W.Longitude Dataset=50%, Key=E.Longitude

62

The speedup increases with the increase in processing units for up to 20 cores and then
diminishes for reasons enlisted in the summary of step3 analysis. The plots also indicate that
MapReduce implementation of step3 is scalable with the input data size.

F igure 29: Plot of speedup to the number of cores for keys W. Longitude and E. Longitude
at 100% and 50% dataset respectively.

[Timing results presented in Appendix-E, Table 10, 11, 12 and 13 respectively]

It can be observed from the plots
although not very significant but closely related to one of the assumptions made by the
Hadoop scheduler64 within the MapReduce paradigm. As already mentioned, any of the two
coordinates (fractional degrees of longitude for eastern or western boundaries) could be used

by the reduce task, which in turn alters the amount of computation performed by each of the
reduce tasks (Recollect from step3 analysis that the number of contributing stations vary
significantly from one region to the other).

The dynamic load balancing strategy of MapReduce distributes tasks (map or reduce) to
nodes as and when they finish processing the task at hand (Section 5.3.3). This strategy

with no idle time. However, the scheduler assumes that the amount of work done by each
reduce task is roughly the same (Zaharia, et al. 2008). This assumption sometimes causes
unequal work load distribution which is particularly prominent in this example as the
amount of computation required within a region depends on the number of contributing
stations within that region. Currently, there is no way for the scheduler to obtain this piece
of information while scheduling reduce tasks. Hence, the last set of tasks may finish at
unequal times depending on the workload, causing an overall reduction is performance due

64 A process that handles the scheduling mechanism in Hadoop for distributing work across the cluster.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 5 10 15 20 25 30

Sp
ee
du

p

Number of Cores

Dataset=100%, Key=W.Longitude Dataset=100%, Key=E.Longitude
Dataset=50%, Key=E.Longitude Dataset=50%, Key=W.Longitude

63

Figure 30 indicates the runtime distribution of reduce tasks in step3, dominated by a single
reduce task (task 14 in this example). The plot also indicates unequal workload distribution
across all available reduce tasks.

F igure 30: Runtime distribution of reduce tasks in step3 of mapreduce-cccgistemp

At this juncture, a question could be asked as to why the second load balancing strategy
mentioned in section 5.3.3
issue. To answer this question it is important to understand how speculative execution works
in Hadoop.

The execution for a reduce task is divided into three phases (Zaharia, et al. 2008), as shown
in Figure 31:

1. The copy phase, where the outputs from the map task is fetched.
2. The sort
3. The reduce phase where the reduce function is applied to the list of key/value pairs.

The reduce task progress is monitored using a progress score between 0 and 1 where each of
the above mentioned phases contribute to 1/3 of the score. In each phase, the score is a
fraction of the data processed and the total score is the sum of the scores for each of the
defined phases. For example, a task quarter way through the reduce phase has a total score
of 1/3 + 1/3 + (1/4 x 1/3) = 3/4. Based on the average progress of each reduce task, a
threshold for speculative execution is defined. When the task has run for at least a minute
and its progress score is less than the average minus 0.2, it is marked as a straggler (Zaharia,
et al. 2008).

0

200

400

600

800

1000

1200

1400

1600

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Ex
ec
ut
io
n
Ti
m
e

Reduce Task

Dataset = 50% Dataset = 100%

64

F igure 31: An example of reduce task execution indicating the three phases Copy, Sort and

Reduce.

It must be understood that each of the reduce task is performing a lot of computation
independently and there is no way of predicting the depth of computation for each reduce
task. From the reduce task completion graph and % complete field of jobtracker it was
noted that the task progress is high and hence not identified as a straggler. As a result of
which the speculative execution does not kick in to solve the above problem. Thus it can be
concluded that MapReduce is ideally suited for jobs that are large, but can be divided into
smaller units of nearly equal size. A single large task can slow the overall performance.

In this example, the optimum performance is determined by a combination of the choice of
within the MapReduce framework for the

job. If for example, a reducer task having all stations contributing in its region, will take
longer to complete when compared to a reduce task having fewer contributing stations, even
though the total number of regions are almost evenly distributed among the available
reducers.

Hence, summarizing the reasons for diminishing speedup observed in Figure 29:

1. The number of unique keys in step3 is limited by the longitudes dividing the sphere
(Figure 15). Thus, scaling beyond the maximum number of reduce tasks that can be
created causes significant decline in performance due to the presence of idle processing
units. The start up costs associated with the MapReduce programming model can only
be amortised when all the processing nodes are busy performing nearly the same
amount of work all the time.

2. Uneven distribution of workload due to processing of uneven number of contributing
stations by each reduce task.

3. Current implementation of Hadoop load balancing strategy does not distribute workload
based on the granularity of values creating imbalance in the
task execution times.

65

Kwon, Balazinska and Howe, 2011 and Gufler, et al., 2011 study the impact of variable task
runtimes in MapReduce applications. (Gufler, et al. 2011), propose two new load balancing
approaches that can deal with variable task runtimes while (Kwon, Balazinska and Howe 2011)
suggest best practises to minimize the impacts of non-linear reduce tasks. Fine partitioning of
the reduce tasks such that there are more partitions than the number of available reducers
(currently, the number of partitions is equal to the number of reducers) can distribute chunks of
complex reduce tasks evenly among the available reducers, significantly minimizing the impact
of variable task runtimes. The application knowledge was however utilized in the selection of
keys for the MapReduce programming model but redesigning a complex compute intensive
algorithm for the MapReduce framework requires domain expertise.

Additionally, in step 2 and 3 analyses we observed the impacts of balancing load based on key
granularity. The overall execution time in step2 was however improved by using the
knowledge of application and input dataset but it may not always be possible to incorporate this
level of granularity at the coding level, for example in step3. It would have been much better to
have a holistic load balancing strategy that automatically handled load distribution based on the
granularity of values as suggested in (Gufler, et al. 2011).

Figure 32 shows the profiling of the ported mapreduce-cccgistemp, where the MapReduce
steps 1, 2 and 3 are parallelised across 16 cores. The CPU bound steps 1 and 3 have found
significant improvement in performance by distributing the compute-intensive tasks across 16
cores when compared to the original ccc-gistemp profiling chart in Figure 12. Although the I/O
intensive step 0 has not been ported to MapReduce it finds benefits executing on the EDIM1
machine owing to its low latency and high I/O bandwidth. The improvement in performance of
step2 is however not as significant as that of steps 1 and 3, for reasons already explained in the
benchmarking analysis. Thus it has become a more dominant part of the entire application
profile.

F igure 32: Profiling of the ported mapreduce-cccgistemp code on 16 cores (seconds)

646.1

603.7

586.2

1736.5

8.9 153.6

Step0 Step1 Step2 Step3 Step4 Step5

66

8.3 Analyses of Results

This section outlines the analysis that can be drawn from the porting exercise and
benchmarking results.

8.3.1 Impacts on Scalability

Scalable algorithms are highly desirable in both compute-intensive and data-intensive
applications. Lin & Dyer, 2009 define scalability along two dimensions ideally applicable for
data-intensive computing. First in terms of data: Given twice the amount of data, the same
algorithm should take at most twice as long to run. Second, in terms of computing resource:
Given a cluster twice the size, the same algorithm should take no more than half as long to run.
In addition, such scaling characteristics must remain constant across various data ranges, from
gigabytes to terabytes, and on clusters consisting of few tens of nodes to a few thousands.
However, in reality, algorithms with such linear scalability are unobtainable.

It is evident from step1 and step3 analysis that MapReduce programming model is efficient and
scalable across processing units and data sizes. Increasing the data and/or computation negates
the impact of overheads induced by MapReduce programming model, thereby improving the
overall speedup.

In Hadoop streaming jobs, the python process reads data from another running process
(typically JVM or storage system process) through certain inter-process communication
schemes such as TCP/IP and JDBC (Jiang, et al. 2010). The use of streaming I/O results in
reduced performance when compared to executing the job directly on the target process (in this
case JVM). However, for jobs written in Python programming language to use the Hadoop
MapReduce framework, this loss in performance due to I/O overheads is unavoidable.

Hadoop MapReduce uses block scheduling scheme for assigning input data to the available
nodes for processing, dynamically at runtime. This runtime scheduling strategy enables
MapReduce to offer elasticity and remain fault tolerant by dynamically adjusting resources
(adding nodes for scalability and removing failed nodes for fault tolerance) during job
execution. However, it introduces runtime overheads that may slow down the execution of
MapReduce job.

Additionally, it was observed that MapReduce implementations are ideally suited for
processing large amounts of data, an important attribute for data intensive computing. Also,
skewed data in compute intensive processing can have significant impact on the overall
performance. Improved load balancing strategies can mitigate the impacts of skew, thus
enabling MapReduce to provide an ideal programming abstraction for processing data and
compute intensive scientific applications.

67

8.3.2 Time and ease of Porting

In distributed memory architectures, parallelising sequential code with MPI would require
significant amount of time to alter the existing code structure to use the MPI library. It is also
very essential to have a thorough understanding of the existing logic to be able to efficiently
port the code.

In this work, it was observed during the porting exercise that it is not very essential to
comprehend the entire algorithm to be able to port to MapReduce. However, it is essential to
understand the data-access patterns within the algorithm to be able to modify the algorithm to
operate on key/value pairs. Additionally, it was observed that algorithms designed to operate
on groups of data find ease of porting to MapReduce. These datasets can easily be mapped as
key/value pairs with values associated with the same key processed by algorithms ported to the
reduce function.

Algorithms that induce dependency between tasks while processing find it hard to be ported to
MapReduce (Recollect that MapReduce programming model operates by dividing
computational work into sets of independent tasks). Since MapReduce framework does not
provide any direct interface to share data between dependent tasks, alternate techniques such as
synchronisation with a single reduce task and use of external key/value store for shared data
can be incorporated to overcome this limitation.

Various limitations of MapReduce were studied and overcome in a fairly small amount of time,
in addition to comprehending the existing ccc-gistemp architecture and data-access patterns
within the algorithm. It is also worth mentioning the fact that MapReduce framework enabled
the author of this work to focus on the computation at hand while the framework automatically
handled the messy details of parallelisation, distribution of computation, load balancing, task
management and fault tolerance.

Thus it can be concluded from this porting exercise that the time and effort required to port the
code when compared to the scalability obtained is quite low, when compared to other
parallelisation techniques like MPI.

68

Chapter 9

Conclusions and Scope for future work

This chapter presents the conclusions that have been drawn from porting a scientific
application code to the MapReduce programming model. Also, the risks that were identified
initially during the project preparation phase are reviewed to assess their impact on the
satisfactory completion of this work. Finally, the scope for further work is proposed by
outlining some suggestions to improve the performance of ported code and to continue
evaluation of other programming abstractions to provide a comprehensive study on this topic.

9.1 Conclusions

The following conclusions were drawn from porting a scientific application code to the
MapReduce programming model:

MapReduce provides the necessary programming abstraction for parallelising data and
compute intensive steps of a scientific application code.

A scientific application code from the environmental sciences was chosen to evaluate the
applicability of MapReduce to parallelise data and compute-intensive tasks. At the onset of this
work, there was no evidence of any prior evaluation of this application to verify its credibility
to use with the MapReduce programming framework. Attributes of the implementation strategy
such as data volume and data-access patterns in the algorithm were applied to evaluate
feasibility of parallelising data and compute intensive tasks.

The results obtained as part of this work were encouraging for a large part of the application,
which was either data and/or compute intensive. Porting of certain tasks was however made
difficult with the current implementation of Hadoop MapReduce, but alternate techniques were
employed to overcome this limitation. Additionally, the Map-Reduce framework enabled the
author of this work to focus on the computation at hand while ignoring the underlying
complexities pertaining to partitioning the input data-set across the clusters, scheduling,
handling machine-failures and communication which were automatically handled by the
framework.

We believe the choice of application in this project was instrumental, as it provided a good
insight into what code semantics and algorithm designs are best suited for MapReduce and

alternative approaches and workarounds proved
useful in overcoming some of the limitations imposed by the current implementation of
MapReduce, while some were not suitable for MapReduce at all.

69

The MapReduce programming framework is capable of handling applications with varying
indices along the three axes of being dynamic, distributed and data-intensive.

Analyses of results from scalability tests combined with the ease of porting attribute of
MapReduce proved that this model provides the necessary abstraction for handling applications
with large volumes of distributed data. It was also observed that the input data did not have to
conform to a well definite schema as necessitated by relational databases. This is also
confirmed by a study conducted by Pavlo, et al. 2009.

Application whose input dataset changes with time is said to be dynamic. We have already
seen that MapReduce implementations are scalable with the increase in data size. However, it
was observed from step2 analysis that a sudden increase in input data associated with a
particular station created severe imbalance in the amount of computation performed by each of
the available reduce tasks. This was seen as a limitation of the current Hadoop load balancing
strategy which is based on the granularity of keys. Suggestions and alternative implementation
techniques were discussed. Hence the current implementation of Hadoop MapReduce is not
ideally suited for handling dynamic variation in input data that creates imbalance in grouping
based on key/value pairs. However, if there is a sudden increase in the input such that they can
be uniformly distributed, then MapReduce implementations are indeed ideal abstractions for
dynamic, distributed, data-intensive computing.

Implementations of MapReduce programming model on infrastructures consisting of low-
end commodity machines are cost-effective and efficient for data-intensive computing.

The scalability tests were performed on EDIM1 machine, which is a cluster of commodity
machines built from inexpensive hardware. Additionally, the implementation was scalable both
in terms of data and computation.

The MapReduce programming model can cope with system failures gracefully by executing
the failed tasks on other available nodes. Thus it can be concluded that huge investments on
high-end machines are indeed unjustifiable to obtain the necessary computational power for
data-intensive computing and that MapReduce implementations perform equally well on low-
end commodity servers.

70

9.1.1 Risk Assessment

A number of risks to the successful completion of this work were identified initially during the
project preparation phase. Some of these risks whose probability of occurrence was high are
reviewed here to assess its final impact on the satisfactory completion of this work.
Additionally, the unlikely risk of not having a basic infrastructure to run and test applications
which became apparent during the course of the project is reviewed. The original risks are
included in Appendix-B of this report.

1. Aggressive and ambitious project plan

This work was started with absolutely no prior knowledge of either the programming
model (MapReduce), application domain (Environmental sciences) or the programming
language (Python) and hence posed a significant risk to the overall completion of the
project. A reasonable amount of time from the project preparation phase was allocated
to understand the MapReduce programming model, in addition to finding a suitable
application to be used with this model.

After selecting the application, time from the phase had to be
dedicated to quickly comprehend the basics of Python programming language before
actually attempting to port the code. Instabilities in the StACC cloud infrastructure
required reinstallation of the necessary software and application code many a times
before actually deciding to develop code locally and transfer it to the cloud
infrastructure only for testing. The use of Google project hosting aided in this, while
ensuring backup of the code. Additionally, the use of agile development techniques
mitigated much of the risks associated with aggressive and ambitious project plan
(section 6.4).

2. Absence of basic infrastructure to execute and test scalability of ported
MapReduce application.

The impact of this risk became apparent during the course of the project. The single
node setup on the StACC was sufficient for code development and basic testing. Much
of the scalability tests were planned on the EDIM1 machine. However, this machine
was not available until the first week of August, 2011, two weeks later than expected
(Original work plan in Appendix-C). Numerous issues with the machine setup and
availability of system administrators caused the delay. The remaining time was just
sufficient to perform all the required scalability tests and analyse their results, in
addition to concluding the dissertation with these results. Thus, much of the work such
as benchmarking the EDIM1 machine for its suitability to run MapReduce jobs, fine
tuning the infrastructure to make it suitable for the ported MapReduce application and
evaluating the impacts of various individual contributors in a MapReduce job
(input/output, sort and shuffle) had to be suspended and added as a future enhancement
to this work.

71

The impact of this risk could have been severe if the waiting time had not been utilized
fully to write and complete other sections of the dissertation. However, it was quite
hard to conclude on certain aspects of the project without the result from scalability
analysis. Additionally, some parts of the dissertation had to be rewritten based the
results obtained and optimisation performed.

3. Chosen application not suitable for Dynamic, distr ibuted, data-intensive
computing and incorrect choice of programming abstraction framework

GISTEMP, a model for estimating the global temperature change from the
environmental sciences, consisted of steps that were both data and compute intensive,
ideally suiting our requirement for evaluation with the MapReduce programming
model. The impact of this risk was mitigated after completing the first iteration (agile
implementation). Sufficient confidence was gained that the chosen application was
indeed suitable to be evaluated with the MapReduce framework, encompassing many
aspects of this model including the advantages and its limitations.

4. Incorrect software development paradigm

The use of agile software development techniques proved very useful in the satisfactory
completion of this work. Many of the above mentioned risks were mitigated by the
incremental development followed by testing approach attributed by the agile

software development methodology. Efficient time management and constant review of
progress helped mitigate the overall risk associated with the aggressive and ambitious
project plan.

5. Design deviation

Thorough evaluation before implementation prevented any negative impacts of design
deviation. Optimisations were performed based on the results from scalability analysis.

6. Poor schedule

The original work plan (Appendix-C) was followed as closely as possible but
inconsistencies in the development and testing infrastructure had significant impacts on
the time available for benchmarking and optimising the mapreduce-cccgistemp code.

72

9.2 Scope for Future work

The scope for future enhancement in presented in this section.

The main area of focus in this project has been to evaluate the applicability of data and
compute intensive tasks of ccc-gistemp to MapReduce programming model. Various
approaches and techniques to efficiently parallelise these tasks have been discussed. Although
most steps have been parallelised to use MapReduce efficiently, they are not fully optimised.

It is essential to perform quantitative analysis of the overheads associated with MapReduce
framework to ascertain with confidence that a particular implementation is scalable. Certain
overheads have significant impact on the overall performance and hence must be studied in
detail to negate their effects. Due to unavailability of EDIM1 machine in time to perform a
quantitative analysis of the overheads, this has been left as a future work to the project.

Porting of ccc-gistemp to other scalable systems intended for data-intensive computing such as
Dryad (Isard, et al. 2007), All-Pairs (Moretti, et al. 2010) and Pregel (Malewicz, et al. 2009)
will provide a comparative study of the various programming abstractions that are suitable for
dynamic, distributed and data-intensive computing. The advantages and limitations of each of
these abstractions will provide a comprehensive study on the subject which will aid in
classification of applications that are particularly suitable for a class of programming
abstraction.

Benchmarking the EDIM1 machine to ascertain the various system properties such as CPU
consistency, disk throughput, memory bandwidth, network bandwidth and latency will aid in
better comparison of the execution environment and cost-model of machines intended for cost-
effective data-intensive computing.

Further investigations into the minor discrepancy observed in step2 output can be carried out in
conjunction with other ccc-gistemp developers, to find a stable solution to this problem.

Distributed key/value stores like Voldemort, HBase, PostgreSQL and Redis were evaluated for
use in this project. However, their performance with respect to the execution environment was
not compared prior to making the selection. As previously stated, MapReduce being a highly
scalable system, the key/value store using in conjunction with MapReduce must also be
scalable. The choice of Redis in this project was thoroughly based on the simplicity of its
interface which satisfied the requirements of its usage in step2. A comparative study of all the
applicable key/value stores based on its performance on the EDIM1 machine would have
further strengthened the choice, in addition to simplicity and ease of use. Additionally, a high
throughput low-latency key/value store would improve the overall efficiency of the system.

The University of Edinburgh EDIM1 machine was available for use only at the end of the
benchmarking phase and hence due to time constraint, the scalability tests of master-slave
replication have been left as a future enhancement to the project.

73

(Ogawa, et al. 2010), implemented a key-value store based MapReduce framework to
overcome some of the limitations imposed by the current implementation of MapReduce. This
new implementation is particularly aimed at improving the performance of HPC applications
intended to use the MapReduce framework. One of the limitations that this new
implementation aims to address is associated with the sharing of data between map and reduce
tasks during execution of MapReduce jobs. Dynamic applications whose input data stream
changes in real-time can also benefit from such implementation. As a future enhancement to
this work, it is advisable to explore alternate implementations to ascertain the ideal
programming abstraction suitable for dynamic, distributed and data-intensive computing.

74

Bibliography

Apache Hadoop framework. 2008. http://hadoop.apache.org/ (accessed June 27, 2011).

Armbrust, Michael, et al. Above the Clouds: A Berkeley View of Cloud Computing. Berkeley,
U.S.A.: EECS Department, University of California, Berkeley, 2009.

Barroso, Luiz André, and Urs Hölzle. The Datacenteras a Computer: An Introduction to the
Design of Warehouse-Scale Machines. Morgan and Claypool Publishers, 2009.

IEEE International Symposium on
Modeling Analysis Simulation of Computer and Telecommunication Systems. 2009: IEEE,
2009. 1-11.

Rick Cattell Home Page. 12 June
2011. http://www.cattell.net/datastores/Datastores.pdf (accessed August 06, 2011).

OSDI'04. 2004. 137-150.

Scientific Analyses. IEEE Fourth International Conference on eScience. IEEE, 2008. 277-
284.

CLOSER 2011 - International Conference on Cloud Computing and
Services Science. 2011.

J. Geophys. Res.,104, 1999: 30,997-31,022.

J.
Geophys. Res, 48, 2010: 1-29.

J. Geophys. Res., 92, 1987: 13,345-13,372.

Hey, Tony, Stewart Tansley, and Kristin Tolle. The Fourth Paradigm: Data-Intensive
Scientific Discovery. Redmond, Washington: Microsoft Research, 2009.

composite DMSP-OLS "city- Remote Sens.
Environ.,61, 1997: 361-370.

75

Isard, Michael, Mihai Budiu,
distributed data- ACM SIGOPS Operating
Systems Review. 2007. Volume: 41, Issue: 3, Pages: 59.

Jha, Shantenu, Murray Cole, Daniel S Katz, Manish Parashar, Omer Rana, and John
- ACM

Computing Surveys, 2009.

-depth
Proceedings of the VLDB Endowment . VLDB Endowment, 2010. 472-483, Vol.: 3,

Issue:1.

Open Cirrus Summit 2011. Russia, 2011.

Proceedings of Human Language Technologies, The 2009 Annual Conference of the North
American Chapter of the Association for Computational Linguistics . Association for
Computational Linguistics, 2009. 1-2.

Mackey, Grant, Saba Sehrish, John Bent, Julio Lopez, Salman Habib, and Jun Wang.
- 3rd Petascale Data Storage Workshop.

IEEE, 2008. 1-6.

for Large- 28th ACM
Symposium on Principles of Distributed Computing (PODC 2009). Calgary, Alberta, Canada:
ACM, 2009. Volume: 9, Pages: 6-6.

Moretti, Christopher, Hoang Bui, Karen Hollingsworth, Brandon Rich, Patrick Flynn, and
Dou -Pairs: An Abstraction for Data-
IEEE Transactions on Parallel and Distributed Systems. IEEE, 2010. Volume: 21, Issue: 1,
Pages: 33-46.

Ogawa, Hirotaka, Hidemoto Nakada, Ryousei Takano, and Tomohiro Kudo
Implementation of Key- 2010 IEEE Second
International Conference on Cloud Computing Technology and Science. IEEE, 2010. 754-
761.

Wiley
Interdiscip. Rev. Clim. Change, 1, 2010: 123-133.

- ACM
SIGMOD , Volume: 12, Issue: 2. 2009. 165-178.

76

Peterson, T.C., T.R. Karl, P.F. Jamason, R. Knight, and D.R. Easterl
method: Maximizing station density for the calculation of long-term global temperature

J. Geophys. Res.,103, 1998: 25,967-25,974.

J. Clim., 15, 2002: 1609-1625.

Vaquero, Luis. M, Luis Rodero-
Clouds ACM SIGCOMM Computer Communication Review,
Vol. 39, No.1, 2009: 50-55.

White, Tom. Hadoop: The Definitive Guide, Second Edition. O'Reilly, 2010.

uce
2010 IEEE

International Symposium on Parallel Distributed Processing Workshops. IEEE, 2010. 1-9.

Zaharia, Matei, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion Stoica.
8th USENIX

Symposium on Operating Systems Design and Implementation, OSDI 2008. San Diego, 2008.
29-42.

Zhu, Shengkai, Zhiwei Xiao, Haibo Chen, Rong Chen, Weihua Zhang, and Binyu Zang.
SPLASH- APPT09. 2009. 452-464.

77

Appendix A -­ Implementation of the weather data
mining example

The mrjob MaxTemperature class, containing the map and reduce functions, is called from
max_temperature_wrapper.py. It is not always necessary to call the Map/Reduce job from
another external script, but here it is implemented intentionally in that fashion in order to test
the behaviour of code when called from an external script.

This test proved useful when porting the original cccgistemp code, where the mrjob could
only be invoked from an external script due to architectural dependence. The original code is
written as a series of five steps, each being called from an external script (tool/run.py). The
aforementioned approach was followed to remain consistent with the implementation of the
original code. Additionally, this improves readability and maintainability of the code and
does not pose any performance issues.

max_temperature.py contains the definitions of the map and reduce functions. The logic and
behaviour is as explained in 6.1.1.

max_temperature_wrapper.py

#!/usr/bin/python

import sys

#http://packages.python.org/mrjob/
from mrjob.job import MRJob

from max_temperature import MaxTemperature

def main():

 # Input from a specified location
 argsArray = ['2008_NOAA.dat']

 # Provide input arguments to MRJob (e.g. '-r hadoop')
 argsArray.extend(sys.argv[1:])

 mr_job = MaxTemperature(args=argsArray)

 with mr_job.make_runner() as runner:
 # Call MapReduce task
 runner.run()
 for line in runner.stream_output():
 # Extract key/value pairs from reducer output and print
 key, value = mr_job.parse_output_line(line)
 print key, value

if __name__ == '__main__':
 sys.exit(main())

78

max_temperature.py

#!/usr/bin/python

#Implementing Max_temperature based on NCDC data (year='2008'), using MRJob

import sys

#http://packages.python.org/mrjob/
from mrjob.job import MRJob

class MaxTemperature(MRJob):

 DEFAULT_PROTOCOL = 'json'

 # Mapper function
 def max_temperature_map(self, _, line):
 token = line.strip()
 (month, temp) = (token[18:20], token[26:30])
 if (temp != "9999.9"):
 yield month, temp

 # Reducer function
 def max_temperature_reduce(self, month, temp):
 yield month, max(temp)

 # Map/Reduce job steps
 def steps(self):
 return [
 self.mr(
 mapper=self.max_temperature_map,
 reducer=self.max_temperature_reduce
)
]

 def __init__(self, **kwargs):
 super(MaxTemperature, self).__init__(**kwargs)

if __name__ == '__main__':
 MaxTemperature.run()

79

Appendix B -­ Original Risk Assessment

Table 2: Risks identified initially during the project preparation phase.

Rank Risk L ikelihood Impact Risk mitigation

1 Aggressive and ambitious project plan Certain High
Reduce by re-planning and
planning early.

2

Chosen application not suitable for
Dynamic, Distributed, Data-intensive (3D)
computing.

Highly
Probable Moderate

Avoid by thoroughly
evaluating the chosen
application.

3 Application domain unsuitable Probable High
Reduce by evaluating other
suitable domains as options.

4
Incorrect choice of programming
abstraction framework. Probable Moderate

Avoid by choosing applications
suitable for MapReduce.

5 Incorrect software development paradigm Unlikely High

Reduce the number of
iterations if agile techniques
fail.

6 Design deviation Probable Moderate

Avoid by evaluating
thoroughly before making a
decision.

7 Poor schedule Probable Moderate
Reduce by re-adjusting time
(Agile).

8 Nothing working Unlikely Critical Reduce by planning early.

9 Data loss Unlikely Critical
Avoid by taking regular
backups of assets.

10 Unable to find open-source software Unlikely Severe

Reduce by evaluating early in
project and change application
domain to where open-source
software is available.

11
Programming model did not improve
throughput of the application on the cloud.

Highly
Probable High

Reduce by thoroughly
analysing application model
and code structure.

12
Available benchmarking unsuitable for 3D
computing Probable High

Assume. Benchmarking models
for clouds are relatively new
and experimental.

13 Backtracking if dead-ends. Probable Moderate
Reduce by planning in advance
and reviewing progress.

14
Absence of basic infrastructure on cloud
platforms to run applications Unlikely High

Avoid by allocating sufficient
time during term break to get
the infrastructure up and
running.

15 Porting application code to cloud platform
Highly

Probable High

Reduce by choosing right
application domain and well
written code.

Figure 33 shows the risk assessment diagram for the above mentioned risks.

80

 Certain

 1

 Medium 2 C ritical

Highly
Probable

 15

 11

 13 7

 Probable 6 3

 4 12

 Low

 High

 14 8

 Unlikely T rivial 5 10 9

 Negligible Moderate Severe Catastrophic

I M APC T

F igure 33: Original risk assessment diagram indicating the significance attributed to each of

the identified risks.

81

Appendix C -­ Original Work Plan

Figure 34 shows the original work plan identified during the project preparation phase.

F igure 34: Original project work plan identifying the major milestones along with sub-tasks
that are required to be completed for each Milestone

82

Appendix D -­ Hadoop in Pseudo-­distributed mode on
St. Andrews cloud infrastructure (StACC)

The following steps enlist the procedure to setup Hadoop in Pseudo-distributed mode on the
St. Andrews cloud infrastructure. It must be noted that most steps are independent of the
cloud service provider and can be executed on any machine with similar architecture.

1. Create a user account at https://cloud.cs.st-andrews.ac.uk:8443 to obtain the login
credentials.

2. Setup the Hybridfox Firefox plugin to access the StACC cloud. The procedure for the
same is provided at: http://stacc.trac.cs.st-andrews.ac.uk/wiki/HybridfoxStacc
[Note: Instance of any operating system can be selected from the Images tab. However, in
this project Ubuntu-10.10 was selected and hence the commands in the following steps are
specific to Ubuntu. If any other distribution is selected, please change the commands
accordingly.]

3. Once logged into the running instance, create a username with the following command:
useradd m s /bin/bash <username>
Change password with the command: passwd <command>

4. Add the username to the sudoers list with the command:
su

u

5. The creation of userid is not mandatory. However, it is recommended to prevent accidental
damage to system files while code and testing the application.

6. JavaTM is required for Hadoop setup. The latest version can be downloaded and installed
from: http://www.oracle.com/technetwork/java/javase/downloads/index.html

7. The detailed procedure for downloading and configuring Hadoop in pseudo-distributed
mode can be found here:
http://hadoop.apache.org/common/docs/current/single_node_setup.html
Some of the issues identified during installation can be solved by following the procedure
described in http://wiki.apache.org/hadoop/HowToSetupYourDevelopmentEnvironment

8. Most releases of Ubuntu have Python preinstalled. Check for the correct version of Python
the command prompt. If the required version (2.6+) is not found,

then download and install the latest release of python from:
http://www.python.org/getit/

https://cloud.cs.st-andrews.ac.uk:8443/
http://stacc.trac.cs.st-andrews.ac.uk/wiki/HybridfoxStacc
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://hadoop.apache.org/common/docs/current/single_node_setup.html
http://wiki.apache.org/hadoop/HowToSetupYourDevelopmentEnvironment
http://www.python.org/getit/

83

9. Latest releases of mrjob can be found at: http://pypi.python.org/pypi/mrjob/.

Download and install mrjob. Version 0.2.6 was used in this project.

10. Download and install redis by following the procedure given in http://redis.io/download
Latest releases of redis python client can be found at: http://pypi.python.org/pypi/redis/
Version 2.4.9 was used in this project.

11. After downloading the redis python client, required redis packages found in
<REDIS_HOME>/redis must be archived to be used by the Hadoop streaming job. The
path for this archive must be specified correctly in .mrjob configuration file.

12. Start Redis server by executing ./redis-server from REDIS_HOME/src directory.

13. Once all the required software packages are installed, download the latest version of
mapreduce-cccgistemp and follow the execution instructions provided in the release
notes.
http://code.google.com/p/mapreduce-cccgistemp/downloads/list

http://pypi.python.org/pypi/mrjob/
http://redis.io/download
http://pypi.python.org/pypi/redis/
http://code.google.com/p/mapreduce-cccgistemp/downloads/list

84

Appendix E Timing Results

Step1 Analysis

Local MapReduce Execution (1 Map, 1 Reduce Task): 1727.3

Number
of Cores

Stage 1 Stage 2 Total
MapReduce
Job Time

Total
IO
Time

Overall
Execution
Time Speedup Efficiency Map Reduce

MapReduce
Job Time Map Reduce

MapReduce
Job Time

2 39 157 207 67 471 531 738 394.5 1132.5 1.53 76%
4 24 90 125 58 244 312 437 409.2 846.2 2.04 51%
8 16 56 83 32 137 179 262 386.6 648.6 2.66 33%

16 18 47 76 24 89 123 199 404.7 603.7 2.86 18%
20 18 43 69 21 78 108 177 405.9 582.9 2.96 15%
24 17 41 68 19 69 98 166 403.6 569.6 3.03 13%
28 16 39 65 18 62 91 156 396.6 552.6 3.13 11%

Table 3: Timing results of step1 analysis with dataset=100%

Local MapReduce Execution (1 Map, 1 Reduce Task): 1254.9

Number
of Cores

Stage 1 Stage 2 Total
MapReduce
Job Time

Total
IO
Time

Overall
Execution
Time Speedup Efficiency Map Reduce

MapReduce
Job Time Map Reduce

MapReduce
Job Time

2 32 120 162 67 374 405 567 312.7 879.7 1.43 71%

4 20 71 102 44 185 237 339 310.6 649.6 1.93 48%
8 18 46 71 25 106 140 211 301.2 512.2 2.45 31%

16 18 43 69 24 70 92 161 306.6 467.6 2.68 17%
20 16 39 65 19 64 91 156 307.1 463.1 2.71 14%
24 16 38 64 18 58 86 150 307.1 457.1 2.75 11%
28 15 37 62 17 54 79 141 310.5 451.5 2.78 10%

Table 4: Timing results of step1 analysis with dataset=75%

Local MapReduce Execution (1 Map, 1 Reduce Task): 927.7

Number
of Cores

Stage 1 Stage 2 Total
MapReduce
Job Time

Total
IO
Time

Overall
Execution
Time Speedup Efficiency Map Reduce

MapReduce
Job Time Map Reduce

MapReduce
Job Time

2 23 93 127 64 276 349 476 220.6 696.6 1.33 67%
4 16 56 83 34 146 190 273 220.5 493.5 1.88 47%
8 14 38 60 23 86 117 177 219.6 396.6 2.34 29%

16 15 36 61 21 63 84 145 216.4 361.4 2.57 16%
20 16 36 61 16 55 79 140 221.2 361.2 2.57 13%
24 15 36 60 20 53 74 134 221.2 355.2 2.61 11%
28 15 34 59 16 47 72 131 222.2 353.2 2.63 9%

Table 5: Timing results of step1 analysis with dataset=50%

Local MapReduce Execution (1 Map, 1 Reduce Task): 492.4

Number
of Cores

Stage 1 Stage 2 Total
MapReduce
Job Time

Total
IO
Time

Overall
Execution
Time Speedup Efficiency Map Reduce

MapReduce
Job Time Map Reduce

MapReduce
Job Time

2 16 58 85 37 155 204 289 137.3 426.3 1.16 58%
4 12 40 62 23 88 118 180 137.5 317.5 1.55 39%
8 11 30 50 16 54 77 127 138.4 265.4 1.86 23%

16 14 30 56 16 43 65 121 138.5 259.5 1.90 12%
20 14 32 54 16 41 64 118 133.2 251.2 1.96 10%
24 13 32 54 16 41 61 115 139.4 254.4 1.94 8%
28 14 30 53 13 38 60 113 139.6 252.6 1.95 7%

Table 6: Timing results of step1 analysis with dataset=25%

85

Step2 Analysis

Local MapReduce Execution (1 Map, 1 Reduce Task): 1373.8

Number
of Cores

Stage 1 Stage 2 Total
MapReduce
Job Time

Overall
Execution
Time Speedup Efficiency Map Reduce

MapReduce
Job Time Map Reduce

MapReduce
Job Time

2 46 201 243 58 455 524 767 1124.0 1.22 61%
4 24 110 141 33 317 361 502 839.1 1.64 41%
8 16 65 90 21 303 333 423 779.0 1.76 22%

16 15 58 85 18 297 324 409 759.5 1.81 11%
20 15 32 76 15 220 267 343 696.8 1.97 10%
24 14 28 73 18 206 243 316 659.4 2.08 9%
28 13 26 70 13 218 263 333 681.7 2.02 7%

Table 7: Timing results of step2 analysis with Dataset=100% (Original Code)

Local MapReduce Execution (1 Map, 1 Reduce Task): 1413.3

Number
of Cores

Stage 1 Stage 2 Total
MapReduce
Job Time

Overall
Execution
Time Speedup Efficiency Map Reduce

MapReduce
Job Time Map Reduce

MapReduce
Job Time

2 31 188 230 58 380 449 679 1015 1.39 70%
4 20 112 142 34 204 142 284 723.1 1.95 49%
8 15 66 90 21 138 169 259 599.1 2.36 29%

16 18 58 84 18 138 165 249 586.2 2.41 15%
20 16 50 76 16 114 140 216 560.8 2.52 13%
24 15 48 73 15 100 125 198 549.4 2.57 11%
28 15 46 70 14 118 143 213 566.4 2.50 9%

Table 8: Timing results of step2 analysis with Dataset=100% (Optimised Code)

Local MapReduce Execution (1 Map, 1 Reduce Task): 544.4

Number
of Cores

Stage 1 Stage 2 Total
MapReduce
Job Time

Overall
Execution
Time Speedup Efficiency Map Reduce

MapReduce
Job Time Map Reduce

MapReduce
Job Time

2 19 44 132 32 144 186 318 498.9 1.09 55%
4 14 62 86 20 103 132 218 402.2 1.35 34%
8 12 41 61 15 63 85 146 325.5 1.67 21%

16 14 40 65 15 72 92 157 339.1 1.61 10%
20 14 39 63 14 65 87 150 334.9 1.63 8%
24 14 37 60 12 56 78 138 321 1.70 7%
28 14 36 59 19 61 83 142 321.7 1.69 6%

Table 9: Timing results of step2 analysis with Dataset=50% (Optimised Code)

Local MapReduce Execution (1 Map, 1 Reduce Task): 2894.3

Number
of Cores

Stage 1
MapReduce
Job Time

Stage 2
MapReduce
Job Time

Stage 3
MapReduce
Job Time

Stage 4
MapReduce
Job Time

Total
MapReduce
Job Time

Total
IO
Time

Overall
Execution
Time

Speed
up Efficiency

Original
Step1+
Step2
Execution
Time

2 204 528 226 527 1485 379.4 1864.4 1.55 78% 2147.5
4 124 310 145 284 863 361.5 1224.5 2.36 59% 1569.3
8 81 175 90 168 514 373.0 887 3.26 41% 1247.7

16 73 117 79 166 435 354.3 789.3 3.67 23% 1189.9
20 70 111 72 139 392 362.4 754.4 3.84 19% 1143.7
24 68 98 69 130 365 376.0 741 3.91 16% 1119.0
28 66 89 66 142 363 373.6 736.6 3.93 14% 1119.0

Table 10: Timing results of combined step1 and step2 execution with dataset=100%

86

Step3 Analysis

Local MapReduce Execution (1 Map, 1 Reduce Task): 5842.30
 Number

of Cores
MapReduce
Job Time

Sorting and
Writing Output

Overall
Execution Time Speedup Efficiency

2 2889 427.9 3419.4 1.71 85%
4 2149 433.1 2686.2 2.17 54%
8 1830 432.1 2367.5 2.47 31%

16 1370 433.4 1905.9 3.07 19%
24 1416 340.5 1860.2 3.14 13%
28 1340 431.0 1887.6 3.10 11%

Table 11: Timing results of step3 analysis with Dataset=100% and Key=Eastern Longitude

Local MapReduce Execution (1 Map, 1 Reduce Task): 5787.90

 Number
of Cores

MapReduce
Job Time

Sorting and
Writing Output

Overall Execution
Time Speedup Efficiency

2 3502 433.2 4039.9 1.43 72%
4 2878 431.6 3413.2 1.70 42%
8 1946 432.9 2480.7 2.33 29%

16 1196 437.7 1736.5 3.33 21%

24 1074 435.4 1613.1 3.59 15%
28 1662 433.4 2198.7 2.63 9%

Table 12: Timing results of step3 analysis with Dataset=100% and Key=Western Longitude

Local MapReduce Execution (1 Map, 1 Reduce Task): 2682.50

 Number
of Cores

MapReduce
Job Time

Sorting and
Writing Output

Overall Execution
Time Speedup Efficiency

2 1189 344.5 1636.4 1.64 82%
4 863 348.4 1312.5 2.04 51%
8 693 344.3 1140.2 2.35 29%

16 489 350.0 941.7 2.85 18%

24 546 344.5 993 2.70 11%
28 605 345.7 1052.8 2.55 9%

Table 13: Timing results of step3 analysis with Dataset=50% and Key=Eastern Longitude.

Local MapReduce Execution (1 Map, 1 Reduce Task): 2674.20
 Number

of Cores
MapReduce
Job Time

Sorting and
Writing Output

Overall Execution
Time Speedup Efficiency

2 1383 343.5 1826.7 1.46 73%
4 1037 348.2 1486.6 1.80 45%
8 730 347.2 1178.2 2.27 28%

16 525 347.6 975.5 2.74 17%
24 417 344.7 864.5 3.09 13%
28 612 342.1 1055.8 2.53 9%

Table 14: Timing results of step3 analysis with Dataset=50% and Key=Western Longitude.

87

Appendix F Code overview of the ported
mapreduce-­cccgistemp

mapreduce-cccgistemp has the following directory structure65:

/code/ Source code for the GISTEMP algorithm only
/config/ Configuration files
/doc/ Internal ccc-gistemp developer documentation
/input/ Input data files
/log/ Log files (Used only by non-MapReduce steps)
/tool/ Tools - sources other than the GISTEMP algorithm
/work/ Intermediate data files
/result/ Final result files

ccc-gistemp & mapreduce-cccgistemp uses input data in the subdirectory input/ which
includes files of temperature records from GHCN, USHCN and sea surface data, small files
of additional temperature records and station tables from GISS. The code /tool/preflight.py is
used to fetch this data over the internet.

Steps 1, 2 and 3 of the original ccc-gistemp are ported to MapReduce. Primary code changes
for the porting exercise impact the following files:

/code/step1.py
/code/step2.py
/code/step3.py
/code/read_config.py
/tool/run.py
/tool/giss_io.py

/code/Mapreduce.py was added as part of this project for verifying the impacts of I/O by
combining steps 1 and 2.

All the GISS MapReduce class definitions begin
to the ported ccc-gistemp step and contains the definitions of map and reduce functions. The
required GISS algorithms are invoked from within the map/reduce function. Step2 however
has modifications within the GISS algorithm to incorporate the use of Redis key/value store.
The records are added to the store in function annotate_records and retrieved for use in
urban_adjustments. Both the definitions are in /code/step2.py.

The function definitions that initially read input files for steps 1, 2 and 3 are now commented
out in /tool/giss_io.py as these files are now fed directly to the map function by specifying
their path while creating the mrjob class. V2MapReduceMeanReader, the modified

65 Identical to the original ccc-gistemp code structure

88

/tool/run.py, the code that initiates the execution, has significant changes to incorporate the
calling of mrjob class for the corresponding MapReduce step(s). The definitions however
follow a similar pattern. First, the input file is specified in the arguments array followed by all
the supporting GISS configuration files. Secondly, the Hadoop MapReduce job configuration
parameters are specified. Next, mrjob is invoked with the following statement:

 with mr_job.make_runner() as runner:
 runner.run()

Finally, the output of MapReduce job is retrieved and written to the specified output file.

The following command can be executed to verify the complete execution on Hadoop cluster:

 ./run.sh -r hadoop -mt <No. of map tasks> -rt <No. of reduce tasks> -bin <Python_binary>

To execute only a specified step on the Hadoop cluster:

 ./run.sh -s 1 -r hadoop -mt <No. of map tasks> -rt <No. of reduce tasks> -bin
<Python_binary>

This command executes step1, assuming that step0 has already been run and the output is
available for use by this step.

After executing all the six steps (steps 0 to 5), the resulting GISTEMP outputs are all in the
/result/ directory. A simple graphical chart66 created using the Google Chart API, showing
the global mean surface temperature anomaly is available for verification at /result/google-
chart.url

66 Chart created as part of the original ccc-gistemp code.

89

Appendix G Brief review of the rounding error
observed in Step2 verification

Excerpt from the output of diff showing variation in the temperature anomaly of last month
(December) for certain years. This discrepancy then creeps into the subsequent years up until
November. Similar trend is observed for all stations that exhibit this discrepancy.

< 6510324200101947 27 -8 21 79 120 146 164 175 143 108 61 50
< 6510324200101948 41 45 77 85 99 124 151 139 130 97 66 46
< 6510324200101949 47 53 50 100 107 139 164 161 155 111 63 53

> 6510324200101947 27 -8 21 79 120 146 164 175 143 108 61 51
> 6510324200101948 42 46 78 86 100 125 152 140 131 98 67 47
> 6510324200101949 48 54 51 101 108 140 165 162 156 112 64 53
391287,391288c391298,391299
< 6510324200101960 34 30 51 86 114 151 143 142 126 98 59 35
< 6510324200101961 29 60 82 85 99 136 140 145 141 98 54 12

> 6510324200101960 34 30 51 86 114 151 143 142 126 98 59 36
> 6510324200101961 30 61 83 86 100 137 141 146 142 99 55 12

Analogous rounding error was also observed by developers of ccc-gistemp when porting the
original GISS Gistemp code to Python and they have discussed its behaviour at the ccc-
gistemp discussion groups67.

This issue is obvious when run on multiple cores and was observed during the benchmarking
phase of the project. Investigations into this issue revealed that the error was most likely
creeping in the function annual_anomaly, which is called from annotate_record. Here the
month December of final year is neglected followed by taking the average of the monthly
means of global temperature series. The seasonal anomalies and annual anomalies are then
computed from the monthly means. An error induced in the monthly mean computation is
most likely to affect results of seasonal and annual anomalies and hence the observed
cumulative error across years.

As this issue was observed during the benchmarking phase when EDIM1machine was finally
available for testing, very less time was available to fix this bug and run sufficient test cases
to ensure its correctness and impacts on other areas of the code. Hence, it was thought of as
best to report this issue and not make code fixes at the final stages of the project. The issue
has also been reported to ccc-gistemp developers, as this has been prevailing in the base code
that was used for porting.

67http://groups.google.com/group/ccc-gistemp-
discuss/browse_thread/thread/3386c3c814584e0/9bf7dcbba12b4ebb?lnk=gst&q=annual_anomaly#9bf7dcbba12
b4ebb

