
Performance analysis of POT3D with PETSc
preconditioners and solvers

Jaffery Irudayasamy
Student Number: S2336648

August 19, 2023

MSc in High Performance Computing with Data Science

The University of Edinburgh

Year of Presentation: 2023

Abstract

This dissertation presents the research conducted as part of the annual ISC
Student Cluster Competition (SCC) and an extended project focused on the
performance analysis of POT3D with PETSc preconditioners and solvers. The
SCC involved student teams designing and optimizing computer clusters to
achieve peak performance with supplied programs. Our team from EPCC par-
ticipated in the 2023 onsite competition, tuning two programs for the cluster:
the GPU-based benchmark HPCG and the CPU and GPU-based distributed-
memory program POT3D, which served as the potential field solver.

Expanding on the work done with POT3D for the SCC, we proceeded to im-
plement two versions of the POT3D application with CPU-only and GPU-based
PETSc Krylov subspace solvers. The primary objective was to analyze the per-
formance of standard preconditioners/solvers from the PETSc library in com-
parison to different preconditioners, including the conjugate gradient solver im-
plemented in POT3D. The resulting code was benchmarked on Cirrus, yield-
ing valuable insights into the performance benefits and limitations of PETSc
solvers and the POT3D solver concerning boundary conditions and matrix for-
mation. Our findings shed light on the potential of PETSc solvers to enhance
the POT3D application, contributing to the field of computational science and
engineering.

Contents

1 Introduction 1

2 Background and Literature review 3
2.1 POT3D: Model description . 3
2.2 Numerical technique in POT3D 4
2.3 Preconditioners in POT3D . 5
2.4 Execution stages in POT3D solver 7

2.4.1 Loading input and domain decomposition 7
2.4.2 Preconditioning . 8
2.4.3 Iterative solver . 9
2.4.4 Compute magnetic field solutions 10

2.5 PETSc: A scalable toolkit for parallel linear solvers 10
2.6 PETSc integration in Fortran applications 11
2.7 Preconditioners and solvers in PETSc 12
2.8 PETSc’s GPU capabilities . 13

3 ISC Student Cluster Competition 14
3.1 Rules . 14
3.2 Setup and hardware . 15
3.3 Benchmarking and pre-competition results 15

3.3.1 HPCG benchmarking and results 15
3.3.2 POT3D benchmarking and results 18

3.4 Competition results . 20

4 Experimental Implementation 21
4.1 Experimental environment . 21
4.2 Correctness testing . 22
4.3 Implementation approach for preconditioning replacement with

PETSc in POT3D . 23
4.4 Adapting matrix structure and boundary coefficients for CPU-only

serial PETSc implementation of CG solver in POT3D 25
4.4.1 Solver convergence and analysis for different options . . 27

4.5 Enhancing parallelism: Adapting PETSc solver for multi-process
utilization . 28

4.6 Enabling GPU utilization for the PETSc solver 30

i

5 Analysis of PETSc Preconditioners and Solvers: A Comparison
with POT3D Application 31
5.1 Solver and preconditioner selection for analysis 31
5.2 Methodology . 32

5.2.1 Analysis of residual convergence 33
5.2.2 Scaling analysis . 33

5.3 Analysis of serial PETSc implementation and POT3D application
in serial mode . 34
5.3.1 Analysis of residual convergence 36

5.4 Analysis of PETSc implementation and POT3D application in par-
allel CPU-only mode . 38
5.4.1 Analysis of residual convergence 38

5.5 Strong scaling analysis . 40
5.6 Analysis of PETSc implementation and POT3D application in par-

allel GPU mode . 42
5.7 Analysis of residual convergence 43
5.8 Strong scaling analysis . 45
5.9 Analyzing the implementation effort and utility of the PETSc library 47

6 Conclusions 48
6.1 Main takeaways and results . 48
6.2 Reflection on results and project goals 49
6.3 Future work . 50

ii

List of Tables

4.1 Specifications of Cirrus Machine. 22

5.1 Utilization of Solvers and Preconditioners in Native POT3D and
PETSc Implementations. 31

iii

List of Figures

2.1 Boundary conditions: (Left) require the lines to close within the
outer boundary. (Right) lines can extend beyond. reference [1]. . 3

2.2 CPU timing results for POT3D with MPI and MPI+OpenACC. Intel
2015.2.164 compiler with the MVAPICH 2.1 MPI library was used
for the MPI runs. For the MPI+OpenACC x86 multi-core runs,
the PGI 17.5 compiler with the same version of the MVAPICH
library was used. Left: results within a single compute node.
Right: results for multiple nodes. The graphs were obtained from
reference [2]. 6

2.3 GPU timing results for POT3D with MPI+OpenACC for multiple
nodes. The graph was obtained from reference [2]. 7

2.4 Sparsity pattern of matrix A in CSR format preconditioned with
the ILU0 preconditioner for various problem sizes. The sparsity
percentage indicates the proportion of zero elements in the matrix. 9

3.1 Plot shows the relationship between the clock speed of each
GPU in the 16 GPUs SCC cluster and the corresponding bench-
mark result in GFLOPs. 16

3.2 Plot displaying the relationship between the clock speed of each
GPU in the 16 GPUs SCC cluster and the peak power consump-
tion of the cluster, with a dotted line indicating the 6 kW power
limit. 17

3.3 Plot shows the relationship between the clock speed of each
GPU in the 16 GPUs SCC cluster and the corresponding elapsed
time of the POT3D application. 18

3.4 Plot displaying the relationship between the clock speed of each
GPU in the 16 GPUs SCC cluster and the peak power consump-
tion of the cluster, with a dotted line indicating the 6 kW power
limit. 19

5.1 Performance profile of the POT3D application when executed
with a single MPI process. The graph provides insights into the
distribution of runtime across different stages of the computation. 35

iv

5.2 Performance profile of the serial PETSc implementation. The
graph provides insights into the distribution of runtime across dif-
ferent stages of the computation. 35

5.3 Convergence of residual errors for various solver-preconditioner
combinations when solving a problem of dimensions 200 × 200
× 200 using a single process. The residual values are presented
in a logarithmic scale. 36

5.4 Time taken by various solver-preconditioner configurations to solve
a problem of dimensions 200 × 200 × 200, all using a single pro-
cessing unit. Each setup’s elapsed time per iteration (seconds/it-
eration) is labelled on the graph. 37

5.5 Convergence of residual errors for various solver-preconditioner
combinations when solving a problem of dimensions 200 × 200
× 200 using 36 CPU cores. The residual values are presented in
a logarithmic scale. 39

5.6 Time taken by various solver-preconditioner configurations to solve
a problem of dimensions 200 × 200 × 200, all using 36 CPU
cores. Each setup’s elapsed time per iteration (seconds/itera-
tion) is labelled on the graph. 39

5.7 Speedup comparison of solver configurations for the POT3D and
PETSc implementations on varying CPU cores/processes. The
problem size is 200 × 200 × 200. The error bars represent stan-
dard deviations. 40

5.8 Parallel efficiency of solver configurations for the POT3D and
PETSc implementations on varying CPU cores/processes. The
problem size is 200 × 200 × 200. The error bars represent stan-
dard deviations. 41

5.9 Time per iteration of solver configurations for the POT3D and
PETSc implementations on varying CPU cores/processes. The
problem size is 200 × 200 × 200. The time per iteration values
are presented in a logarithmic scale. The error bars represent
standard deviations. 42

5.10 GPU compute and memory utilization of the PETSc Conjugate
Gradient (CG) solver with a point-Jacobi preconditioner were mea-
sured while solving a small problem of size 63 × 95 × 225 using
a single Tesla V100 (16GB) GPU. 43

5.11 GPU compute and memory utilization of the PETSc Conjugate
Gradient (CG) solver with an Algebraic Multi-Grid (AMG) precon-
ditioner were measured while solving a small problem of size 63
× 95 × 225 using a single Tesla V100 (16GB) GPU. 43

5.12 Convergence of residual errors for various solver-preconditioner
combinations when solving a problem of dimensions 133 × 361
× 901 using 8 CPU cores. The residual values are presented in
a logarithmic scale. 44

v

5.13 Time taken by various solver-preconditioner configurations to solve
a problem of dimensions 133 × 361 × 901, all using 8 GPUs.
Each setup’s elapsed time per iteration (seconds/iteration) is la-
belled on the graph. 44

5.14 Speedup comparison of solver configurations for the POT3D and
PETSc implementations on varying GPUs/processes. The prob-
lem size is 133 × 361 × 901. The error bars represent standard
deviations. 45

5.15 Parallel efficiency of solver configurations for the POT3D and
PETSc implementations on varying GPUs/processes. The prob-
lem size is 133 × 361 × 901. The error bars represent standard
deviations. 46

5.16 Time per iteration of solver configurations for the POT3D and
PETSc implementations on varying GPUs. The problem size is
133 × 361 × 901. The time per iteration values are presented in
a logarithmic scale. The error bars represent standard deviations. 46

vi

List of Code Snippets

4.1 Function calls of ILU0 preconditioning in POT3D 23
4.2 ILU0 preconditioning using PETSc 24
4.3 Handling boundary coefficients for PETSc 25
4.4 CPU-only serial PETSc CG solver with ILU0 preconditioner . . . 26
4.5 CPU-only parallel PETSc CG solver with Jacobi preconditioner . 29

vii

Acknowledgements

I am immensely grateful to Xu Guo and Spyro Nita for their exceptional leader-
ship and guidance as part of TeamEPCC during the Student Cluster Competi-
tion. Their expertise and support were instrumental in our successful journey.

My sincere appreciation goes to my supervisor, Dr. William Lucas, whose ex-
cellent and frequent guidance proved invaluable throughout this project. His
expertise in numerical algorithms and Fortran provided the necessary founda-
tion and support, especially in areas where I had limited prior experience.

I extend heartfelt thanks to my parents for their unwavering support in various
forms. Their encouragement and belief in my abilities have been a constant
source of motivation.

Lastly, I would like to express my gratitude to Ben Morse and the entire EPCC
staff for creating an enjoyable and enriching environment. Their contributions
made this year’s experience truly memorable.

The collective support and encouragement from these individuals have played a
crucial role in the successful completion of this project, and I am deeply thankful
for their contributions.

Chapter 1

Introduction

The fundamental representation of the coronal magnetic field is established
through a photospheric boundary radial magnetic field, forming the basis of a
potential (current-free) field model [1]. This model plays a pivotal role in com-
prehending diverse solar and heliospheric phenomena, encompassing the in-
terplanetary magnetic field [3], coronal heating and X-ray emissions [4], and the
topology of the coronal magnetic field [5].

One essential tool used to estimate the magnetic field of the solar corona is
POT3D, a Fortran code that utilizes photospheric magnetic field data obtained
from the National Solar Observatory’s Global Oscillation Network Group [6] and
the Helioseismic Magnetic Imager (HMI) aboard the Solar Dynamics Observa-
tory [7] as a boundary condition. POT3D computes Potential Field (PF) solu-
tions to approximate the magnetic field of the solar corona. It has been ex-
tensively employed in various studies to investigate the structure and dynam-
ics of the corona. Notably, POT3D serves as the potential field solver for the
Wang–Sheeley–Arge (WSA)[8] model within NASA’s Community Coordinated
Modeling Center (CCMC) CORHEL software suite [9].

POT3D utilizes a specialized iterative conjugate gradient solver for estimating
potential field solutions. To accelerate solver convergence, preconditioners are
utilized to reduce the number of iterations needed to reach a solution [2]. The
code is designed for efficient parallelization using the Message Passing Inter-
face (MPI) and adopts a three-dimensional decomposition method. Further-
more, it takes advantage of GPU acceleration through OpenACC and leverages
an external cuSPARSE library, making it highly suitable for computationally in-
tensive tasks [1].

This dissertation project extends from the work carried out for the ISC23 Stu-
dent Cluster Competition [10], an annual event where student teams compete
to design high-performance computing clusters. POT3D was one of the appli-
cations used in this year’s competition, laying the groundwork for further explo-
ration in the extended project. The focus of this extension involves investigating

1

the performance and extensibility of standard solver libraries like PETSc [11]
compared to the custom solver implemented in POT3D, specifically for both
CPU-only and GPU systems. By conducting this analysis, we aim to gain in-
sights into the potential of PETSc preconditioners and solvers [12] within the
context of POT3D’s computational requirements.

2

Chapter 2

Background and Literature review

2.1 POT3D: Model description

Potential Fields (PFs) are magnetic fields without electric currents, resulting in
zero forces [1]. Setting the current to zero in Maxwell’s equation yields magnetic
field B, which is a gradient of scalar potential Φ. The divergence-free condition
for magnetic field B is a manifestation of the absence of magnetic monopoles
in nature. This condition ensures that magnetic field lines form closed loops,
precluding the existence of isolated magnetic sources or sinks. This distinct
behaviour leads to the Laplace equation (2.1) governing the magnetic scalar
potential Φ, which can be solved under appropriate boundary conditions.

∇2Φ = 0 (2.1)

Figure 2.1: Boundary conditions: (Left) require the lines to close within the outer
boundary. (Right) lines can extend beyond. reference [1].

The lower boundary condition at the solar surface is determined based on ob-
servational data of the radial magnetic field component Br obtained from the
National Solar Observatory’s Global Oscillation Network Group [6] and the He-
lioseismic Magnetic Imager (HMI) aboard the Solar Dynamics Observatory [7].
The upper boundary condition varies depending on the specific application. For
a ’closed wall’ scenario, the magnetic field lines must close within the outer
boundary. Alternatively, for a ’source surface’ scenario, the magnetic field lines

3

are allowed to extend beyond it (as depicted in Figure 2.1). Once the Laplace
equation is solved, the magnetic field B can be obtained by computing its gra-
dient, i.e., B = ∇Φ.

2.2 Numerical technique in POT3D

The finite difference method is a numerical technique to approximate solutions
to differential equations. It works by discretizing the solution domain and ap-
proximating derivatives using the differences between neighbouring grid points.
In the context of POT3D, this method approximates the solution to the Laplace
equation (2.1). The equation is elliptical, which means it is not time-dependent,
so the program can handle the geometric changes in the grid as it approaches
the poles without too much difficulty. However, this does complicate the matrix
system’s solution, necessitating additional iterations. To address this challenge,
POT3D employs a second-order finite-difference method as described in refer-
ence [13], wherein equation (2.1) takes the following form.

∇2Φi,j,k ≈
1

∆ri

[
Φi+1,j,k − Φi,j,k

∆ri+ 1
2

− Φi,j,k − Φi−1,j,k

∆ri− 1
2

]

+
1

sinθj∆θj

[
sinθi,j+ 1

2

Φi,j+1,k − Φi,j,k

∆θj+ 1
2

− sinθi,j− 1
2

Φi,j,k − Φi,j−1,k

∆θj− 1
2

]

+
1

sin2θj∆ϕk

[
Φi,j,k+1 − Φi,j,k

∆ϕk+ 1
2

− Φi,j,k − Φi,j,k−1

∆ϕk− 1
2

]
= 0

(2.2)
where i, j, and k correspond to the Cartesian coordinates x, y, and z, respec-
tively, of a point in a three-dimensional grid. The parameters ∆ri, ∆θj, and
∆ϕk represent the spacings between adjacent grid points along the x, y, and z
directions, respectively. It’s important to note that although the grid is indexed
by Cartesian coordinates, it can be visualized as a 3D cube grid of points, and
when these points are converted to spherical polar coordinates, they form a
sphere. Equation (2.2) can be represented in matrix form as

AΦ = 0 (2.3)

where A is a sparse matrix that represents the coefficients of the finite differ-
ence equation (2.2) in matrix form (2.3). It contains the finite difference coef-
ficients corresponding to the Laplace operator applied to the scalar field Φ in
three-dimensional spherical coordinates. The elements of matrix A are deter-
mined by the coefficients of the finite difference terms involving neighbouring
grid points in the original equation. Matrix A is stored in a custom diagonal

4

(DIA) sparse format [14] for the inner grid points, while the boundary conditions
are implemented in a matrix-free manner as defined by equation (2.2).

The Preconditioned Conjugate Gradient (PCG) method serves as an iterative
numerical technique for solving linear equations [15]. In the specific context of
the POT3D application, it addresses an equation represented by (2.3). This
method strategically employs preconditioners to enhance convergence during
solving. To maximize efficiency, two distinct preconditioners (PCs) are applied.
The first preconditioner (PC1) involves diagonal scaling or point-Jacobi precon-
ditioning [16]. While computationally efficient, it may offer comparatively mod-
erate effectiveness. PC1 exploits the matrix’s diagonal elements to transform
the linear system, thus aiming to improve convergence in the iterative solving
process. On the other hand, the second preconditioner (PC2) employs ILU0, a
technique enhancing convergence by approximating the matrix with lower and
upper triangular factors [17]. PC2 is harnessed within a nonoverlapping domain
decomposition method, designed to expedite convergence. However, it comes
with heightened computational costs. Generally, PC2 is more potent, although
there are scenarios where PC1 might yield better results.

Convergence of the solver is gauged by comparing the norm of the precon-
ditioned residual to the norm of the preconditioned right-hand side, utilizing a
predefined tolerance. In this instance, the specified tolerance is set at 10−9.
This tolerance value is an adjustable parameter within the POT3D application,
offering control over the solver’s behaviour.

2.3 Preconditioners in POT3D

The implementation details of the preconditioners used in POT3D are discussed
in reference [2]. In the POT3D application, PC1 (diagonal scaling / point-Jacobi)
is implemented with the support for OpenACC acceleration. The PC2 (ILU0)
preconditioner presents a challenge to vectorization, which in turn impacts the
efficient computation on GPUs using OpenACC pragmas. This challenge arises
from the requirement to solve a set of sequential sparse matrix equations with
a triangular structure, as part of applying the PC2 preconditioning. Achieving
vectorized solutions for these triangular matrix equations is notably complex.
To address this challenge, NVIDIA’s cuSPARSE library [18] was utilized, which
offers two distinct algorithms for solving these equations. For practical imple-
mentation, utilizing the first algorithm was the focus. This choice was driven by
the fact that the performance difference between the two algorithms was found
to be negligible. The cuSPARSE library is written in C, but to allow Fortran users
to use the library directly, Fortran wrappers are provided. However, to minimize
the amount of added code to POT3D, these wrappers were not used. Instead,
a small C function call to the cuSPARSE library was implemented, which is then
called from the function from the Fortran code.

5

Figure 2.2: CPU timing results for POT3D with MPI and MPI+OpenACC. Intel
2015.2.164 compiler with the MVAPICH 2.1 MPI library was used for the MPI
runs. For the MPI+OpenACC x86 multi-core runs, the PGI 17.5 compiler with
the same version of the MVAPICH library was used. Left: results within a single
compute node. Right: results for multiple nodes. The graphs were obtained
from reference [2].

In reference [2], the performance of both preconditioners was analyzed using
the Comet supercomputer at the San Diego Supercomputing Center. The tests
involved CPU MPI scaling of POT3D and OpenACC compiled to x86 multi-core,
as well as MPI+OpenACC runs on NVIDIA GPUs using the PSG cluster at
NVIDIA. The tests were conducted using the PGI compiler (version 16.10 +
CUDA 8.0) and the OpenMPI 1.10.2 MPI library.

From Figure 2.2 we see that, for the CPU runs, PC2 is much more efficient than
PC1, running up to four times faster. The MPI-only code scales very well using
multiple nodes up to about 64 nodes where it starts to lose efficiency, and the
MPI+OpenACC on x86 multi-core is not running efficiently. Although the code
shows decent scaling at first, as the number of nodes increases, the quality of
the scaling decreases, and at a high number of nodes, the performance stops
improving and starts getting worse. The GPU performance results of POT3D
using MPI+OpenACC (Figure 2.3)show reasonable scaling, though efficiency is
lost when run on many GPU nodes.

6

Figure 2.3: GPU timing results for POT3D with MPI+OpenACC for multiple
nodes. The graph was obtained from reference [2].

2.4 Execution stages in POT3D solver

In order to integrate PETSc preconditioners and solvers into the POT3D ap-
plication, it was essential to identify the various execution stages within the
POT3D application. This analysis was conducted to discern the specific stages
that required modifications and determine where PETSc function calls should
be appropriately incorporated. The source code of POT3D was meticulously
examined for this purpose, and the identified stages are outlined in this section.

2.4.1 Loading input and domain decomposition

The POT3D application has the capability for multiprocess execution using MPI.
In the initial stage, each process reads the configurations from the pot3d.dat file.
Additionally, based on the MPI process decomposition and the configurations
in pot3d.dat, specific portions of the magnetic field data in the input .h5 file are
loaded into each process. The data forms the matrix A of the linear equation
2.3 that POT3D aims to solve, analogous to Ax = b. The loading process is
distributed and utilizes a sparse Diagonal Storage Format (DIA) [19] to store the
matrix A. Simultaneously, the right-hand side vector b and the solution vector x
are initialized in a distributed manner as well.

For the purpose of this dissertation, we focus on the modifications made to the

7

https://github.com/predsci/POT3D/blob/main/testsuite/validation/input/pot3d.dat

data after this initial stage, which are necessary for implementing PETSc pre-
conditioners and solvers. Consequently, the specifics of domain decomposition
and the intricacies of data loading are not discussed in this paper. However,
further information about these aspects can be found in the documentation pro-
vided with the source code.

2.4.2 Preconditioning

POT3D offers a choice between two preconditioners: a straightforward Point-
Jacobi preconditioner and a relatively sophisticated Incomplete LU (ILU0) pre-
conditioner, as discussed in Section 2.2. After loading the data for matrix A
(Equation 2.3), it undergoes preconditioning to enhance the convergence rate
of the conjugate gradient solver.

2.4.2.1 Point-Jacobi/diagonal-scaling (PC1)

The Point Jacobi preconditioner rescales the matrix to improve the overall sys-
tem’s conditioning. This rescaling involves calculating the reciprocals of the
diagonal elements (diagonal scaling factors) of the matrix [16]. Then, each el-
ement of the matrix is multiplied by its corresponding diagonal scaling factor,
which effectively adjusts the magnitudes of the elements.

In POT3D, the diagonal scaling factors are computed and stored in an array
before the iterative solver stage. During each iteration of the CG solver, the
matrix elements are rescaled by performing element-wise scalar multiplication
with their corresponding diagonal scaling factor.

2.4.2.2 Incomplete LU (ILU0) factorization (PC2)

The ILU0 preconditioning technique enhances solver convergence by approx-
imating a matrix using lower and upper triangular factors [17]. To implement
ILU0 preconditioning in POT3D, the A matrix is transformed from a sparse Di-
agonal Storage Format (DIA) [19] to a compressed sparse row (CSR) format
[20]. This transformation is essential as the CSR format enables efficient matrix-
vector multiplications and is compatible with the external cuSPARSE library—an
option for preconditioning in POT3D.

During this conversion process, it’s important to note that the coefficients that
multiply the boundary values are not included in the resultant CSR matrix. Each
boundary has a subset of coefficients in the matrix row that is not included
during the conversion, leading to the loss of boundary condition information in
the CSR matrix. However, these missing coefficients are incorporated during

8

the iterative solver stage based on the boundary conditions specified in the
input configuration file (pot3d.dat), as discussed in Section 2.4.3.

Alongside this, the conversion includes zero approximations for values using a
tolerance threshold. The sparsity pattern of the resulting CSR matrix is illus-
trated in Figure 2.4.

(a) Dimension: 8× 8
Sparsity: 50%

(b) Dimension: 125× 125
Sparsity: 95.04%

(c) Dimension: 5832× 5832
Sparsity: 99.88%

Figure 2.4: Sparsity pattern of matrix A in CSR format preconditioned with the
ILU0 preconditioner for various problem sizes. The sparsity percentage indi-
cates the proportion of zero elements in the matrix.

After the conversion, the CSR matrix is factorized using ILU0 [17]. The resulting
LU factor matrix is utilized by the conjugate gradient solver to achieve faster
convergence of the solution. The solver employs a forward and backward solve
for the sparse system (LU)x = y [21].

2.4.3 Iterative solver

POT3D utilizes an iterative conjugate gradient solver [22] to provide potential
field solutions for three different models: potential field source surface (PFSS),
potential field current sheet (PFCS), and open field (OF).

In the implementation, these models are distinguished based on how the bound-
ary coefficients are treated within the solver space. For the OF and PFSS
models, the radial boundary coefficients are excluded from the solver space,
allowing field lines to extend beyond the outer boundary (Figure 2.1). On the
other hand, for the PFCS model, the radial boundaries are included, causing
field lines to close within the outer boundary (Figure 2.1). This differentiation
occurs while preparing the direction vector for the iterative solver.

In the CG solver of POT3D, the matrix-direction vector product is achieved by
unpacking the direction vector into an array of the same size as the local coef-
ficient matrix A. This enables element-wise multiplication and addition for each
row. During the unpacking process, coefficients are added to or removed from

9

the direction vector elements that are associated with the radial boundaries, as
determined by the model specified in the input configuration file pot3d.dat.

As the application involves distributed data loading (as discussed in Section
2.4.1), some direction vector elements required for the local matrix-vector prod-
uct may reside in neighbouring processes. To address this, explicit MPI com-
munication is performed during each iteration to obtain the missing elements in
each process.

This customization in the CG solver enables POT3D to handle its specific ap-
plication requirements while the remaining operations adhere to the standard
iterative CG solver procedures.

2.4.4 Compute magnetic field solutions

The magnetic scalar potential, denoted as Φ, is treated as a vector in our cal-
culations, akin to an array. This vector Φ is derived through the iterative solving
process as described in equation (2.3). Subsequently, this derived vector Φ is
employed to calculate magnetic fields along the radial (r), azimuthal (θ), and
polar (ϕ) directions. Moreover, it aids in determining the overall magnitude of
the magnetic field. To achieve this, the distributed vector Φ is gathered in the
root process (rank = 0), where the calculations for these values are performed.
Additionally, data logging is carried out in the root process.

2.5 PETSc: A scalable toolkit for parallel linear
solvers

PETSc (Portable, Extensible Toolkit for Scientific Computation) is a widely used
open-source software library designed to facilitate the implementation of scal-
able parallel numerical solvers for a variety of scientific and engineering appli-
cations. It offers a comprehensive set of tools and data structures to address
the challenges of large-scale parallel computations, making it a valuable re-
source for researchers and practitioners in the field of computational science
and engineering [23].

At its core, PETSc provides an array of functionalities, including linear and non-
linear solvers, time integration, and optimization routines. One of its primary
strengths lies in its ability to perform parallel computations efficiently on dis-
tributed memory systems, enabling users to harness the full potential of high-
performance computing (HPC) clusters and supercomputers [24]. The toolkit’s
development began in the 1990s at the Mathematics and Computer Science

10

Division of Argonne National Laboratory, and it has since grown to be a col-
laborative effort involving contributions from numerous researchers worldwide.
This collaborative nature has resulted in a robust, feature-rich software package
that continues to evolve with new algorithms and optimization techniques [25]].

Parallel linear solvers are a cornerstone of many scientific simulations, and
PETSc offers a wide range of scalable algorithms for solving linear systems
arising from partial differential equations (PDEs) and other numerical problems.
These solvers are designed to take advantage of the inherent parallelism in
modern computing architectures, allowing researchers to efficiently tackle com-
plex problems on massively parallel systems [26].

The integration of PETSc has yielded significant results across diverse scien-
tific applications. In cardiac simulations [27], PETSc facilitated accurate mod-
elling of blood flow in the heart, uncovering crucial physiological insights. In
topology optimization [28], PETSc enabled parallel solving of complex struc-
tural design problems, revealing novel features. Moreover, in cardiac modelling
[29], PETSc’s modular solver efficiently simulated intricate electrophysiologi-
cal processes, allowing adjustments for specific electrocardiogram patterns.
PETSc has also been used in conjunction with other software packages to
solve complex scientific computing problems. For example, PETSc has been
used with the finite element method software package FEniCS to solve a wide
range of partial differential equations [30]. In the context of Fortran applications
like POT3D, it presents an excellent opportunity to enhance computational effi-
ciency, reduce memory consumption, and enable simulations on larger problem
sizes that are potentially beyond the capabilities of serial solvers [11].

2.6 PETSc integration in Fortran applications

While PETSc primarily supports C and C++, it provides Fortran interfaces, en-
abling the integration of PETSc routines into Fortran codes [31]. This feature
allows researchers to leverage PETSc’s advanced functionalities without rewrit-
ing their entire Fortran application, thus preserving existing investments in code
development. In the context of Fortran applications like POT3D, PETSc inte-
gration offers seamless access to a diverse collection of linear and nonlinear
solvers [12]. By leveraging PETSc’s built-in solvers, researchers can avoid the
time-consuming and error-prone process of implementing custom solvers from
scratch. This feature facilitates the adoption of state-of-the-art algorithms and
methodologies, enhancing the solver’s robustness and accuracy. Moreover,
PETSc simplifies the management of parallelism, allowing Fortran developers
to focus on the scientific aspects of their applications. The library abstracts away
complex communication and data distribution details, enabling researchers to
easily parallelize their Fortran codes without delving into the intricacies of par-
allel programming.

11

However, integrating PETSc into Fortran applications does pose certain chal-
lenges. One significant issue arises due to potential mismatches between
the operation of the Fortran language and the C-based interfaces provided
by PETSc. These differences stem from variations in memory management
and the indexing methods. Proper care must be taken to correctly handle data
structures and memory allocation in order to ensure effective communication
between the Fortran and PETSc components [32]. Furthermore, developers
may need to invest time in comprehending and navigating PETSc’s extensive
documentation and APIs to make optimal use of its features.

2.7 Preconditioners and solvers in PETSc

In the PETSc framework (Portable, Extensible Toolkit for Scientific Computing),
achieving efficient and accurate solutions relies on two essential components:
Preconditioners and Solvers [33]. PETSc provides a comprehensive range of
preconditioners [34], each designed for specific scenarios to enhance the con-
vergence of iterative solvers. When dealing with matrices where the main di-
agonal elements dominate, the Jacobi preconditioner (JAC) [16] is beneficial.
JAC effectively exploits these dominant diagonal elements to accelerate con-
vergence for well-structured matrices. For matrices with intricate patterns of
empty entries (sparsity), the Incomplete LU factorization (ILU) preconditioner
[17] is effective. ILU approximates the matrix factorization while ignoring less
significant entries, making it suitable for matrices with irregular patterns of spar-
sity. It often yields improved convergence rates for various problems. In cases
involving complex geometries and varying scales, the Algebraic Multigrid (AMG)
preconditioner [35] excels. AMG employs a hierarchy of grids and interpolation
to efficiently tackle systems with diverse scales and intricate geometries.

Transitioning to solvers in PETSc [12], the Generalized Minimal Residual (GM-
RES) solver [36] is a valuable choice for systems lacking symmetry or dominant
diagonal characteristics. GMRES, when paired with suitable preconditioners,
demonstrates efficiency in converging for challenging and less-well-behaved
systems. When dealing with symmetric positive definite matrices, the Conju-
gate Gradient (CG) solver [15] stands out. CG is particularly efficient for self-
adjoint systems, benefiting from symmetric preconditioners and exhibiting swift
convergence. In situations encompassing nonsymmetric matrices without spe-
cific structural properties, the BiConjugate Gradient Stabilized (BCGS) solver
[37] is useful. Its fusion of conjugate gradient and stabilized methods provides
versatility for a broad spectrum of linear systems.

For problems rooted in partial differential equations (PDEs) and sparse sys-
tems, these iterative solvers offer robust solutions. Alternatively, in the case of
potentially dense systems rather than sparse ones, PETSc’s direct solvers such
as Lower-Upper Factorization (LU) [38] provide accurate solutions. This array

12

of preconditioners and solvers equips PETSc with a versatile toolkit, enabling
researchers to address diverse scientific computing challenges with tailored ef-
ficiency and accuracy.

2.8 PETSc’s GPU capabilities

Traditionally, PETSc has been utilized for parallel computations on CPU archi-
tectures, but recent developments have introduced support for leveraging the
computational power of GPUs to accelerate linear solvers and preconditioners
[39].

In 2013, Minden et al. introduced a preliminary version of PETSc that leveraged
GPUs for improved performance [40]. They introduced a novel type of vectors
and sparse matrices within this version, designed to execute operations directly
on NVIDIA GPU processors. This enhanced implementation facilitates the use
of Krylov methods, nonlinear solvers, and integrators within PETSc. Notably,
these capabilities can be utilized without significant alterations to the existing
API calls. This version of PETSc also seamlessly integrates with existing appli-
cation codes written in languages like C, C++, Fortran, or Python.

Cuomo et al. (2015) [41] delved deeper into the potential of integrating PETSc
with GPUs. They constructed a multi-level parallel framework for calculating
Optical Flow on GPU clusters. This framework effectively employed the integra-
tion of PETSc and CUDA, yielding noteworthy enhancements in performance.
The achieved improvement was substantial, approximately 95%, when com-
pared to the conventional sequential implementation. Through the synergistic
utilization of GPU clusters and the scientific computing middleware facilitated
by PETSc, the authors aptly demonstrated the prowess of GPU acceleration
in solving parabolic partial differential equations (PDEs) within heterogeneous
computing environments.

To evaluate the performance of the GPU implementation of PETSc, Kumbhar
(2011) [42] conducted a study using different sparse matrix storage schemes
like Compressed Sparse Row (CSR), ELL, Diagonal, and Hybrid. The results
indicated that for structured matrices, the GPU implementation showed up to a
4x speedup compared to an Intel Xeon quad-core CPU. However, the speedup
diminished for multi-GPU applications due to high communication costs on the
GPU cluster. Nevertheless, by implementing new storage schemes, Kumb-
har achieved a 50% improvement in sparse matrix-vector operations and a
7x speedup for structured matrices, significantly enhancing the performance
of vector operations on the GPU.

13

Chapter 3

ISC Student Cluster Competition

The ISC Student Cluster Competition (SCC) is an annual event that assembles
teams of students from around the world to participate in a challenge focused
on designing, constructing, and operating their own high-performance cluster.
One of the key aspects of the competition is the benchmarking of the teams’
clusters using a range of performance benchmarks.

3.1 Rules

In the competition, teams must run their programs on their cluster within a lim-
ited time frame of a few hours, while ensuring that the power consumption of the
cluster does not exceed 6 kW as measured by a connected device. Each pro-
gram may be run multiple times, but only one set of results per program can be
submitted. The goal of each program varies, with some requiring the program
to be executed in the shortest time possible, while others require the program
to execute the highest number of FLOPs within a fixed period.

This year, the competition will test six programs on the clusters: POT3D [43],
High-Performance Conjugate Gradient (HPCG) [44], High-Performance Linpack
(HPL) [45], HPC Challenge (HPCC) [46], FluTAS [47], and Quantum Espresso
[48]. I was responsible for testing and running POT3D and HPCG. HPCG is a
common benchmark in high-performance computing, which executes a conju-
gate gradient algorithm to solve a 3-dimensional elliptic partial differential equa-
tion, primarily testing the machine’s memory bandwidth. The goal of the SCC
for HPCG is to achieve the highest average FLOP rate during a run of at least
180 seconds. For POT3D, the goal is simply to run the program with the pro-
vided input as quickly as possible.

14

3.2 Setup and hardware

The SCC cluster comprises two nodes. Each node features a single 64-core
AMD EPYC 7713 processor. The storage system is composed of five 3TB
NVMEs arranged within an XFS filesystem. Effective air-cooling is employed
for the entire cluster. Additionally, each node is equipped with 8 NVIDIA A100
GPUs, each boasting a capacity of 40G. For the execution of HPCG on the clus-
ter, we utilize a binary supplied by NVIDIA, integrated into the 21.4-hpcg con-
tainer image [49]. This binary harnesses the computational power of the GPUs
via the Docker container framework. In the case of compiling and executing
POT3D, we rely on the nvhpc/22.11 SDK [50], which is seamlessly operational
on the GPUs of the cluster.

3.3 Benchmarking and pre-competition results

3.3.1 HPCG benchmarking and results

The HPCG benchmark employs different methods of distributing computing
tasks among processors and accelerators. As a result, average memory la-
tency and bandwidth varied depending on the method used. The benchmark
is primarily memory-bound, so these variations have a significant impact on
performance. GPUs on each node were allocated to different NUMA regions,
with two GPUs per region. To utilize this configuration optimally, the com-
putation and communication patterns were adjusted during runtime employ-
ing the -mem-affinity, -cpu-affinity, and -gpu-affinity parame-
ters in conjunction with the numactl tool. Each parameter is a list of in-
dices, separated by colons, that associates data in specific MPI ranks with
specific GPUs, blocks of memory, and sets of CPU cores. For optimal perfor-
mance on one node, the parameters used were 3:3:1:1:7:7:5:5 for mem-
ory, 48-55:56-63:16-23:24-31:112-119:120-127:80-87 :88-95 for
CPU affinity, and 0:1:2:3:4:5:6:7 for GPU affinity. Here, memory affinity
refers to the desired memory location for each MPI rank. In this scenario, the
GPU and memory affinities are selected to ensure that the corresponding CPUs
have the memory in very close physical proximity, specific to the SCC cluster’s
NUMA configuration. For instance, the first MPI rank is assigned to CPU cores
48-55 and GPU 0, and its memory affinity is set to 3, which means that it will
preferentially use the memory located in NUMA region 3 and GPU 0, which are
physically closer to its assigned CPU cores. This will reduce the latency.

The HPCG benchmark’s grid size for the conjugate gradient algorithm was ad-
justable. Increasing the grid size reduced the load on memory bandwidth, al-
lowing for a higher clock rate. However, using small grid sizes that fit critical

15

arrays in the cache was invalid as the benchmark aimed to measure cluster
memory performance. After experiments, a grid size of 4003 was discovered
as the optimal choice since it fits in memory and larger sizes caused crashes.
Thus, 4003 was chosen as the best option for the HPCG benchmark. The best
performance observed for HPCG in one node is 1866.1 GFLOPs.

Figure 3.1: Plot shows the relationship between the clock speed of each GPU in
the 16 GPUs SCC cluster and the corresponding benchmark result in GFLOPs.

After conducting initial tests on a single node within the SCC cluster, we pro-
gressed to assess the benchmark’s performance by executing it on both nodes
of the cluster, capitalizing on the collective power of all 16 GPUs. During this
phase, we took into account the power usage and clock speed of each individual
GPU.

To maximize the efficiency of communication between the nodes, we employed
the Unified Communication - X Framework (UCX) [51] alongside the mpirun
command. In terms of optimizing the arrangement of processes, we opted for a
different approach. Instead of explicitly designating device indices, we utilized
the --map-by numa flag in conjunction with mpirun. This strategy enabled
us to distribute the workload across the two nodes while considering their Non-
Uniform Memory Access (NUMA) configurations.

This NUMA-aware mapping proved to be superior to the previous practice of
specifying explicit affinity for each process, which we had employed during the
single-node experiments. The NUMA-aware approach aligns processes with
their respective local memory nodes automatically, thereby reducing memory
latency and enhancing overall performance. In contrast, relying solely on ex-
plicit affinity might not adapt effectively to dynamic workload changes or system

16

Figure 3.2: Plot displaying the relationship between the clock speed of each
GPU in the 16 GPUs SCC cluster and the peak power consumption of the
cluster, with a dotted line indicating the 6 kW power limit.

fluctuations, potentially resulting in less-than-optimal memory access patterns
and diminished efficiency. Our chosen strategy effectively harnessed the NUMA
configuration to achieve optimal benchmark execution.

To monitor power consumption, we utilized the Integrated Lights-Out (iLO) fea-
ture connected to each node. This allowed for remote management of the
server’s hardware, firmware, and software components.

The results we obtained are presented in Figures 3.1 and 3.2. Analyzing these
graphs, we found a clear connection between the clock speed of each GPU and
the resulting GFLOPs. When the clock speed is higher, the GFLOPs increase,
but this also leads to higher power consumption.

It’s interesting to note that even when we pushed the GPUs to their maximum
clock speed of 1450 MHz, the power consumption remained within the compe-
tition limit of 6 kW. This outcome is attributed to the location of the SCC cluster
in the Advanced Computing Facility (ACF) [52] during our pre-competition test
runs. Here, the environment is maintained at a cooler temperature, allowing the
fans to operate at a more moderate speed and consume less power. Through-
out our tests, the highest GFLOP count observed was 3750.6, showcasing the
peak performance achieved in this study.

17

3.3.2 POT3D benchmarking and results

To run the POT3D application, the HDF5 library had to be built with the same
compiler that would be used for the POT3D application. The MPI compiler
wrappers from the nvhpc/22.11 SDK [50] were used to build the HDF5 library.

The source code of the application contains example files that can be used to
build the application with MPI-only, MPI+OpenACC, and GPU configurations.
The preconditioner (Section 2.3) used in this test can be configured through
the input file using the parameter iprec, where iprec=1 for PC1 (diagonal
scaling / point-Jacobi) and iprec=2 for PC2 (ILU0).

The source code also contains a testsuite directory that includes several
tests with varying problem sizes and memory requirements. These tests are
useful for validating the application’s performance. The validation test has
a grid size of 63× 91× 225, which corresponds to 1.28 million cells. It requires
approximately 1 GB of memory to run when using ifprec=1. The small
test has a grid size of 133 × 361 × 901, which corresponds to 43.26 million
cells. It requires approximately 6 GB of memory to run when using ifprec=1.
The medium test has a grid size of 267 × 721 × 1801, which corresponds to
346.7 million cells. It requires approximately 41 GB of memory to run when
using ifprec=1. The large test has a grid size of 535 × 1441 × 3601, which
corresponds to 2.78 billion cells. It requires approximately 330 GB of memory
to run when using ifprec=1.

Figure 3.3: Plot shows the relationship between the clock speed of each GPU
in the 16 GPUs SCC cluster and the corresponding elapsed time of the POT3D
application.

18

The competition test, called isc2023, has a grid size of 325 × 450 × 2050. Ini-
tially, the application was built with an MPI-only configuration, and the isc2023
test was run with 10 CPU cores. The overall execution time was 10594.754653
seconds, which is approximately 3 hours. This confirms the results observed in
the literature review section. Due to poor performance with the CPU and limi-
tations in the number of CPU cores in the cluster, the application was rebuilt to
use the GPUs. Initially, the isc2023 test was run on 8 GPUs (One node of the
SCC cluster), which elapsed for 187.397 seconds with iprec=1 and 75.645
seconds with iprec=2. The significant performance boost is a consequence
of utilizing a more advanced algorithm (ILU0) for preconditioning [17] with the
setting ifprec=2. ILU0 solves a larger portion of the problem in each iteration,
incurring a higher cost due to the initial LU factorization and the direct solve at
each iteration. However, in this instance, it has successfully reduced the resid-
ual below the desired tolerance much more quickly. Each GPU in the cluster
possesses 40 GB of rapid memory, which is essential for ensuring the efficient
execution of the application. During each build, the small validation test was
run to verify the application build.

Figure 3.4: Plot displaying the relationship between the clock speed of each
GPU in the 16 GPUs SCC cluster and the peak power consumption of the
cluster, with a dotted line indicating the 6 kW power limit.

Initially, we ran the application on a single node to assess its behaviour. Sub-
sequently, we extended the evaluation to both nodes of the cluster, utilizing all
16 GPUs to maximize performance. To optimize the execution time, we con-
figured the application with ifprec=2, which yielded faster results during our
initial analysis. We took into account the power consumption and clock speed
of each GPU during the tests. To facilitate efficient communication between the

19

two nodes, we employed the Unified Communication - X Framework (UCX) [51]
with mpirun. Additionally, we recorded power consumption using Integrated
Lights-Outs (iLO) connected to each node, providing remote management ca-
pabilities for the server’s hardware, firmware, and software.

The outcomes of our evaluation are depicted in Figures 3.3 and 3.4. Analyzing
the plots, we observed a reduction in the elapsed time of the POT3D solver with
increasing clock speeds of the GPUs in the SCC cluster. This was accompa-
nied by a corresponding rise in power consumption, with higher clock speeds
leading to higher power consumption. However, even when running each GPU
at the highest clock speed of 1450 MHz, the peak power consumption stayed
below the established 6 kW limit for the competition. This achievement was
possible because the SCC cluster operated within the Advanced Computing
Facility (ACF) [52] during our pre-competition test runs. This controlled environ-
ment ensures lower temperatures, reducing the need for the fans to operate at
higher speeds and consume additional power. Notably, the fastest elapsed time
achieved during this stage was 42.722 seconds.

3.4 Competition results

The competition lasted for three days, with the HPCG benchmark and POT3D
application results scheduled for submission on separate days. On the first
day, we submitted the HPCG benchmark result, taking advantage of the cool
environment caused by rain to run all the GPUs at the maximum 1450 MHz
clock speed. This enabled us to draw just under 6 kW, which was within the
competition limit. The benchmark result we submitted was 3732.5 GFLOPs.

The next day, during which the temperature was relatively warmer, we submit-
ted the POT3D application results. Due to the higher temperature, we could
only go up to 1300 MHz, resulting in a peak power consumption of 5.92 kW.
The elapsed time we submitted for POT3D was 44.45 seconds. Remarkably,
both of these results were the best among all the participants in their respec-
tive applications, significantly contributing to our team’s overall victory in the
competition.

20

Chapter 4

Experimental Implementation

In the implementation phase, PETSc preconditioners and solvers were inte-
grated into the existing POT3D application. This involved strategic code mod-
ifications to enable PETSc functionalities, facilitating communication between
POT3D and PETSc components. The adaptation covered single-process (Se-
rial) execution, as well as multi-process execution on both CPU and GPU ar-
chitectures, laying the foundation for subsequent analysis and assessment of
performance improvements in the following chapter.

4.1 Experimental environment

The experimental implementation was conducted primarily on the Cirrus ma-
chine, supplemented by the SCC cluster 3.2 for prototyping PETSc implementa-
tions. The hardware configuration and specifications of the Cirrus machine are
summarized in Table 4.1. For more comprehensive information, please refer to
the documentation available at https://cirrus.readthedocs.io/en/main/. This en-
vironment enabled the integration and evaluation of PETSc preconditioners and
solvers within the existing POT3D application.

In terms of the necessary software, we made use of the pre-existing Open-
MPI compiler wrappers available on the Cirrus system. Additionally, we build
the PETSc library with GPU compatibility and ensured it was equipped to ac-
commodate external solver libraries, notably HYPRE [53], within our local en-
vironment. To further facilitate our work, we utilized the existing parallel HDF5
modules already integrated within Cirrus, which were essential for the operation
of our application.

21

https://cirrus.readthedocs.io/en/main/

Compute Nodes

Total Number of Nodes 318 (280 CPU + 38 GPU)

CPU Compute Nodes
Processors: 2.1 GHz, 18-core Intel Xeon E5-2695
Cores per Processor: 18
Hyperthreads per Core: 2

GPU Compute Nodes

Processors: 2.5 GHz, 20-core Intel Xeon Gold 6248
Cores per Processor: 20
Hyperthreads per Core: 2
GPUs per Node: 4 NVIDIA Tesla V100 (16G) GPUs
Memory per Node: 384 GB

Infiniband Fabric

Bandwidth FDR, 54.5 Gb/s

Lustre File System

Total Storage 406 TiB

Table 4.1: Specifications of Cirrus Machine.

4.2 Correctness testing

The correctness of the PETSc preconditioners and solver was assessed through
a series of test runs. Firstly, utilizing the existing test suites embedded within
the POT3D source code, we conducted comparative evaluations between the
results produced by the PETSc preconditioners and solver and those generated
by the native tests. This validation process served to confirm the accuracy and
reliability of the PETSc implementations.

Moreover, for custom input scenarios, we performed thorough cross-validation
by contrasting the outcomes of the PETSc preconditioners and solver with those
attained through the native POT3D solver, utilizing identical input conditions.
Given that the inherent nature of the POT3D solver is approximate, we focused
on evaluating the statistical significance of differences rather than demanding
an exact match. We concentrated on the ’Magnetic energy’ value computed by
both implementations and calculated the error disparity using the expression:

Error =
Magnetic energy from POT3D − Magnetic energy from PETSc

Magnetic energy from POT3D
(4.1)

The given relative error, calculated using the equation (4.1) measures the differ-
ence between magnetic energy values obtained from POT3D and PETSc, rela-
tive to the value from POT3D. The consistently low error values below 2× 10−5

22

that we observed during all our test runs indicate that PETSc’s results closely
match those of POT3D, affirming the accuracy of PETSc’s solver and precondi-
tioners for the problem domain.

4.3 Implementation approach for preconditioning
replacement with PETSc in POT3D

We began by attempting to replace the existing preconditioners 2.4.2 in the
POT3D application as a starting point. As explained in Section 2.4.2.1, the
point-Jacobi/diagonal scaling preconditioning involves a straightforward elemen-
twise scalar multiplication with diagonal scaling factors. Because this is a simple
operation to create a preconditioner matrix, we chose not to explore the option
of using a PETSc function call for this purpose. Instead, our focus was on
obtaining the factorized matrix using ILU0 preconditioning from PETSc.

To achieve the factorized matrix LU, the native POT3D employs two subroutines
outlined in Snippet 4.1. The diacsr routine converts the sparse DIA format
matrix A into a sparse CSR matrix, while also removing radial coefficients and
zero approximations, as detailed in Section 2.4.2.2. The ilu0 routine calcu-
lates the LU factorized matrix. Our goal was to replace the ilu0 routine with
PETSc function calls.

1 . . .
2 c a l l d i acs r (N,M, a , a_o f fse ts , a_csr , a_csr_ja , a_csr_ia , a_csr_dpt r)
3 c a l l i l u 0 (N,M, a_csr , a_csr_ja , a_csr_ia , a_csr_dptr , icode)
4 . . .

Snippet 4.1: Function calls of ILU0 preconditioning in POT3D

Our process commenced by integrating the PETSc library into the POT3D ap-
plication and introducing a new option for utilizing the PETSc preconditioner.
By specifying ifprec=3 in the input pot3d.dat file, we invoke a routine that
applies preconditioning using PETSc. The implementation for obtaining the LU
factorized matrix through PETSc is presented in Snippet 4.2. Here, we employ
the MatCreateSeqAIJWithArrays function to construct a sparse PETSc
matrix a_mat using arrays derived from the diacsr routine. The indices in
the Fortran arrays a_csr_ia (row indices) and a_csr_ja (column indices)
are adjusted to zero-based indexing suitable for PETSc function calls. The val-
ues a_i, a_j, and a_data correspond to the values in a_csr_ia, a_csr_ja,
and a_csr and are used with PETSc Vector types and zero-based indices.

It’s important to note that PETSC_COMM_SELF is employed to create local ma-
trices and vectors, as we compute the LU matrix for the local A matrix values,
which are already distributed. Once a_mat is established, we create a lu_mat
matrix initialized to zero, serving as the container for the resulting LU matrix.

23

In PETSc, the LU factorized matrix can be obtained using the KSPSolve func-
tion, with the KSP type (Krylov Sub Space) set to KSPPREONLY through the
KSPSetType function. This configures the solver to exclusively perform pre-
conditioning. Given that we aim to replace the ILU0 preconditioner, we desig-
nate the preconditioner type as PCILU using the PCSetType function.

1 . . .
2 c a l l MatCreateSeqAIJWithArrays (PETSC_COMM_SELF, n_pet , n_pet , a i , a j ,

a_data , a_mat , i e)
3 . . .
4 c a l l MatConvert (a_mat ,MATSEQDENSE,MAT_INPLACE_MATRIX, a_mat , i e)
5 c a l l MatCreateSeqDense (PETSC_COMM_SELF, n_pet , n_pet , 0 . d0 , lu_mat , i e)
6 . . .
7 c a l l VecSet (x_vec , 0 . d0 , i e)
8 c a l l VecSet (rhs_vec , 0 . d0 , i e)
9 . . .

10 c a l l KSPCreate (PETSC_COMM_SELF, ksp , i e)
11 c a l l KSPGetPC(ksp , pc , i e)
12 c a l l KSPSetType (ksp ,KSPPREONLY, i e)
13 c a l l PCSetOperators (pc , a_mat , a_mat , i e)
14 c a l l PCSetType (pc , PCILU , i e)
15 c a l l PCFactorSetLevels (pc ,0 , i e)
16 . . .
17 c a l l KSPSolve (ksp , rhs_vec , x_vec , i e)
18 c a l l PCFactorGetMatr ix (pc , lu_mat , i e)
19 . . .

Snippet 4.2: ILU0 preconditioning using PETSc

After performing the KSPSolve operation, we can obtain the factorized ma-
trix using the PCFactorGetMatrix function. Since KSPSolve is primarily re-
sponsible for preconditioning, there is no need to focus on x_vec and rhs_vec,
both of which are initialized as placeholders (set to zero). It is crucial to note
that lu_mat is generated as a dense matrix, and similarly, a_mat is trans-
formed into a dense matrix. This approach is chosen because the resulting LU
matrix exhibits accurate values (consistent with those from the ilu0 routine in
POT3D) only when both matrices are in dense format. If either of the matrices
is in sparse format, incorrect results are obtained. We observed this behaviour
during our experimentation, and unfortunately, the PETSc documentation does
not cover this aspect.

However, this implementation exhibited scalability issues, as employing the
dense matrix format caused the application to exhaust memory resources for
larger matrix sizes. Consequently, we endeavoured to implement a Conjugate
Gradient (CG) solver using PETSc function calls, a subject discussed in the
subsequent section.

24

4.4 Adapting matrix structure and boundary coef-
ficients for CPU-only serial PETSc implemen-
tation of CG solver in POT3D

To implement a Conjugate Gradient (CG) solver using PETSc, we initially looked
into creating a simpler version of the PETSc solver that works serially (single
process). Our primary goal during this initial phase was to adapt the matrix data
structure used in the POT3D code to a format suitable for the PETSc solver, in
order to obtain comparable results to those generated by the POT3D.

One specific challenge we encountered involved how the radial boundary co-
efficients are handled during preconditioning and during each iteration of the
POT3D solver. This process is explained in detail in Section 2.4.3. However,
when it comes to implementing this in PETSc, we found that directly incor-
porating this specialized handling during preconditioning and iterations wasn’t
feasible. PETSc requires the matrix and vectors to be properly prepared before
invoking the KSPSolver routine.

Upon further investigation into the interaction between the matrix A and the
direction vector in each iteration of the native POT3D solver, we noted that the
radial coefficients affect the diagonal elements of the matrix. In the case of the
Open Field (OF) and Potential Field Source Surface (PFSS) options, the radial
boundary coefficients are added to the diagonal values. Conversely, for the
Potential Field Current Sheet (PFCS) option, these coefficients are subtracted
from the diagonal elements.

1 . . .
2 do j j =1 , IDIAG
3 i f (i o f f o k (j j) . eq . 0) then
4 i f (mi . eq . nrm1 . and . op t ion . ne . ’ p o t e n t i a l ’) then
5 Acsr (Adptr (i)) =Acsr (Adptr (i)) − r e a l (Adia (i , j j) , r_ typ_pc)
6 e lse
7 Acsr (Adptr (i)) =Acsr (Adptr (i)) + r e a l (Adia (i , j j) , r_ typ_pc)
8 end i f
9 end i f

10 enddo
11 . . .

Snippet 4.3: Handling boundary coefficients for PETSc

The process of removing the boundary coefficient is handled in the diacsr rou-
tine (as explained in Section 4.3). To accommodate this in PETSc, we created a
new version of the routine called diacsr_petsc. At the end of this routine, we
introduced additional code (Snippet 4.3) to handle the boundary coefficients. In
this code, the Adptr array contains indices pointing to the diagonal values in
each row, and the ioffok array helps identify whether a value in a row corre-
sponds to a boundary coefficient (by setting the value at the column index to

25

0). Depending on the chosen option, the coefficient value is either added to or
subtracted from the diagonal element of each row.

Since we now have a distinct routine to generate the Compressed Sparse
Row (CSR) matrix for PETSc, we made adjustments to update the data for
the a_csr_ia (row indices) and a_csr_ja (column indices) arrays to follow
zero-based indexing.

In the previous set of experiments, as described in Section 4.3, we worked a
routine using PETSc. This routine initially acted as a preconditioner, but we
made modifications to transform it into a solver due to problems encountered
with larger problem sizes.

To facilitate this transformation, we obtained data from the diacsr_petsc rou-
tine, specifically the a_csr_ia, a_csr_ja, and a_csr arrays. These arrays
were then converted into PETSc vectors named a_i, a_j, and a_data. The
code snippet presented in Snippet 4.4 demonstrates the implementation of the
PETSc CG solver with ILU0 preconditioning, intended for single-processor ex-
ecution.

1 . . .
2 c a l l MatCreateSeqAIJWithArrays (PETSC_COMM_SELF, n_pet , n_pet , a i , a j ,

a_data , a_mat , i e)
3 . . .
4 do i = 1 , n_pet
5 c a l l VecSetValue (x_vec , i −1 ,x (i) ,INSERT_VALUES, i e)
6 c a l l VecSetValue (rhs_vec , i −1 , rhs (i) ,INSERT_VALUES, i e)
7 end do
8 . . .
9 c a l l KSPCreate (PETSC_COMM_SELF, ksp , i e)

10 c a l l KSPGetPC(ksp , pc , i e)
11 c a l l KSPSetType (ksp ,KSPCG, i e)
12 c a l l PCSetOperators (pc , a_mat , a_mat , i e)
13 c a l l PCSetType (pc , PCILU , i e)
14 c a l l PCFactorSetLevels (pc ,0 , i e)
15 c a l l KSPSetTolerances (ksp , epscg ,PETSC_DEFAULT_REAL,PETSC_DEFAULT_REAL

, ncgmax , i e)
16 . . .
17 c a l l KSPSolve (ksp , rhs_vec , x_vec , i e)
18 . . .

Snippet 4.4: CPU-only serial PETSc CG solver with ILU0 preconditioner

For this solver, limited to MPI size = 1, we continued to use the PETSC_COMM-
-_SELF to create local matrices and vectors. In order to set up the solver, we
initialized the x_vec and rhs_vec vectors with appropriate values extracted
from the x and rhs arrays in POT3D.

Next, we configured the solver by specifying the Krylov subspace solver as
KSPCG and setting the preconditioner to PCILU to enable ILU0 preconditioning.
Once the matrix and vectors were properly set, we employed the KSPSolve

26

function to execute an iterative solving process. The behaviour of KSPSolve
adhered to the tolerance settings, which were established using the KSPSet-
-Tolerances function. These tolerances were derived from the epscg value
(indicating the residual limit) and the ncgmax value (indicating the maximum
number of iterations) as defined in the pot3d.dat input file. For example, we
set epscg=1.e-12 and ncgmax=10000000 in all our runs in this study.

After executing the KSPSolve function, the outcome consisted of scalar values
representing Φ (as described in equation (2.3)), stored in the x_vec vector.
These values were then utilized to compute magnetic fields using the existing
POT3D implementation. An important observation to note is that the sparse
matrix format of a_mat prevented memory issues when handling larger prob-
lems.

4.4.1 Solver convergence and analysis for different options

During our validation, we noticed an issue with the PETSc solver when using
the potential field current sheet (PFCS) option (models/options supported by
POT3D are described in Section 2.4.3). Specifically, for certain problem sizes,
the solver fails to converge due to a divergence in the residuals. The PETSc
solver displays a message: Linear solve did not converge due to
DIVERGED_INDEFINITE_MAT.

Upon examining the residual values during each iteration, we observed a pat-
tern where the residuals decrease initially but start increasing after a certain
point in the PETSc solver i.e., divergence. This convergence problem becomes
more prominent for larger problem sizes. It’s worth noting that the POT3D solver
when utilizing the same PFCS option, manages to converge within the specified
residual tolerance for various problem sizes.

In order to quantify the discrepancy between the diverged PETSc solver and
the converged POT3D solver for the PFCS option, we calculated the error us-
ing the formula mentioned in Section 4.2. The computed error values range
from 2 × 10−5 to 1 × 10−4. Although this difference in error values isn’t exces-
sively significant, we didn’t have sufficient confidence to proceed with test runs
for the potential field current sheet (PFCS) option. Our suspicion is that this vari-
ance between the solvers might stem from the distinct treatment of boundary
coefficients, as discussed in Section 2.4.3.

Adding to this challenge, the test dataset in POT3D’s source code exclusively
pertains to the potential field source surface (PFSS) option. Consequently, we
lack a standard dataset to verify the solver’s performance for the PFCS option.
To address and resolve this issue, a potential approach would involve the de-
velopment of a custom solver using lower-level components of PETSc, akin to
POT3D. However, this undertaking falls beyond the scope of this dissertation.

27

Due to the aforementioned problems, we made the decision to exclude the
solver for the potential field current sheet (PFCS) option from the subsequent
analysis within this dissertation.

Referring to Snippet 4.3, we can observe that the matrix remains consistent
for both the potential field source surface (PFSS) and open field (OF) options.
Through our testing, we found that the PETSc solver consistently converged
with error values below 2 × 10−5 for all problem sizes we examined with these
options. Based on this observation, we will focus our further analysis in this
dissertation solely on the potential field source surface (PFSS) and open field
(OF) options.

4.5 Enhancing parallelism: Adapting PETSc solver
for multi-process utilization

We initially developed and tested a serial PETSc solver. Later, our goal was to
extend this solver’s functionality to support multiple processes. During our anal-
ysis, we encountered an issue related to distributed input data loading in the
POT3D application, discussed in Section 2.4.1. This problem emerged within
the context of the CG solver’s iterative process in POT3D, explained in Sec-
tion 2.4.3. The challenge stemmed from adapting the standard MPI communi-
cation of direction vector elements used in POT3D’s CG solver to the PETSc
solver. Unlike the direct control over data in POT3D, PETSc’s abstracted iter-
ative solver component lacked similar data control. POT3D loads the data in
a distributed manner, considering the specialized communication of direction
vector elements during each iteration. Although we attempted to analyze the
data loading algorithm of POT3D to adapt it for PETSc, its complexity rendered
it impractical within the time constraints of the dissertation.

As a workaround, we loaded the complete data in each process and then ini-
tialized the PETSc matrix and vectors in a distributed manner. We generated a
distributed matrix named a_mat using the MatCreate function. The matrix’s
type was designated as MATMPIAIJ, indicating that it is a distributed sparse
matrix.

We then set up the distributed vectors and configured the solver environment.
To do this, we utilized the VecCreateMPIand KSPCreate functions. It’s im-
portant to emphasize that the arrays a_csr_ia, a_csr_ja, a_csr, x, and
rhs contain all the input values for each process. In contrast to the native
POT3D implementation, we did not load these values in a distributed manner,
resulting in higher memory consumption with this specific approach. For ini-
tializing the values in the a_mat matrix, x_pet, and rhs_pet vectors, we
employed the MatSetValue and VecSetValue functions. This initialization
process involved determining the range of indices owned by each process and

28

initializing only the corresponding segment of the distributed a_mat, x_pet,
and rhs_pet objects.

1 . . .
2 c a l l MatCreate (PETSC_COMM_WORLD, a_mat , i e)
3 c a l l MatSetSizes (a_mat ,PETSC_DECIDE,PETSC_DECIDE, n_pet , n_pet , i e)
4 c a l l MatSetType (a_mat , MATMPIAIJ , i e)
5 c a l l MatGetOwnershipRange (a_mat , rs , re , i e)
6 do i = 1 , n_pet
7 cs = a_csr_ ia (i)
8 ce = a_csr_ ia (i +1) − 1
9 do idx = cs , ce

10 j = a_csr_ ja (i dx)
11 i f (i −1.ge . rs . and . i −1. l t . re) then
12 c a l l MatSetValue (a_mat , i −1 , j −1 , a_csr (i dx) ,ADD_VALUES, i e)
13 end i f
14 end do
15 end do
16 . . .
17 c a l l VecCreateMPI (PETSC_COMM_WORLD,PETSC_DECIDE, n_pet , rhs_vec , i e)
18 c a l l VecCreateMPI (PETSC_COMM_WORLD,PETSC_DECIDE, n_pet , x_vec , i e)
19 . . .
20 c a l l VecGetOwnershipRange (rhs_vec , rs , re , i e)
21 do i = 1 , n_pet
22 i f (i −1.ge . rs . and . i −1. l t . re) then
23 c a l l VecSetValue (rhs_vec , i −1 , rhs (i) ,INSERT_VALUES, i e)
24 end i f
25 end do
26 c a l l VecGetOwnershipRange (x_vec , rs , re , i e)
27 do i = 1 , n_pet
28 i f (i −1.ge . rs . and . i −1. l t . re) then
29 c a l l VecSetValue (x_vec , i −1 ,x (i) ,INSERT_VALUES, i e)
30 end i f
31 end do
32 . . .
33 c a l l KSPCreate (PETSC_COMM_WORLD, ksp , i e)
34 c a l l KSPGetPC(ksp , pc , i e)
35 c a l l KSPSetType (ksp ,KSPCG, i e)
36 c a l l PCSetOperators (pc , a_mat , a_mat , i e)
37 c a l l PCSetType (pc , PCJACOBI , i e)
38 c a l l KSPSetTolerances (ksp , epscg ,PETSC_DEFAULT_REAL,PETSC_DEFAULT_REAL

, ncgmax , i e)
39 . . .
40 c a l l KSPSolve (ksp , rhs_vec , x_vec , i e)
41 . . .
42 c a l l VecGetLocalSize (x_vec , lcount , i e)
43 . . .
44 c a l l VecGetValues (x_vec , lcount , i x , x , i e)
45 . . .
46 c a l l MPI_Gatherv (x (1) , lcount , n type_real , x (1) , counts , d i sp l s , n type_real

, 0 ,PETSC_COMM_WORLD, i e)
47 . . .

Snippet 4.5: CPU-only parallel PETSc CG solver with Jacobi preconditioner

29

With this parallel configuration, the KSPSolve function was executed to obtain
results in the x_vec vector. The values within the resulting x_vec vector are
distributed across processes. As a result, we collected all values from x_vec in
the root process and exclusively computed the required magnetic field values
there.

We verified this implementation by following the methodology outlined in Sec-
tion 4.2 for the potential field source surface (PFSS) and open field (OF) op-
tions only due to reasons discussed in Section 4.4.1. Since this is a parallel
implementation, we conducted extensive testing by running the application with
numerous MPI processes. This approach allowed us to validate the accuracy
and reliability of the implementation.

4.6 Enabling GPU utilization for the PETSc solver

To make use of GPUs with the PETSc solver, we follow the same approach as
explained in Section 4.5 and shown in Snippet 4.5. However, we make some
changes to the types of the matrix and vectors used.

For GPU utilization, we adjust the matrix a_mat to be of the type MATMPIAIJ-
-CUSPARSE instead of MATMPIAIJ. Similarly, we create the vectors using the
VecCreateMPICUDA function instead of VecCreateMPI. Once these changes
are applied, the KSPSolve function harnesses the power of GPUs to compute
the solution.

We made sure that this modified implementation is accurate by following the
steps described in Section 4.2 for the potential field source surface (PFSS) and
open field (OF) options only due to the reasons discussed in Section 4.4.1.
Since this is also a parallel implementation, we tested the results by running the
application with multiple MPI processes (equivalent to the number of GPUs) to
confirm the correctness of the implementation.

30

Chapter 5

Analysis of PETSc Preconditioners
and Solvers: A Comparison with
POT3D Application

In this chapter, we will examine how well PETSc’s preconditioners and solvers
perform when using the implementations we talked about in Chapter 4. We
will compare this performance with how well the POT3D application solves the
same problem. Additionally, we’ll investigate how adaptable the PETSc imple-
mentations are.

5.1 Solver and preconditioner selection for analy-
sis

Name Type PETSc POT3D
Conjugate Gradient (CG) Solver Yes Yes
GMRES (Generalized Minimal Resid-
ual)

Solver Yes No

BCGS (Stabilized Biconjugate Gradi-
ent)

Solver Yes No

Diagonal Scaling (Point Jacobi) Preconditioner Yes Yes
ILU0 (Incomplete LU Factorization) Preconditioner Yes Yes
AMG (Algebraic Multigrid) Preconditioner Yes No

Table 5.1: Utilization of Solvers and Preconditioners in Native POT3D and
PETSc Implementations.

In our study, we examined the efficiency of different solvers and precondition-
ers. We utilized three iterative solvers: Conjugate Gradient (CG), Generalized

31

Minimal Residual (GMRES), and a stabilized version of Biconjugate Gradient
(BCGS). We also employed three preconditioners: point-Jacobi, Incomplete LU
factorization (ILU0), and Algebraic Multigrid (AMG) (description of these pre-
conditioners and solvers in Section 2.7). For our analysis, we employed a com-
bination of these solvers and preconditioners in both the POT3D and PETSc
solver versions. The specific usage scenarios are outlined in Table 5.1.

Our choice of solvers and preconditioners was guided by the capabilities of the
POT3D application. We directly compared the POT3D and PETSc solver/pre-
conditioner combinations, so we opted for solvers and preconditioners that are
supported by both. This involved using the Conjugate Gradient solver along
with the Point-Jacobi and ILU0 preconditioners. Furthermore, to broaden our
assessment and due to our academic interests, we also introduced the GM-
RES and BCGS solvers, along with the AMG preconditioner. These selections
not only enabled us to compare against unavailable setups but also provided a
unique perspective by introducing distinct solver and preconditioner combina-
tions.

5.2 Methodology

We conducted performance tests on the POT3D application, utilizing both CPU-
only and GPU setups. We evaluated the application’s performance using two
solver options: the native POT3D solver and the PETSc solver with different
preconditioners (Section 5.1). Our analysis focused specifically on the potential
field source surface (PFSS) and open field (OF) configurations. This selection
was based on the considerations outlined in Section 4.4.1.

These tests were carried out on the Cirrus machine, as detailed in Section 4.1.
The Cirrus machine comprises CPU compute nodes as well as GPU nodes.
Our experiments involved solving problems of varying sizes. The problem size
is determined by the number of data points in the matrix A (equation (2.3)). The
dimensions of this matrix are controlled by the values of nr, nt, and np i.e.,
the number of grid points in r, θ and ϕ directions mentioned in the input file
pot3d.dat. In other words, the problem size is calculated as Problem size =
nr × nt × np.

In our performance assessment, our main focus was on the time taken to com-
plete the POT3D and PETSc solver function calls (refer to Figures 5.1 and 5.2).
We calculated these times by averaging results from three separate iterations.
This approach ensures that all time-related values in this chapter are presented
as averages across three iterations. To profile the implementations using differ-
ent solvers, we employed the Arm Forge MAP application.

32

5.2.1 Analysis of residual convergence

In the preceding chapter (Chapter 4), we examine different implementations of
the solver. To analyze each version’s performance, we first investigate the rate
of convergence for the residual error. We do this by looking at how quickly
each iterative solver-preconditioner pairing converges (details in Table 5.1). We
measure the number of iterations required by each pairing to solve a given
problem and the time it takes to achieve this solution.

In this analysis, we have chosen substantial problem sizes: 200 × 200 × 200
for CPU runs, and 133 × 361 × 901 for GPU runs. The data for GPU runs is
sourced from the test suite in POT3D. These sizes strike a balance between
being large enough to yield meaningful results and manageable enough to en-
sure reasonable testing durations. It serves as a representative problem size,
typical of those solved by POT3D for performance assessment. We arrived at
this specific size after conducting initial trial runs.

Using the data from this analysis, we focus on identifying the combinations that
are directly comparable with the POT3D and PETSc implementations for scaling
analysis. Furthermore, we consider additional combinations that perform well
in solving the problem. These extra combinations are chosen based on their
ability to achieve a solution in fewer iterations and within a reasonable time
frame compared to equivalent setups.

5.2.2 Scaling analysis

We conducted a strong scaling analysis to assess how efficiently the POT3D
and PETSc implementations utilize additional resources in parallel runs. We
selected specific combinations as outlined in Section 5.2.1 and executed them
using varying numbers of processes. For CPU runs, we used 1, 2, 4, 8, 16,
32, 62, and 128 processes, distributed across 1 to 4 nodes on the Cirrus sys-
tem. For GPU runs, the combinations were executed on 1, 2, 4, 8, 12, and 16
GPUs, utilizing 1 to 4 GPU nodes on the Cirrus machine. The problem size
was consistent: 200 × 200 × 200 for CPU runs and 133 × 361 × 901 for GPU
runs (test suite), as detailed in Section 5.2.1. To evaluate the achieved perfor-
mance enhancement, we analyzed the elapsed times of solver function calls in
both the PETSc and POT3D implementations. This analysis allowed us to com-
pute the speedup and create a graph depicting its correlation with the number
of employed processes. This graph provides valuable insights into the scaling
behaviour of the system. The formula used to calculate speedup, as shown in
Equation 5.1, is defined as:

Speedup(N) =
Ts

Tp(N)
(5.1)

33

Here, Ts represents the execution time on a single processor, while Tp(N) rep-
resents the execution time on N processors.

In the context of parallel computing analysis, a clear understanding of parallel
efficiency (E(N)) is crucial. This efficiency quantifies how effectively the parallel
system utilizes additional processors. It is expressed as:

E(N) =
Speedup(N)

N
=

Ts

N · Tp(N)
(5.2)

Visualizing the parallel efficiency through plotting enables us to assess the
scalability of parallel algorithms. A higher parallel efficiency reflects efficient
resource utilization. On the other hand, a descending curve in the parallel effi-
ciency plot might indicate diminishing returns due to factors like communication
overhead or load imbalance.

In the context of linear solvers like POT3D, weak scaling analysis is not appli-
cable. This is because, when the problem size is increased with the number
of processes (N), the actual problem solved by each N is different, necessitat-
ing varying numbers of iterations for solving each problem. Consequently, even
with distributed data, the computational workload borne by each process dif-
fers across different combinations of problem sizes and numbers of processes
during weak scaling analysis. Thus, weak scaling analysis is not performed.

5.3 Analysis of serial PETSc implementation and
POT3D application in serial mode

We initiated our analysis by comparing the serial PETSc implementation dis-
cussed in Section 4.4 with the POT3D application when executed in a serial
manner, meaning with a single MPI process (MPI processes = 1). Our rationale
for beginning with the serial implementation was to encompass intrinsic PETSc
preconditioners such as PCILU. It’s worth noting that PETSc’s native PCILU is
not available for parallel solvers, as explained in reference [33].

Our initial approach included using the ARM Forge MAP tool to analyze both
versions of the application. The outcomes of this analysis are displayed in Fig-
ures 5.1 and 5.2. Notably, in both variations, the preconditioning steps (KSP-
-_PCApply and prec_inv) took up a similar proportion of the overall run-
time. Similarly, the stages involving matrix multiplication (KSP_MatMult and
ax) showed a comparable distribution in terms of runtime percentage. These
two phases were the primary time-consuming components in each run for both
versions.

34

Figure 5.1: Performance profile of the POT3D application when executed with a
single MPI process. The graph provides insights into the distribution of runtime
across different stages of the computation.

Figure 5.2: Performance profile of the serial PETSc implementation. The graph
provides insights into the distribution of runtime across different stages of the
computation.

It’s important to highlight that the solver functions utilized in the POT3D and
PETSc implementations are cgsolve and KSPSolve, respectively. The timing
results we present in this report exclusively pertain to the execution durations
of these solver functions.

Given that the ILU0 preconditioner emerges as the more effective option be-
tween the two, it becomes evident that for sequential execution, the PETSc CG
solver with ILU0 preconditioning offers the most favourable solution in the con-
text of computing potential field solutions for both Potential Field Source Sur-
face (PFSS) and Open Field (OF) models. While the standard PETSc library
appears more suitable for single-threaded runs, practical application dictates
that POT3D would be used mostly for larger problem sizes, requiring parallel
computing capabilities to attain timely solutions.

35

5.3.1 Analysis of residual convergence

We began our comparative analysis between the serial PETSc implementation
(Section 4.4) and the POT3D implementation by examining the convergence of
residuals, as outlined in Section 5.2.1. The results are presented in Figures 5.3
and 5.4. The analysis involved executing both versions using different solver-
preconditioner configurations on a single processing unit (CPU cores).

Figure 5.3: Convergence of residual errors for various solver-preconditioner
combinations when solving a problem of dimensions 200 × 200 × 200 using a
single process. The residual values are presented in a logarithmic scale.

Figure 5.3 illustrates the convergence of the residual error for different com-
binations of solvers and preconditioners. The graph presents the number of
iterations needed by each configuration to achieve a solution. When we directly
compare the setups in both POT3D and PETSc implementations, specifically
using the Conjugate Gradient (CG) solver with point-Jacobi and ILU0 precon-
ditioners, we observe that runs with point-Jacobi preconditioners show similar
results between the implementations. However, PETSc outperforms POT3D
slightly when the ILU0 preconditioner is applied. When we extend our analysis
to additional setups within PETSc, we find that the Generalized Minimal Resid-
ual (GMRES) solver takes more iterations to converge compared to equivalent
setups. On the other hand, the Stabilized Biconjugate Gradient (BCGS) solver
converges more quickly in terms of iterations when compared to those equiv-
alent setups. Among all the configurations, the BCGS solver with Algebraic
Multigrid (AMG) preconditioner demands the fewest iterations to reach a solu-
tion. Particularly, setups utilizing AMG preconditioners exhibit significantly fewer
iterations for achieving a solution compared to other preconditioners.

36

Figure 5.4: Time taken by various solver-preconditioner configurations to solve
a problem of dimensions 200 × 200 × 200, all using a single processing unit.
Each setup’s elapsed time per iteration (seconds/iteration) is labelled on the
graph.

In our further analysis, we referred to figure 5.4, which displays the actual time
in seconds taken by different setups to reach a solution. We found that the
setups utilizing the ILU0 preconditioner performed the best in solving the prob-
lem. Specifically, PETSc’s ILU0 implementation with the Conjugate Gradient
(CG) solver outperformed the corresponding POT3D setup by a slight margin.
On the other hand, the Generalized Minimal Residual (GMRES) solver exhibited
the poorest performance.

Interestingly, the Algebraic Multigrid (AMG) preconditioner required fewer itera-
tions to arrive at a solution compared to the Incomplete LU Factorization (ILU0)
preconditioner. However, the AMG preconditioner took longer per iteration than
ILU0 due to its involvement in more complex operations like coarsening and in-
terpolation. These additional steps introduced computational overhead. While
AMG can achieve quicker convergence rates for specific problems, it’s initial
setup and intricate algorithmic steps contributed to longer per-iteration times
compared to the simpler and faster-to-compute ILU0 preconditioner. This is
evident in the time taken per iteration, as shown in figure 5.4.

Additionally, our observations revealed that the Stabilized Biconjugate Gradient
(BCGS) solver needed fewer iterations to solve the problem than the CG solver.
However, the BCGS solver took more time to reach a solution. The CG solver
exhibited faster results for symmetric positive definite (SPD) matrices, such as
the matrix A solved by the POT3D application. This speed advantage arises
from CG’s reduced extra operations per iteration, thanks to its exploitation of

37

matrix symmetry. In contrast, BCGS and GMRES solvers required supplemen-
tary computations, leading to slower convergence for SPD matrices. This trend
is also evident in the time taken per iteration, as depicted in figure 5.4.

5.4 Analysis of PETSc implementation and POT3D
application in parallel CPU-only mode

The POT3D application is designed to efficiently solve large datasets by using
multiple processing units simultaneously. In order to assess how well POT3D
performs in parallel, we compare its performance with the parallel version of
the PETSc solver, as explained in Section 4.5. Our observations and findings
are detailed in this section. It’s important to mention that the native PETSc
ILU0 preconditioner, denoted as PCILU, cannot be used for multi-process runs.
To address this limitation, we employed an external library called Hypre [53]
through PETSc for ILU0 preconditioning. We utilized the PCHYPRE precondi-
tioner with type euclid, as recommended in reference [33].

5.4.1 Analysis of residual convergence

We initiated our comparative study between the parallel PETSc implementation
(see Section 4.5) and the POT3D implementation by investigating the reduc-
tion of errors over iterations, as explained in Section 5.2.1. The outcomes are
shown in Figures 5.5 and 5.6. This examination encompassed the operation of
both variants with varying solver-preconditioner combinations with 36 process-
ing cores, corresponding to a single standard CPU compute node within the
Cirrus machine.

The results closely align with the analysis of similar setups detailed in Sec-
tion 5.3.1. The reasoning behind the conclusions explored in Section 5.3.1
appears to be applicable to the parallel runs as well. Furthermore, there’s an
observable fluctuation in how well the Biconjugate Gradient (BCGS) solver con-
verges, as depicted in Figure 5.5. Symmetric Positive Definite (SPD) matrices,
as used in POT3D, possess distinct characteristics that render them suitable
for certain solvers. Conjugate Gradient (CG) is well-suited for symmetric pos-
itive definite matrices due to its efficient convergence, leveraging matrix sym-
metry to minimize errors in orthogonal directions. However, BCGS can exhibit
slow convergence or divergence with these matrices, and GMRES, designed
for nonsymmetric matrices, may demand higher resources without harnessing
the symmetry advantage efficiently.

The sole difference between the analysis in this section and Section 5.3.1 lies
in the inclusion of an Incomplete LU factorization (ILU) preconditioner from an

38

Figure 5.5: Convergence of residual errors for various solver-preconditioner
combinations when solving a problem of dimensions 200 × 200 × 200 using 36
CPU cores. The residual values are presented in a logarithmic scale.

Figure 5.6: Time taken by various solver-preconditioner configurations to solve
a problem of dimensions 200 × 200 × 200, all using 36 CPU cores. Each
setup’s elapsed time per iteration (seconds/iteration) is labelled on the graph.

external library (Hypre) in PETSc’s parallel implementation. Notably, config-
urations that make use of this preconditioner (PCHYPRE) demonstrate inferior
performance compared to their POT3D counterparts. This inconsistency arises

39

due to the distinct algorithms used in Hypre and the additional overhead intro-
duced by calls to the external Hypre library within PETSc. Notably, the most
effective configuration identified in this analysis involves the POT3D Conjugate
Gradient (CG) solver, coupled with the ILU0 preconditioner. This demonstrates
that native POT3D solvers outperform PETSc solvers in solving the potential
field problem.

5.5 Strong scaling analysis

Figure 5.7: Speedup comparison of solver configurations for the POT3D and
PETSc implementations on varying CPU cores/processes. The problem size is
200 × 200 × 200. The error bars represent standard deviations.

In our analysis of parallel implementations, we conducted a strong scaling as-
sessment on specific configurations from both the POT3D and PETSc imple-
mentations. This evaluation was carried out using the approach outlined in
Section 5.2.2, utilizing the CPU compute nodes of the Cirrus system. This
analysis aimed to provide insights into the efficiency of both implementations in
leveraging additional resources during parallel operations to solve the targeted
problem within the POT3D application.

Figure 5.7 depicts the speedup performance, while Figure 5.8 displays the ef-
fectiveness of various solver configurations when executed on different numbers
of CPU cores or processes. The specific problem under consideration involves
dimensions of 200 × 200 × 200. It’s important to note that the POT3D imple-
mentation demonstrates notably better speedup and efficiency compared to the

40

Figure 5.8: Parallel efficiency of solver configurations for the POT3D and PETSc
implementations on varying CPU cores/processes. The problem size is 200 ×
200 × 200. The error bars represent standard deviations.

PETSc implementation. This difference is attributed to the tailored optimization
within the POT3D solver, which has been carefully handled to address the in-
tricacies of the potential field problem. However, the parallel efficiency of all
the setups drops to approximately 60% (see Figure 5.8) when we utilize more
than 8 CPU cores/processes. This makes the solvers inefficient in solving the
given problem with more than 8 processes. We observed identical scaling and
efficiency for a larger problem size (133 × 361 × 901) as well.

The time taken for each iteration in various setups, when executed in parallel
with different numbers of processes, is depicted in Figure 5.9. This observation
aligns with the data presented in Figure 5.6 in most scenarios. However, in
cases where a higher number of processes (128) are employed, the PETSc CG
solver with Jacobi preconditioner exhibits slightly longer execution times com-
pared to the POT3D CG solver with ILU0 preconditioner. This discrepancy in the
observed results might arise from inefficiencies in the processing of the PETSc
Jacobi preconditioner, particularly when a substantial number of processes are
utilized.

Among the setups, the PETSc’s CG solver with an Algebraic Multigrid (AMG)
preconditioner demonstrated the closest speedup performance to the POT3D
implementation. However, even with the utilization of a sophisticated precondi-
tioner like AMG, we couldn’t achieve performance that matched or surpassed
the results attained by the customized POT3D implementation with PETSc.

41

Figure 5.9: Time per iteration of solver configurations for the POT3D and PETSc
implementations on varying CPU cores/processes. The problem size is 200 ×
200 × 200. The time per iteration values are presented in a logarithmic scale.
The error bars represent standard deviations.

5.6 Analysis of PETSc implementation and POT3D
application in parallel GPU mode

The POT3D application can utilize GPUs for improved performance (see Sec-
tion 2.3). Our objective was to compare the GPU utilization of POT3D with
PETSc’s GPU implementation, discussed in Section 4.6, as we have done in
previous sections. However, there were certain limitations we encountered.

Firstly, it’s important to note that PETSc’s GPU implementation lacks support for
ILU preconditioning when utilizing multiple GPUs. Furthermore, the utilization
of the external Hypre library for GPU acceleration is also not possible. These
limitations hindered our ability to directly compare PETSc’s ILU0 precondition-
ing with the cuSPARSE library’s utilization in POT3D for ILU0 preconditioning
(Section 2.3).

Secondly, when considering the use of the Algebraic Multigrid (AMG) precon-
ditioner for a problem size of 133 × 361 × 901, as detailed in Section 5.2.1,
for GPU runs, we faced feasibility issues with a limited number of GPUs. Even
with 16 Tesla V100 (16GB) GPUs in the Cirrus system, AMG preconditioning
was insufficient to solve a problem of this magnitude. The primary cause is the
substantially higher memory requirement of AMG preconditioning compared to
other methods. To demonstrate this, we conducted profiling using the ARM

42

Forge MAP profiler on the PETSc CG solver with two different precondition-
ers: point-Jacobi (PCJACOBI) and AMG (PCGAMG). Our analysis employed the
smallest available test case in POT3D, denoted as validation, with dimen-
sions 63 × 95 × 225, and was executed using a single GPU.

Figure 5.10: GPU compute and memory utilization of the PETSc Conjugate
Gradient (CG) solver with a point-Jacobi preconditioner were measured while
solving a small problem of size 63 × 95 × 225 using a single Tesla V100 (16GB)
GPU.

Figure 5.11: GPU compute and memory utilization of the PETSc Conjugate
Gradient (CG) solver with an Algebraic Multi-Grid (AMG) preconditioner were
measured while solving a small problem of size 63 × 95 × 225 using a single
Tesla V100 (16GB) GPU.

The profiling results, shown in Figures 5.10 and 5.11, are enlightening. Figure
5.10 illustrates that the solver using PCJACOBI requires a mere 6% of GPU
memory throughout the run, while Figure 5.11 indicates that the solver employ-
ing PCGAMG demands up to 40% of GPU memory at its peak. It’s crucial to note
that the memory demands of PCGAMG exceed 100% for the problem size we
used for analysis (133 × 361 × 901) while profiling, leading to termination of
solver execution with CUDA out-of-memory errors. Even attempting to reduce
the problem size to a level manageable by AMG for full GPU utilization results
in an extremely brief solver elapsed time (less than one second), rendering it
impractical for a meaningful analysis. As a consequence, we were unable to
make use of the AMG preconditioner in our study.

5.7 Analysis of residual convergence

We used the remaining options to analyze how well the GPU implementations
are converging. We followed the procedure outlined in Section 5.2.1 and cre-
ated plots shown in figures 5.12 and 5.13. The results indicate that the configu-
rations utilizing the point-Jacobi (PCJACOBI) preconditioner exhibit comparable

43

Figure 5.12: Convergence of residual errors for various solver-preconditioner
combinations when solving a problem of dimensions 133 × 361 × 901 using 8
CPU cores. The residual values are presented in a logarithmic scale.

Figure 5.13: Time taken by various solver-preconditioner configurations to solve
a problem of dimensions 133 × 361 × 901, all using 8 GPUs. Each setup’s
elapsed time per iteration (seconds/iteration) is labelled on the graph.

performance. Notably, for the initial iterations (see figure 5.12), the residual
drop is rapid, then stabilizing to small residual reductions for further iterations.

44

However, the setup employing the ILU0 preconditioner outperforms the others,
making the configuration using the POT3D CG solver with ILU0 preconditioner
the most effective choice.

5.8 Strong scaling analysis

Figure 5.14: Speedup comparison of solver configurations for the POT3D and
PETSc implementations on varying GPUs/processes. The problem size is 133
× 361 × 901. The error bars represent standard deviations.

We assessed the efficiency of GPU implementations for PETSc and POT3D
using the approach outlined in Section 5.2.2, and we depicted the results in Fig-
ures 5.14 and 5.15. It’s evident that the speedup achieved with the point-Jacobi
(PCJACOBI) preconditioner’s setup is comparable. However, the ILU0 precon-
ditioner’s setup offers better performance across various numbers of GPUs,
except when using 12 GPUs/processes. The decline in performance observed
in the graphs could be attributed to POT3D’s custom data decomposition and
distribution, resulting in suboptimal load balancing for that specific number of
processes and the problem under study.

Furthermore, Figures 5.14 and 5.15 illustrate that the POT3D solver occasion-
ally surpasses the expected performance. This could be attributed to POT3D’s
customized algorithm, sub-optimal cache utilization, and localization when em-
ploying a single GPU. Conversely, PETSc’s solver demonstrates consistent per-
formance with smooth curves, showcasing balanced load distribution thanks to

45

Figure 5.15: Parallel efficiency of solver configurations for the POT3D and
PETSc implementations on varying GPUs/processes. The problem size is 133
× 361 × 901. The error bars represent standard deviations.

Figure 5.16: Time per iteration of solver configurations for the POT3D and
PETSc implementations on varying GPUs. The problem size is 133 × 361
× 901. The time per iteration values are presented in a logarithmic scale. The
error bars represent standard deviations.

46

its abstracted data decomposition and parallel implementation within the gen-
eralized PETSc library. Notably, all the setups show consistently good parallel
efficiency (greater than 60% for all configurations except when the number of
GPUs = 12, shown in figure 5.15), demonstrating that the solvers utilize addi-
tional GPUs effectively to solve the given problem.

Figure 5.16 illustrates the time taken per iteration for various configurations
when executed concurrently using different numbers of GPUs. The findings
align with the information presented in figure 5.13 in the majority of instances.
However, the POT3D setups exhibit notably prolonged durations when employ-
ing 12 GPUs. This divergence might stem from suboptimal custom load distribu-
tion within the POT3D framework for specific problem dimensions. In contrast,
the PETSc setup demonstrates a consistent and gradual decrease in process-
ing time.

5.9 Analyzing the implementation effort and utility
of the PETSc library

In this chapter, our analysis employed various solvers and preconditioners us-
ing PETSc within the same program. To switch solvers, we simply adjusted a
parameter in the KSPSetType function, and likewise for preconditioners using
PCSetType function. Moreover, PETSc offers specialized functions for solvers
and preconditioners, enabling further optimization and control.

The PETSc library’s abstraction level facilitated swift performance comparisons
for different POT3D application setups. It directed our focus towards data prepa-
ration and representation, rather than delving into intricate parallelism within
solver implementation. Had we attempted a similar analysis directly within the
native POT3D application, manual implementation of solvers and precondition-
ers would have been necessary. This would have consumed significantly more
time than what was available for the dissertation.

This highlights the utility of a library like PETSc during the initial stages of
custom solver development, such as POT3D. It allows concentrating on data
preparation and assessing optimal solver-preconditioner combinations. Sub-
sequently, customized versions of these components can be implemented for
precise problem-solving, as done in the POT3D application.

47

Chapter 6

Conclusions

6.1 Main takeaways and results

In this study, we conducted a comprehensive analysis of the performance, con-
vergence, and efficiency of the serial PETSc implementation and the POT3D
application, both in serial and parallel modes. Our investigation delved into var-
ious solver-preconditioner configurations, shedding light on their suitability for
potential field computations. Through this analysis, we gained valuable insights
that contribute to a holistic understanding of the strengths and limitations of
these implementations.

Our study commenced with a comparison of the serial PETSc implementation
and the POT3D application executed in a single MPI process. This approach al-
lowed us to encompass intrinsic PETSc preconditioners, notably the Incomplete
LU factorization (ILU0) preconditioner. Our findings emphasized the effective-
ness of the ILU0 preconditioner across both implementations, particularly high-
lighting its suitability for sequential execution scenarios. Further examination
of the convergence of residual errors offered deeper insights into the solver-
preconditioner combinations’ behaviours. The POT3D CG solver with ILU0 pre-
conditioning consistently exhibited superior convergence rates, showcasing its
potential for achieving accurate solutions efficiently. While the Algebraic Multi-
grid (AMG) preconditioner demonstrated rapid convergence, specifically for the
potential field problem solved using POT3D. However, its trade-off in terms of
longer per-iteration times and increased memory demands tempered its overall
effectiveness, especially for larger problems.

Transitioning into parallel CPU-only mode, we evaluated the implementations’
performance with multiple processing units. The POT3D application’s custom
optimizations led to superior speedup and efficiency compared to the PETSc
library. Notably, the POT3D CG solver with ILU0 preconditioning emerged as
the most efficient choice, aligning with our earlier findings.

48

In the context of GPU implementations, our analysis underscored the POT3D
application’s edge, albeit with constraints imposed by GPU memory limitations.
The ILU0 preconditioner again demonstrated its efficiency, showcasing its ver-
satility across varied scenarios. Although the point-Jacobi preconditioner pro-
duced competitive results, the ILU0 preconditioner consistently outperformed it
in terms of both convergence and runtime performance for the potential field
problem solved in POT3D.

It should be noted that the conjugate gradient (CG) solver performed well for
this specific potential field problem, utilizing a symmetric positive definite matrix
in comparison to the other solvers investigated in our study. However, it is
important to recognize that this outcome might be specific to the current cases
under consideration; therefore, the observed results here cannot be generalized
as a universal conclusion.

As a noteworthy takeaway, the PETSc library’s abstraction facilitated rapid ex-
perimentation with solver-preconditioner configurations, guiding the selection of
optimal setups. This utility underscores the importance of libraries in easing the
initial stages of custom solver development, as evident from our comparative
analysis.

In summary, our research provides a comprehensive understanding of the per-
formance dynamics between the POT3D application and the PETSc library
for potential field computations. While PETSc offers a versatile framework for
solver experimentation, the customized POT3D implementation, equipped with
tailored solvers and preconditioners, emerges as the superior choice in terms
of both efficiency and convergence. The insights garnered in this study con-
tribute to the broader knowledge landscape of solver-preconditioner dynamics
in computational simulations and will serve as a guide for future advancements
in this domain.

6.2 Reflection on results and project goals

The primary goal of this project was to seamlessly integrate PETSc precondi-
tioners and solvers into the POT3D application, with a specific focus on systems
utilizing only CPUs. Additionally, our objective was to gather benchmarking data
for a thorough analysis. Our efforts have provided valuable insights into the per-
formance and behaviour of different solver-preconditioner configurations. We
have effectively accomplished the integration of PETSc solvers within POT3D,
thereby fulfilling the main aim of the project. Through our analysis, we have ob-
tained significant information regarding convergence, runtime distribution, and
the efficiency of various solver-preconditioner combinations, thus meeting an-
other aspect of the project’s goals aimed at deriving conclusions from the ob-
served data.

49

With the early attainment of our project objectives, we have identified promis-
ing avenues for expansion. These possibilities include investigating the perfor-
mance impact of PETSc solvers when paired with GPU acceleration, exploring
the influence of diverse preconditioners on system performance, and evaluat-
ing the integration of alternative solvers into the POT3D application. We have
effectively executed these additional tasks and presented the corresponding
outcomes.

6.3 Future work

In light of the observed divergence issue in the PETSc solver when applied
to the potential field current sheet (PFCS) option (Section 4.4.1), a potential
avenue for future research involves a deeper analysis of this phenomenon.
This could entail investigating alternative solver configurations, preconditioning
strategies, and numerical techniques to address the convergence challenges
encountered. Additionally, exploring the impact of different boundary coefficient
treatments on solver performance could offer valuable insights. Furthermore,
the usage of standardized test cases specifically tailored for the PFCS mod-
els within POT3D could facilitate a more comprehensive evaluation of solver
behaviour and validity.

50

Bibliography

[1] R. M. Caplan, C. Downs, J. A. Linker, and Z. Mikic, “Variations in finite-
difference potential fields,” The Astrophysical Journal, vol. 915, no. 1,
p. 44, Jul. 2021. DOI: 10.3847/1538-4357/abfd2f. [Online]. Avail-
able: https://doi.org/10.3847%2F1538-4357%2Fabfd2f.

[2] R. M. Caplan, Z. Mikic, and J. A. Linker, From mpi to mpi+openacc: Con-
version of a legacy fortran pcg solver for the spherical laplace equation,
2017. arXiv: 1709.01126 [cs.MS].

[3] J. T. Hoeksema, J. M. Wilcox, and P. H. Scherrer, “The structure of the he-
liospheric current sheet: 1978–1982,” Journal of Geophysical Research,
vol. 88, no. A12, p. 9910, 1983. DOI: 10.1029/ja088ia12p09910.

[4] C. J. Schrijver, A. W. Sandman, M. J. Aschwanden, and M. L. DeRosa,
“The coronal heating mechanism as identified by full-sun visualizations,”
The Astrophysical Journal, vol. 615, no. 1, pp. 512–525, 2004. DOI: 10.
1086/424028.

[5] S. K. Antiochos, C. R. DeVore, J. T. Karpen, and Z. Mikić, “Structure and
Dynamics of the Sun’s Open Magnetic Field,”, vol. 671, no. 1, pp. 936–
946, Dec. 2007. DOI: 10.1086/522489. arXiv: 0705.4430 [astro-ph].

[6] J. W. Harvey, F. Hill, R. P. Hubbard, et al., “The global oscillation network
group (GONG) project,” Science, vol. 272, no. 5266, pp. 1284–1286, May
1996. DOI: 10.1126/science.272.5266.1284. [Online]. Available:
https://doi.org/10.1126/science.272.5266.1284.

[7] P. H. Scherrer, J. Schou, R. I. Bush, et al., “The helioseismic and magnetic
imager (HMI) investigation for the solar dynamics observatory (SDO),”
Solar Physics, vol. 275, no. 1-2, pp. 207–227, Oct. 2011. DOI: 10.1007/
s11207-011-9834-2. [Online]. Available: https://doi.org/10.
1007/s11207-011-9834-2.

[8] C. N. Arge, J. G. Luhmann, D. Odstrcil, C. J. Schrijver, and Y. Li, “Stream
structure and coronal sources of the solar wind during the May 12th,
1997 CME,” Journal of Atmospheric and Solar-Terrestrial Physics, vol. 66,
no. 15-16, pp. 1295–1309, Oct. 2004. DOI: 10.1016/j.jastp.2004.
03.018.

[9] Home — ccmc.gsfc.nasa.gov, https://ccmc.gsfc.nasa.gov/.
[10] Student cluster competition. [Online]. Available: https://www.isc-

hpc.com/student-cluster-competition.html.

51

https://doi.org/10.3847/1538-4357/abfd2f
https://doi.org/10.3847%2F1538-4357%2Fabfd2f
https://arxiv.org/abs/1709.01126
https://doi.org/10.1029/ja088ia12p09910
https://doi.org/10.1086/424028
https://doi.org/10.1086/424028
https://doi.org/10.1086/522489
https://arxiv.org/abs/0705.4430
https://doi.org/10.1126/science.272.5266.1284
https://doi.org/10.1126/science.272.5266.1284
https://doi.org/10.1007/s11207-011-9834-2
https://doi.org/10.1007/s11207-011-9834-2
https://doi.org/10.1007/s11207-011-9834-2
https://doi.org/10.1007/s11207-011-9834-2
https://doi.org/10.1016/j.jastp.2004.03.018
https://doi.org/10.1016/j.jastp.2004.03.018
https://ccmc.gsfc.nasa.gov/
https://www.isc-hpc.com/student-cluster-competition.html
https://www.isc-hpc.com/student-cluster-competition.html

[11] Petsc overview. [Online]. Available: https://petsc.org/release/
overview/.

[12] Linear solvers and preconditioners. [Online]. Available: https://petsc.
org/release/manualpages/LinearSolvers/.

[13] A. E. P. Veldman and K. Rinzema, “Playing with nonuniform grids,” Journal
of Engineering Mathematics, vol. 26, no. 1, pp. 119–130, Feb. 1992. DOI:
10.1007/BF00043231.

[14] N. Bell and M. Garland, “Efficient sparse matrix-vector multiplication on
cuda,” Nvidia Technical Report NVR-2008-004, Nvidia Corporation, Tech.
Rep., 2008.

[15] R. Barrett, M. Berry, T. F. Chan, et al., Templates for the solution of linear
systems: building blocks for iterative methods. SIAM, 1994.

[16] J. R. Shewchuk et al., An introduction to the conjugate gradient method
without the agonizing pain, 1994.

[17] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.
[18] Jul. 2023. [Online]. Available: https://docs.nvidia.com/cuda/

cusparse/index.html.
[19] L. Yuan, Y. Zhang, X. Sun, and T. Wang, “Optimizing sparse matrix vector

multiplication using diagonal storage matrix format,” in 2010 IEEE 12th
International Conference on High Performance Computing and Commu-
nications (HPCC), 2010, pp. 585–590. DOI: 10.1109/HPCC.2010.67.

[20] J. L. Greathouse and M. Daga, “Efficient sparse matrix-vector multiplica-
tion on gpus using the csr storage format,” in SC ’14: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2014, pp. 769–780. DOI: 10.1109/SC.2014.68.

[21] B. Smith and H. Zhang, “Sparse triangular solves for ilu revisited: Data
layout crucial to better performance,” The International Journal of High
Performance Computing Applications, vol. 25, no. 4, pp. 386–391, 2011.
DOI: 10.1177/1094342010389857. eprint: https://doi.org/10.
1177/1094342010389857. [Online]. Available: https://doi.org/
10.1177/1094342010389857.

[22] Conjugate gradient method. [Online]. Available: https://en.wikipedia.
org/wiki/Conjugate_gradient_method.

[23] Petsc website. [Online]. Available: https://petsc.org/release/.
[24] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, “Efficient man-

agement of parallelism in object-oriented numerical software libraries,” in
Modern software tools for scientific computing, Springer, 1997, pp. 163–
202.

[25] S. Balay, S. Abhyankar, M. Adams, et al., Petsc users manual (tech. rep.
no. anl-95/11—revision 3.12). argonne national laboratory, 2019.

[26] S. T. Mukhambetzhanov, D. V. Lebedev, N. M. Kassymbek, T. S. Imankulov,
B. Matkerim, and D. Z. Akhmed-Zaki, “Gmres based numerical simulation
and parallel implementation of multicomponent multiphase flow in porous
media,” Cogent Engineering, vol. 7, no. 1, D. Pham, Ed., p. 1 785 189,

52

https://petsc.org/release/overview/
https://petsc.org/release/overview/
https://petsc.org/release/manualpages/LinearSolvers/
https://petsc.org/release/manualpages/LinearSolvers/
https://doi.org/10.1007/BF00043231
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://doi.org/10.1109/HPCC.2010.67
https://doi.org/10.1109/SC.2014.68
https://doi.org/10.1177/1094342010389857
https://doi.org/10.1177/1094342010389857
https://doi.org/10.1177/1094342010389857
https://doi.org/10.1177/1094342010389857
https://doi.org/10.1177/1094342010389857
https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://petsc.org/release/

2020. DOI: 10.1080/23311916.2020.1785189. eprint: https://
doi.org/10.1080/23311916.2020.1785189. [Online]. Available:
https://doi.org/10.1080/23311916.2020.1785189.

[27] L. Ge and F. Sotiropoulos, “A numerical method for solving the 3d un-
steady incompressible navier–stokes equations in curvilinear domains
with complex immersed boundaries,” Journal of Computational Physics,
vol. 225, no. 2, pp. 1782–1809, 2007, ISSN: 0021-9991. DOI: https:
//doi.org/10.1016/j.jcp.2007.02.017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/
S0021999107000873.

[28] N. Aage, E. Andreassen, and B. S. Lazarov, “Topology optimization using
petsc: An easy-to-use, fully parallel, open source topology optimization
framework,” Structural and Multidisciplinary Optimization, vol. 51, pp. 565–
572, 2015.

[29] G. Seemann, F. Sachse, M. Karl, D. Weiss, V. Heuveline, and O. Dössel,
“Framework for modular, flexible and efficient solving the cardiac bido-
main equations using petsc,” Progress in industrial mathematics at ECMI
2008, pp. 363–369, 2010.

[30] A. Logg, K.-A. Mardal, and G. Wells, Automated solution of differential
equations by the finite element method The fenics book. Springer Berlin,
2016.

[31] Petsc c/fortran api. [Online]. Available: https://petsc.org/release/
manualpages.

[32] Petsc for fortran users. [Online]. Available: https : / / petsc . org /
release/manual/fortran/.

[33] Summary of sparse linear solvers available in petsc. [Online]. Available:
https://petsc.org/main/overview/linear_solve_table/.

[34] Petsc preconditioners (pc). [Online]. Available: https://petsc.org/
release/manualpages/PC/.

[35] P. D’Ambra, F. Durastante, and S. Filippone, “AMG preconditioners for lin-
ear solvers towards extreme scale,” SIAM Journal on Scientific Comput-
ing, vol. 43, no. 5, S679–S703, Jan. 2021. DOI: 10.1137/20m134914x.
[Online]. Available: https://doi.org/10.1137/20m134914x.

[36] Y. Saad and M. H. Schultz, “Gmres: A generalized minimal residual algo-
rithm for solving nonsymmetric linear systems,” SIAM Journal on scientific
and statistical computing, vol. 7, no. 3, pp. 856–869, 1986.

[37] H. A. van der Vorst, “Bi-CGSTAB: A fast and smoothly converging variant
of bi-CG for the solution of nonsymmetric linear systems,” SIAM Journal
on Scientific and Statistical Computing, vol. 13, no. 2, pp. 631–644, Mar.
1992. DOI: 10.1137/0913035. [Online]. Available: https://doi.
org/10.1137/0913035.

[38] N. Zhang, Z. Rong, Y. Chen, S. Sun, and J. Hu, “Hierarchical LU di-
rect solver based on higher order basis function,” in 2021 International
Applied Computational Electromagnetics Society (ACES-China) Sympo-

53

https://doi.org/10.1080/23311916.2020.1785189
https://doi.org/10.1080/23311916.2020.1785189
https://doi.org/10.1080/23311916.2020.1785189
https://doi.org/10.1080/23311916.2020.1785189
https://doi.org/https://doi.org/10.1016/j.jcp.2007.02.017
https://doi.org/https://doi.org/10.1016/j.jcp.2007.02.017
https://www.sciencedirect.com/science/article/pii/S0021999107000873
https://www.sciencedirect.com/science/article/pii/S0021999107000873
https://petsc.org/release/manualpages
https://petsc.org/release/manualpages
https://petsc.org/release/manual/fortran/
https://petsc.org/release/manual/fortran/
https://petsc.org/main/overview/linear_solve_table/
https://petsc.org/release/manualpages/PC/
https://petsc.org/release/manualpages/PC/
https://doi.org/10.1137/20m134914x
https://doi.org/10.1137/20m134914x
https://doi.org/10.1137/0913035
https://doi.org/10.1137/0913035
https://doi.org/10.1137/0913035

sium, IEEE, Jul. 2021. DOI: 10.23919/aces-china52398.2021.
9581757. [Online]. Available: https://doi.org/10.23919/aces-
china52398.2021.9581757.

[39] Petsc: Gpu support roadmap. [Online]. Available: https://petsc.
org/release/overview/gpu_roadmap/.

[40] V. Minden, B. Smith, and M. G. Knepley, “Preliminary implementation of
petsc using gpus,” GPU solutions to multi-scale problems in science and
engineering, pp. 131–140, 2013.

[41] S. Cuomo, A. Galletti, G. Giunta, and L. Marcellino, “Toward a multi-level
parallel framework on gpu cluster with petsc-cuda for pde-based opti-
cal flow computation,” Procedia Computer Science, vol. 51, pp. 170–179,
2015.

[42] P. Kumbhar, “Performance of petsc gpu implementation with sparse ma-
trix storage schemes,” 2011.

[43] Pot3d: High performance potential field solver. [Online]. Available: https:
//github.com/predsci/POT3D.

[44] Hpcg benchmark. [Online]. Available: https://hpcg- benchmark.
org/index.html.

[45] Hpl - a portable implementation of the high-performance linpack bench-
mark for distributed-memory computers. [Online]. Available: https://
netlib.org/benchmark/hpl/.

[46] Hpc challenge benchmark. [Online]. Available: https://hpcchallenge.
org/hpcc/.

[47] Flutas (fluid transport accelerated solver). [Online]. Available: https:
//github.com/Multiphysics-Flow-Solvers/FluTAS.

[48] Quantum espresso. [Online]. Available: https://www.quantum-espresso.
org/.

[49] NVIDIA HPC-Benchmarks | NVIDIA NGC — catalog.ngc.nvidia.com, https:
//catalog.ngc.nvidia.com/orgs/nvidia/containers/hpc-
benchmarks, [Accessed 08-08-2023].

[50] NVIDIA HPC SDK Version 22.11 Documentation — docs.nvidia.com, https:
//docs.nvidia.com/hpc-sdk/archive/22.11/index.html,
[Accessed 08-08-2023].

[51] Unified communication - x framework library. [Online]. Available: https:
//docs.nvidia.com/networking/display/HPCXv29/Unified+
Communication+-+X+Framework+Library.

[52] Advanced Computing Facility | EPCC — epcc.ed.ac.uk, https://www.
epcc.ed.ac.uk/hpc-services/advanced-computing-facility,
[Accessed 08-08-2023].

[53] R. D. Falgout, J. E. Jones, and U. M. Yang, “The design and implemen-
tation of hypre, a library of parallel high performance preconditioners,” in
Numerical solution of partial differential equations on parallel computers,
Springer, 2006, pp. 267–294.

54

https://doi.org/10.23919/aces-china52398.2021.9581757
https://doi.org/10.23919/aces-china52398.2021.9581757
https://doi.org/10.23919/aces-china52398.2021.9581757
https://doi.org/10.23919/aces-china52398.2021.9581757
https://petsc.org/release/overview/gpu_roadmap/
https://petsc.org/release/overview/gpu_roadmap/
https://github.com/predsci/POT3D
https://github.com/predsci/POT3D
https://hpcg-benchmark.org/index.html
https://hpcg-benchmark.org/index.html
https://netlib.org/benchmark/hpl/
https://netlib.org/benchmark/hpl/
https://hpcchallenge.org/hpcc/
https://hpcchallenge.org/hpcc/
https://github.com/Multiphysics-Flow-Solvers/FluTAS
https://github.com/Multiphysics-Flow-Solvers/FluTAS
https://www.quantum-espresso.org/
https://www.quantum-espresso.org/
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/hpc-benchmarks
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/hpc-benchmarks
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/hpc-benchmarks
https://docs.nvidia.com/hpc-sdk/archive/22.11/index.html
https://docs.nvidia.com/hpc-sdk/archive/22.11/index.html
https://docs.nvidia.com/networking/display/HPCXv29/Unified+Communication+-+X+Framework+Library
https://docs.nvidia.com/networking/display/HPCXv29/Unified+Communication+-+X+Framework+Library
https://docs.nvidia.com/networking/display/HPCXv29/Unified+Communication+-+X+Framework+Library
https://www.epcc.ed.ac.uk/hpc-services/advanced-computing-facility
https://www.epcc.ed.ac.uk/hpc-services/advanced-computing-facility

	Introduction
	Background and Literature review
	POT3D: Model description
	Numerical technique in POT3D
	Preconditioners in POT3D
	Execution stages in POT3D solver
	Loading input and domain decomposition
	Preconditioning
	Iterative solver
	Compute magnetic field solutions

	PETSc: A scalable toolkit for parallel linear solvers
	PETSc integration in Fortran applications
	Preconditioners and solvers in PETSc
	PETSc's GPU capabilities

	ISC Student Cluster Competition
	Rules
	Setup and hardware
	Benchmarking and pre-competition results
	HPCG benchmarking and results
	POT3D benchmarking and results

	Competition results

	Experimental Implementation
	Experimental environment
	Correctness testing
	Implementation approach for preconditioning replacement with PETSc in POT3D
	Adapting matrix structure and boundary coefficients for CPU-only serial PETSc implementation of CG solver in POT3D
	Solver convergence and analysis for different options

	Enhancing parallelism: Adapting PETSc solver for multi-process utilization
	Enabling GPU utilization for the PETSc solver

	Analysis of PETSc Preconditioners and Solvers: A Comparison with POT3D Application
	Solver and preconditioner selection for analysis
	Methodology
	Analysis of residual convergence
	Scaling analysis

	Analysis of serial PETSc implementation and POT3D application in serial mode
	Analysis of residual convergence

	Analysis of PETSc implementation and POT3D application in parallel CPU-only mode
	Analysis of residual convergence

	Strong scaling analysis
	Analysis of PETSc implementation and POT3D application in parallel GPU mode
	Analysis of residual convergence
	Strong scaling analysis
	Analyzing the implementation effort and utility of the PETSc library

	Conclusions
	Main takeaways and results
	Reflection on results and project goals
	Future work

